REVISION 1

SUBMITTED TO:
Alaska Department of
Transportation & Public
Facilities
2301 Peger Road
Fairbanks, AK 99709

BY: Shannon & Wilson 2355 Hill Road Fairbanks, Alaska 99709

(907) 479-0600 www.shannonwilson.com

July 2020 to June 2021

Quarterly PFAS Water Sampling
GUSTAVUS, ALASKA

PAGE INTENTIONALLY LEFT BLANK FOR DOUBLE-SIDED PRINTING

102599 December 2022

Submitted To: Alaska Department of Transportation & Public Facilities

2301 Peger Road Fairbanks, AK 99709

Attn: Marcus Zimmerman and Sammy Cummings

Subject: REVISION 1 SUMMARY REPORT, JULY 2020 TO JUNE 2021

QUARTERLY PFAS WATER SAMPLING, GUSTAVUS, ALASKA

Shannon & Wilson prepared this report and participated in this project as a consultant to the Alaska Department of Administration's Division of Risk Management (DRM) and Alaska Department of Transportation and Public Facilities (DOT&PF).

Shannon & Wilson's services were authorized by DRM under our letter titled *Confirmation of Authorization to Proceed with Environmental Support Services, Gustavus Airport PFAS Assessment, Gustavus, Alaska* dated August 23, 2018. Shannon & Wilson's services were authorized by DOT&PF under Professional Services Agreement Number 25-19-1-013, issued by the DOT&PF on December 19, 2018, and the following contract amendments:

- Amendment 35, NTP P5-1-2021a for quarterly residential monitoring in fiscal year (FY)
 2021, and NTP P5-11a for quarterly monitoring well sampling in FY 2021.
- Amendment 40, NTP P5-13 for the FY 2021 annual groundwater monitoring report.

This report presents a summary of Shannon & Wilson's water-supply and monitoring well sampling and related services from July 2020 through June 2021.

Shannon & Wilson appreciates the opportunity to be of service to you on this project.

Amber Masters

Environmental Scientist, Report Author

Reisten Freikurger

Kristen Freiburger

Associate, Chemist, Project Manager

1	Intro	oductio	n	2
	1.1	Purpo	ose and Objectives	2
	1.2	Backg	ground	2
	1.3	Geolo	ogy and Hydrology	4
	1.4	Conta	aminants of Concern and Action Levels	4
	1.5	Scope	e of Services	5
2	Field	d Activi	ities	7
	2.1	Monit	toring Well Sampling	7
	2.2	Water	r-Supply Well Sampling	9
		2.2.1	Quarterly and Annual Monitoring	9
		2.2.2	First-Time Samples	12
		2.2.3	December 2020 Flood Response Samples	12
		2.2.4	Notification of Results	13
		2.2.5	Public Information	13
	2.3	Point-	-of-Entry Treatment System Monitoring	13
	2.4	Samp	le Custody, Storage, and Transport	14
	2.5	Devia	ntions	14
3	Ana	lytical l	Results	15
	3.1	Water	r-Supply Wells	16
		3.1.1	Fall 2020	16
		3.1.2	Winter 2020	16
		3.1.3	Spring 2021	17
		3.1.4	Summer 2021	17
		3.1.5	Historical Results	17
	3.2	Monit	toring Wells	17
		3.2.1	Fall 2020	17
		3.2.2	Winter 2020	18
		3.2.3	Spring 2021	18
		3.2.4	Summer 2021	18

		3.2.5	Petroleum Analysis
		3.2.6	Historical Results
	3.3	POET	System Monitoring
4	Disc	assion a	and Recommendations
	4.1	Compa	arison to Regulatory Levels19
		4.1.1	Water-Supply Wells
		4.1.2	Monitoring Wells
	4.2	Trend	Analysis
		4.2.1	Water-Supply Wells
			4.2.1.1 PFOS Trend Analysis
			4.2.1.2 PFOA Trend Analysis
			4.2.1.3 PFOS and PFOA Combined Trend Analysis21
		4.2.2	Monitoring Wells21
			4.2.2.1 PFOS Trend Analysis
			4.2.2.2 PFOA Trend Analysis
			4.2.2.3 PFOS and PFOA Combined Trend Analysis
	4.3	Recom	mendations22
5	Refe	rences	25
		11	
		-	•
			,
Exhi	bit 2 -3	3: Quart	erly and Annual Location Summary11
3.2.6 Historical Results			

Tables	
Table 1:	Summary of August/September 2020 Water-Supply Well Analytical PFAS Results
Table 2:	Summary of December 2020/January 2021 Water-Supply Well Analytical PFAS Results
Table 3:	Summary of March 2021 Water-Supply Well Analytical PFAS Results
Table 4:	Summary of June 2021 Water-Supply Well Analytical PFAS Results
Table 5:	Summary of August/September 2020 Monitoring Well Analytical PFAS Results
Table 6:	Summary of December 2020/January 2021 Monitoring Well Analytical PFAS Results
Table 7:	Summary of March 2021 Monitoring Well Analytical PFAS Results
Table 8:	Summary of June 2021 Monitoring Well Analytical PFAS Results
Table 9:	Summary of August 2020 through June 2021 Monitoring Well Analytical Petroleum Results
Table 10:	Summary of August 2020 through June 2021 POET System Analytical PFAS and Arsenic Results
Table 11:	Summary of Historical Water-Supply Well PFAS Results
Table 12:	Summary of Historical Water-Supply Well Selected PFAS Results and Trends
Table 13:	Summary of Historical Monitoring Well Selected PFAS Results and Trends

Figures

Figure 1: Site Map

Figure 2: Quarterly and Annual Water-Supply Well Sampling Locations

Figure 3: Monitoring Well Locations

Figure 4: Maximum PFOS+PFOA Results as of August 2021

Appendices

Appendix A: Field Notes

Appendix B: Public Information Appendix C: Analytical Results Appendix D: Historical Data Plots

Important Information

°C degrees Celsius

9CL-PF3ONS 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid 11CL-PF3OUdS 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid

AAC Alaska Administrative Code
AFFF aqueous film-forming foam
bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and xylenes

DEC Alaska Department of Environmental Conservation

DO dissolved oxygen

DONA or ADONA 4,8-dioxa-3H-perfluorononanoic acid

DRO diesel range organics

DOT&PF Alaska Department of Transportation and Public Facilities

DRM Alaska Department of Administration's Division of Risk Management

EPA U.S. Environmental Protection Agency

Eurofins TestAmerica in West Sacramento, California

FY fiscal year

GAC granular activated carbon
GRO gasoline range organics
GST Gustavus Airport

GST Gustavus Airport

HFPO-DA hexafluoropropylene oxide dimer acid LDRC Laboratory Data Review Checklist

LHA Lifetime Health Advisory

mg/L milligrams per liter

mV millivolts

N-EtFOSAA N-ethyl perfluorooctane sulfonamidoacetic acid

ng/L nanograms per liter

N-MeFOSAA N-methyl perfluorooctane sulfonamidoacetic acid

NPS National Park Service

PAH polycyclic aromatic hydrocarbons PFAS per- and polyfluoroalkyl substances

PFBS perfluorobutanesulfonic acid

PFDA perluorodecanoic acid
PFDoA perluorododecanoic acid
PFHpA perfluoroheptanoic acid
PFHxA perfluorohexanoic acid

PFHxS perfluorohexanesulfonic acid

PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid

PFNA perfluorononanoic acid
PFTeA perfluorotetradecanoic acid
PFTrDA or PFTriA perfluorotridecanoic acid
PFUnA perfluoroundecanoic acid
POET point-of-entry treatment system

PW-ID private well identification

QA quality assurance QC quality control

RRO residual range organics
SGS SGS North America, Inc.
Shannon & Wilson Shannon & Wilson, Inc.

Trizma ® tris(hydroxymethyl)aminomethane buffer

VOC volatile organic compound

WO work order

μg/L micrograms per liter

YSI multiprobe water quality meter

1 INTRODUCTION

Shannon & Wilson, Inc. (Shannon & Wilson) has prepared this report to document water-supply and monitoring well sampling and point-of-entry treatment (POET) system testing efforts near the Gustavus Airport (GST) in Gustavus, Alaska. This report covers project tasks completed in July 2020 through June 2021 for this ongoing project.

The GST is an active, Alaska Department of Environmental Conservation (DEC) listed contaminated site due to the presence of per- and polyfluoroalkyl substances (PFAS) in soil, groundwater, and surface water (File Number 1507.38.017, Hazard ID 26904).

This report was prepared for the Alaska Department of Transportation & Public Facilities (DOT&PF) and the Alaska Department of Risk Management (DRM) in accordance with the terms and conditions of Shannon & Wilson's contracts, relevant DEC guidance documents, and 18 Alaska Administrative Code (AAC) 75.335.

1.1 Purpose and Objectives

The purpose of the services described in this report was to evaluate the potential for human exposure to PFAS in groundwater near the GST. Shannon & Wilson's primary objective was to collect quarterly groundwater samples from monitoring wells, and quarterly and annual groundwater samples from water-supply wells meeting the monitoring criteria detailed in Section 1.5. Well search and sampling areas are shown in Figure 1. The fiscal year (FY) 2021 monitoring status of water-supply wells identified during our well search and sampling effort is shown in Figure 2.

Our secondary objective was to collect groundwater samples from water-supply wells within the well search areas that were newly installed or were not yet sampled during previous sampling efforts.

1.2 Background

The GST terminal is located at 1 Airport Way in Gustavus, Alaska (Figure 1). The property is owned by the DOT&PF, who also owns multiple adjacent parcels. The geographic coordinates of the GST terminal are latitude 58.4252, longitude -135.7074.

The DOT&PF Crash and Fire Rescue program used aqueous film-forming foam (AFFF) for training, annual fire apparatus testing, and emergency response at the GST for many years. AFFF release areas are shown in Figure 1. The precise timeline of AFFF use at the GST is unknown, and it is possible additional areas of AFFF use have not been identified. AFFF

contains PFAS, a category of persistent organic compounds. There is evidence that exposure to PFAS can lead to adverse health effects.

On May 4, 2018, DEC informed DOT&PF the airport terminal well and National Park Service (NPS) Water System well serving the school were at risk for PFAS contamination. On June 27, 2018, DOT&PF sampled both drinking-water-supply wells for the presence of PFAS. The analytical results were received on July 30, 2018. The airport terminal well contained levels of PFAS exceeding the U.S. Environmental Protection Agency's (EPA's) Lifetime Health Advisory (LHA) level. The NPS well had detections of several PFAS less than the EPA's LHA level. DOT&PF and DRM contacted Shannon & Wilson regarding the Gustavus community well results. Shannon & Wilson began water-supply well search and sampling efforts in August 2018. Results from the initial sampling event is summarized in our April 2019 report, August 2018 to November 2018 Private Well Sampling-Revision 1.

Shannon & Wilson has sampled 121 water-supply wells for PFAS on and around the GST since 2018. Figure 1 shows the extent of the overall well search and sampling effort. PFAS were identified in several water-supply wells at concentrations exceeding the EPA LHA. Well search and sampling areas were expanded until PFAS concentrations in wells along the edges of the sampling area were found to be below the applicable DEC regulatory levels. Shannon & Wilson personnel conducted additional well search efforts in October, November, and December 2018.

Water-supply well sample concentrations for the sum of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) ranged from not detected to 6,110 nanograms per liter (ng/L) for wells associated with the GST PFAS project. Water-supply well depths are generally between 15 to 25 feet below ground surface (bgs) based on information provided by the residents and the former, local driller who installed most of the wells. Shannon & Wilson was not able to obtain well-drilling or construction logs to confirm these depths.

Through coordination with the DOT&PF and DEC, Shannon & Wilson established the well monitoring network criteria defined in Section 1.5. Quarterly water-supply well monitoring began in March 2019. Annual monitoring began in June 2019. Water-supply sampling events conducted between December 2018 and November 2019 are presented in our report *Summary Report, December 2018 to November 2019 Water Supply Sampling,* dated August 2020. The sampling events for the first and second quarter of 2020 were canceled due to COVID-19 travel restrictions. Quarterly and annual sampling conducted between July 2020 and June 2021 is covered in this report.

1.3 Geology and Hydrology

The GST sampling area lies in a glacial outwash plain. The plain is bounded by the Chilkat Mountain Range to the northeast, Glacier Bay to the northwest and Icy Strait to the south.

Our knowledge of subsurface geology and hydrology in the investigation area is based on observations Shannon & Wilson made during the 2019 and 2021 site characterization drilling activities and information provided to us by a local well driller. Our investigation noted the sampling area is mostly comprised of fluvial and marine sediments. The soil profile generally consists of water-bearing, interbedded sand and silt underlain by a silty clay or clay layer. The clay layer was observed at varying depths ranging from approximately 13 to 45 feet bgs during the 2019 site characterization activities.

1.4 Contaminants of Concern and Action Levels

The primary contaminants of concern are PFOS and PFOA. The DEC groundwater-cleanup level for PFOS and PFOA is 400 ng/L for the individual compounds. These levels were promulgated in on November 6, 2016. However, the current DEC action level for drinking water aligns with the EPA's LHA level of 70 ng/L for the sum of PFOS and PFOA. The LHA was published in May 2016. This threshold is the current action level for drinking water in accordance with DEC's April 9, 2019 Technical Memorandum, titled *Action Levels for PFAS in Water and Guidance on Sampling Groundwater and Drinking Water*. From August 2018 to April 2019 the State of Alaska enforced a different action level for drinking water. Please refer to our *Summary Report*, *December 2018 to November 2019 Water-supply Well Sampling* for more details. Additional contaminants of concern include petroleum compounds for the monitoring wells onsite at the GST and arsenic for the POET system installed at the The current action levels, in accordance with *DEC 18 AAC 75.345*, *Table C*, are shown in Exhibit 1-1 below.

Exhibit 1-1: Applicable Regulatory Action Levels

Media	Compound	Level
Drinking water	PFOS + PFOA	70 ng/L
Groundwater	PFOS	400 ng/L
Groundwater	PFOA	400 ng/L
Drinking Water	Arsenic	10 μg/L a
Groundwater	Petroleum	Varies by analyte

Notes:

a EPA's drinking-water maximum contaminant level.

µg/L= micrograms per liter; ng/L = nanograms per liter; PFOA= perfluorooctanoic acid; PFOS = perfluorooctanesulfonic acid

On October 2, 2019, DEC published an updated Technical Memorandum requesting samples be submitted for additional PFAS analytes. Water samples collected during the sampling events summarized in this report were submitted for the following 18 PFAS analytes via EPA Method 537.1 or 537.1M.

Exhibit 1-2: Reported PFAS Analytes

	EPA 537.1 PFAS Analytes
PFOS	perfluorotetradecanoic acid (PFTeA)
PFOA	perfluorotridecanoic acid (PFTrDA or PFTriA)
Perfluoroheptanoic acid (PFHpA)	perfluoroundecanoic acid (PFUnA)
Perfluorononanoic acid (PFNA)	hexafluoropropylene oxide dimer acid (HFPO-DA)
Perfluorohexanesulfonic acid (PFHxS)	N-ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)
perfluorobutanesulfonic acid (PFBS)	N-methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)
perluorodecanoic acid (PFDA)	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CL-PF3OUdS)
perluorododecanoic acid (PFDoA)	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CL-PF3ONS)
perfluorohexanoic acid (PFHxA)	4,8-dioxa-3H-perfluorononanoic acid (DONA or ADONA)

1.5 Scope of Services

Our scope summarized in this report includes four water-supply and monitoring well sampling events, additional water-supply well samples collected in response to flooding in December 2020, and quarterly sampling and maintenance of the system. This scope is outlined in our DOT&PF Statewide PFAS Addendum 002-GST-00 Gustavus Well Monitoring (work plan).

Water-supply well monitoring events included category 1 or 2 water-supply wells. Well categories are designated based on well use reported by the property owner or resident.

Category 1: wells used for drinking or cooking, as reported by owners or occupants.

Category 2: wells used for dish washing and other domestic purposes.

Category 3: wells used for vegetable-garden irrigation and are not plumbed to indoor faucets or spigots. The well water is accessed by outdoor plumbing, but the well may be located underneath or inside the structure. These wells are considered non drinking-water wells.

Category 4: wells used for outdoor purposes only, such as irrigation of lawns or non-vegetable gardens or vehicle washing. These wells are considered non drinkingwater wells.

Category 5: wells currently not in use. Wells that have been abandoned in place, are inoperable, disconnected, or intended for future use, are considered category 5 wells. These wells are considered non drinking-water-wells.

The annual water-supply well sampling event occurred in August/September 2020. The quarterly sampling events were conducted in December 2020, March 2021, and June 2021. In addition, six first-time water-supply well samples were collected from July 2020 to June 2021. Please note this project is ongoing. Shannon & Wilson collected analytical groundwater samples for determination of 18 PFAS (Exhibit 1-2) from category 1 or 2 water-supply wells that either had not been sampled during a previous sampling event, or met the following sampling criteria:

- samples were collected quarterly for active wells whose maximum combined PFOS and PFOA concentration is between 35 ng/L and 69 ng/L (50 and 100 percent of the LHA), per DEC guidance;
- samples were collected annually for active wells whose maximum combined PFOS and PFOA concentration is between 17.5 ng/L and 35 ng/L (25 and 50 percent of the LHA), per DEC guidance; and
- active wells within 500 lateral feet of a water-supply or monitoring well meeting the quarterly or annual sampling criteria, based on the event (quarterly or annual).

Lateral distance is measured from the parcel location global positioning system point; these points were collected during the initial well search. These points are generally located at the structure served by the well and may not reflect the water-supply well's actual location.

Per DEC guidance, locations that are considered "affected" (historical concentration exceeds the LHA or former DEC action limit) are not included in the quarterly or annual water-supply well monitoring events.

This report was prepared for the exclusive use of the DOT&PF and its representatives. This work presents Shannon & Wilson's professional judgment as to the conditions of the site. Information presented here is based on the sampling and analyses field staff performed. This report should not be used for other purposes without Shannon & Wilson's approval or if any of the following occurs:

Project details change, or new information becomes available, such as revised regulatory levels or the discovery of additional source areas.

- Conditions change due to natural forces or human activity at, under, or adjacent to the project site.
- Assumptions stated in this report have changed.
- If the site ownership or land use has changed.
- Regulations, laws, or cleanup levels change.
- If the site's regulatory status has changed.

If any of these occur, Shannon & Wilson should be retained to review the applicability of recommendations. This report should not be used for other purposes without Shannon & Wilson's review. If a service is not specifically indicated in this report, do not assume it was performed.

2 FIELD ACTIVITIES

This section summarizes field activities performed from July 2020 through June 2021. Travel was conducted in accordance with state guidelines, City of Gustavus policies, and Shannon & Wilson's Site-Specific Health and Safety Plan, including the addition of COVID-19 protocols for sampling at private residences.

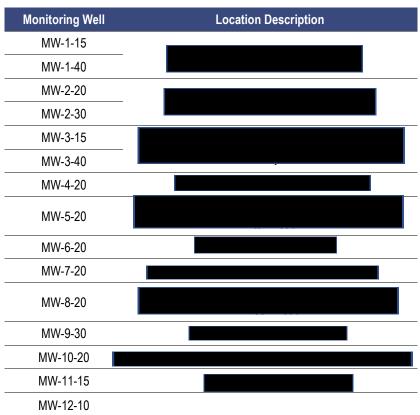
Shannon & Wilson personnel who collected analytical water samples for this project are State of Alaska Qualified Environmental Processionals as defined in 18 AAC 75.333[b]. Copies of our *Private Well Sampling Logs, Monitoring Well Sampling Logs,* and *Private Well Inventory Survey Forms* for samples and information collected during the reporting period are included in Appendix A.

2.1 Monitoring Well Sampling

Shannon & Wilson collected 15 primary groundwater and two or three field duplicates each quarter from the monitoring well network (monitoring wells MW-1 through MW-12). These wells were installed in October 2019 during site characterization activities. Monitoring well locations are shown on Figure 3.

Prior to sample collection, field staff purged monitoring wells using a peri-pump or

Exhibit 2-1. Location of nest, MW-2; adjacent to City Hall.


submersible pump and new, disposable PFAS-free tubing. The following parameters were measured using a YSI multiprobe water quality meter (YSI). Readings were recorded for the following parameters: temperature in degrees Celsius (°C), pH, conductivity in microSiemens, dissolved oxygen (DO) in milligrams per liter (mg/L), and redox potential in millivolts (mV). Parameters were recorded approximately once every three minutes until sample collection. The following values were used to indicate stability for a minimum of three consecutive readings: ±0.1 pH, ±3 percent °C, ±10 percent DO, ±3 percent conductivity, and ±10 mV redox. Samples were collected into laboratory-supplied bottles following parameter stabilization, or after three well volumes were purged.

Shannon & Wilson submitted groundwater samples collected from each monitoring well for analysis of 18 PFAS via EPA Method 537.1. Per DEC guidance, samples were also collected for petroleum compounds for monitoring wells MW-11-15 and MW-12-10. Sampling logs are included in Appendix A.

Shannon & Wilson discharged purge water to five-gallon buckets and treated purge water with granular activated carbon (GAC) before discharging to the ground surface.

Monitoring well descriptions are presented in Exhibit 2-2, below.

Exhibit 2-2: Quarterly Monitoring Well Network Summary

2.2 Water-supply Well Sampling

Shannon & Wilson collected 70 primary and 14 field duplicates water-supply well samples from 35 water-supply wells during FY 2021. Water-supply well and POET system samples collected from POET are not included in these totals. POET sampling is described in Section 2.3.

Shannon & Wilson purged water-supply well systems prior to sampling by allowing the water to run until water-quality parameters stabilized and the water appeared clear. We measured these parameters using a YSI and recorded pH, temperature, and conductivity approximately once every three minutes until sample collection. The following values were used to indicate stability for a minimum of three consecutive readings: ± 0.1 pH, ± 0.5 °C, and ± 3 percent conductivity. Purge water was discharged to an indoor sink or the ground surface. We note that indoor plumbing in the GST well search area generally leads to private septic systems.

Following parameter stabilization, field staff collected PFAS groundwater samples into laboratory-supplied sample bottles. Water-supply well samples were preserved with tris(hydroxymethyl)aminomethane buffer (Trizma®), per the laboratories standard operating procedure for drinking-water samples. Field staff collected water-supply well samples from sampling locations within the location's plumbing system, upstream of water-treatment systems or water softeners. For the purposes of this project, we do not consider small (i.e., less than 18 inches in height) particulate filters to be treatment systems. Copies of the *Residential Well Sampling Logs* are included in Appendix A.

Field staff are aware of the potential for cross-contamination from numerous everyday household items. Precautions to prevent cross-contamination included discontinuing the use of personal protective equipment and field supplies known to contain PFAS, using liner bags to contain samples before and after sample collection, hand washing, and donning a fresh pair of disposable nitrile gloves before sample collection.

2.2.1 Quarterly and Annual Monitoring

Quarterly and annual water-supply well sampling criteria is described in Section 1.5. The sampling status of each water-supply well is shown in Figure 2. In August and September 2020, Shannon & Wilson field staff collected samples from 14 of the 16 quarterly monitoring locations and nine of the 15 annual monitoring locations. In December 2020 staff collected samples from 11 of 15 quarterly monitoring locations and one annual location. In March

2021 staff collected samples from 12 of 15 quarterly monitoring locations and one annual location. During the June 2021 event, Shannon & Wilson sampled 15 of 15 quarterly monitoring locations.

These sampling events are summarized in Exhibit 2-3 below. Homes and businesses marked "No" indicate the owner or occupant declined sampling, or Shannon & Wilson was unable to reach the property contact. Property owners more commonly declined sampling in the winter and spring sampling events when many properties are winterized. Annual sampling was conducted in fall 2020 or during the next available sampling event. Shannon & Wilson intends to collect annual samples in the summer for future sampling events, in an attempt to collect samples from seasonal locations.

Exhibit 2-3: Quarterly and Annual Location Summary

Sample Name	Description	Fall 2020	Winter 2020	Spring 2021	Summe 2021
NPS Well / PW-1001*		Yes		Yes ¥	
PW-010		Yes	Yes	Yes	Yes
PW-012		Yes	Yes	Yes	Yes
PW-032*		Yes			
PW-037		Yes	Yes	Yes	Yes
PW-038		Yes	Yes	Yes	Yes
PW-039		Yes	Yes	Yes	Yes
PW-040		Yes	Yes	Yes	Yes
PW-047*		No			-
PW-059		Yes	Yes	Yes	Yes
PW-061*		Yes			
PW-074*		No			-
PW-203		Yes	Yes	Yes	Yes
PW-204 (removed)		Yes	No		
PW-204.1 (new)				No	Yes ‡
PW-205.1 (new)					Yes ‡
PW-207*		No			
PW-208 (removed)		No	No	Yes	
PW-208.1† (new)		-			Yes ‡
PW-211		Yes	Yes	Yes	Yes
PW-212*		Yes			
PW-213*		Yes†			
PW-218*		No	Yes		
PW-219*		Yes			
PW-221		Yes	Yes	Yes	Yes
PW-230*		Yes			
PW-240*		Yes			
PW-241*		No		-	
PW-401		Yes	Yes	Yes	Yes
PW-414*		Yes	-		
PW-419		Yes	No	No	Yes
PW-438*		Yes			
PW-462**		Yes			

Notes:

^{*=}annual sample; **=removed from network due to well category; †=exceeded regulatory levels, removed from monitoring network; ‡=first-time sample; ¥=sampled at request of DEC.

2.2.2 First-Time Samples

Shannon & Wilson field staff revisited locations we were unable to sample or reach during previous mobilizations during each water-supply well sampling event. Locations where more than five attempts have been made to contact owners are no longer being visited. We consider these locations to be passive refusals.

In June 2021, Shannon & Wilson collected first-time samples from three properties where the previous well had been replaced with a new water-supply well. We denote the new wells using the original private well identification (PW-ID) followed by a "." and counting consecutively. The following new wells were sampled during the reporting period: PW-204.1, PW-205.1, and PW-208.1.

2.2.3 December 2020 Flood Response Samples

In December 2020, Gustavus experienced a period of rainfall that caused flooding in the neighborhoods near the GST. In response to numerous requests from residents concerned that the flooding may have facilitated migration of PFAS into new areas, DEC and DOT&PF requested Shannon & Wilson collect additional water-supply well samples from properties in areas that may have been impacted by PFAS transport in flood waters. The following flood-response samples were collected during the December 2020/January 2021 sampling event:

- NPS Well also sampled annually as part of the water-supply well monitoring;
- PW-016 previously sampled in August 2018;
- PW-045 previously sampled in August 2018 and October 2019. Note: this property was unable to be sampled as part of the flood response until June 2021,
- PW-235 previously sampled in November 2018; and

■ *PW-466* - first-time water sample from a water-supply well

2.2.4 Notification of Results

Shannon & Wilson notified property owners and occupants following the receipt of analytical data. Owners and/or occupants were first contacted by telephone, where possible. We also prepared letters interpreting the results of the relevant water-supply well sample(s). When requested, results letters were e-mailed to owners and occupants.

Letters were tailored to each property and analytical sample and included the following information:

- sample name(s);
- comparison of PFOS and PFOA analytical results to the EPA LHA level;
- description of the project;
- pages of the laboratory report that apply to the water-well sample; and
- updated GST PFAS fact sheet.

A copy of the result letter template is included in Appendix B.

2.2.5 Public Information

The DOT&PF hosts a webpage describing the PFAS water-testing project. The webpage includes a project summary, list of contacts, a results map, and links to additional resources. The map is updated as analytical results are received and uploaded to the webpage by DOT&PF.

2.3 Point-of-Entry Treatment System Monitoring

Shannon & Wilson collected samples from the POET system installed at the The POET system is designed to remove PFAS and arsenic from the drinking-water associated with water-supply well PW-200. Water samples were collected following parameter stabilization as described in section 2.2. Quarterly samples were collected during the reporting period from the following locations in the treatment system:

- *PW-200-Sink*: collected from a post-treatment sink or spigot, generally collected from the sink in the garage. This sample is submitted for PFAS and arsenic analysis.
- *PW-200-C Port Composite*: collected from the mid-system C-port of each of the four parallel treatment units. This composite sample is submitted for PFAS analysis.

- PW-200-Unit C-port: collected from the mid-system C-port of each of the four parallel treatment units. These individual samples are submitted for PFAS analysis; however, the sample is not analyzed unless PFAS is detected in the composite sample listed above. These samples were not analyzed during the reporting period.
- PW-200-F-port: collected from the F-port located immediately after the treatment system, prior to entering indoor plumbing. This sample is submitted for PFAS and arsenic analysis; however, the sample is not analyzed unless results from the other ports indicate PFAS and/or arsenic in the treated water. This sample was not analyzed during the reporting period.
- *PW-200*: collected from the raw-water spigot, usually the A-port or the pressure tank spigot. This sample is submitted for PFAS and arsenic analysis.

2.4 Sample Custody, Storage, and Transport

Immediately after collection, the PFAS sample bottles for each location were placed in Ziploc bags and stored in a designated sample cooler or refrigerator maintained between 0 °C and 6 °C with ice substitute separated from the sample bottles by a liner bag. Samples submitted for additional analyses were also stored in the temperature-controlled cooler; however, the requirement to bag the samples and ice separately is not needed.

Shannon & Wilson maintained custody of the samples until submitting them to the laboratories for analysis. Analytical samples and chain-of-custody forms were packaged in a hard-plastic cooler with an adequate quantity of frozen-ice substitute and packing materials to prevent bottle breakage during shipments. Staff applied custody seals to the cooler, which were observed to be intact upon receipt by the laboratory.

Shannon & Wilson shipped the sample coolers to Eurofins TestAmerica in West Sacramento, California (Eurofins) for analysis of PFAS using Alaska Air Cargo's priority overnight service known as Goldstreak. Shannon & Wilson shipped or hand-delivered sample coolers to SGS North America, Inc. (SGS) in Alaska for analysis of petroleum and arsenic analytes.

Shannon & Wilson submitted water samples promptly to the analytical laboratories after each sampling event. This allowed sufficient time for the laboratories to analyze the samples within the holding-time requirements.

2.5 Deviations

In general, Shannon & Wilson conducted services in accordance with the approved proposals and approved work plan addendum. The following are deviations from the proposed scope of services described in Section 1.5.

- Sample *PW-012* was collected from a location downstream of the property's water softener or other in-home treatment system during one or more sampling events.
- Due to an YSI malfunction, pH readings were not accurate during sampling of several monitoring wells in June 2021. The remaining parameters were stabilized prior to samples collection, and pH was approximated using pH paper; however, stabilization of pH for these samples is not assured. Inaccurate pH readings occurred for the following June 2021 monitoring well samples: MW-5-20, MW-6-20, MW-7-20, MW-8-20, MW-9-30. MW-10-20, MW-11-15, and MW-12-10.
- Sample PW-462 was collected via a hand pump in September 2020, and parameters were not measured or recorded.
- Sample *PW-208* was collected in March 2021 using a peri-pump. The water-supply well was not connected to the home at the time.
- Sample PW-205.1 was collected in June 2021 using a residential well pump intended to be used with indoor plumbing. The pump was connected to a PVC pipe for purging, the pipe could not be removed prior to sample collection.
- Sample PW-208.1 was collected in June 2021 using a residential well pump intended to be used with indoor plumbing.
- Samples MW-11-15 and MW-12-10 submitted for the analysis of volatile organic compounds (VOCs) were collected using a peri-pump in Fall 2020, Winter 2020, and Spring 2021.

3 ANALYTICAL RESULTS

Shannon & Wilson submitted groundwater samples to Eurofins for analysis of 18 PFAS compounds using EPA Method 537.1. PFAS analytes are listed in Exhibit 1-2. Results of water-supply well and monitoring well samples were compared to the EPA LHA.

We submitted onsite monitoring well water samples (*MW-11-15* and *MW-12-10*) collected in August/September 2020 to SGS in Anchorage, Alaska for analysis of VOCs by method 8260C, gasoline range organics (GRO) by AK Method 101, diesel range organics (DRO) by AK Method 102, residual range organics (RRO) by AK Method 103, and polycyclic aromatic hydrocarbons (PAH) by EPA Method 8270D-SIM.

We submitted onsite monitoring samples collected in December 2020, March 2021, and June 2021 for benzene, toluene, ethylbenzene, and xylenes (BTEX) analysis by EPA Method 8260 instead of the full VOC analysis.

Water samples were also submitted to SGS for the analysis of arsenic by EPA 200.8 for the POET quarterly monitoring.

The Eurofins and SGS laboratory reports, associated DEC Laboratory Data Review Checklists (LDRCs), and a summary of our Quality Assurance/Quality Control (QA/QC) assessment are included in Appendix C. PFAS results for water-supply well and monitoring well samples collected July 2020 through June 2021 are shown in Tables 1 through 4 and Tables 5 through 8, respectively. Results of petroleum analyses from onsite monitoring wells are shown on Table 9. PFAS and arsenic results from samples collected from the POET system are shown on Table 10. The maximum PFOS+PFOA result for each sampling location as of August 2021 is depicted on Figure 4.

3.1 Water-supply Wells

The following sections summarize the water-supply well results associated with each FY 2021 sampling event.

3.1.1 Fall 2020

Table 1 summarizes concentrations of target PFAS analytes for August and September 2020 quarterly and annual water-supply well samples (Eurofins work order [WO] 320-64367-1). None of the samples collected had reported PFOS and PFOA concentrations above the EPA LHA. Analytical results for three wells exhibited combined PFOS and PFOA concentrations greater than 35 ng/L.

The sum of PFOS and PFOA was 69 ng/L in sample *PW-462*. This well exhibited the highest PFOS concentration for the fall 2020 sampling event. Note, the owners previously reported that they planned to develop this property, with the intention of using PW-462 as a drinking water source. The property has not been developed since it was reported as a future water-supply well. This well is not currently used for indoor plumbing or drinking water and has been removed from the monitoring events.

3.1.2 Winter 2020

Table 2 summarizes concentrations of target PFAS analytes for December 2020 and January 2021 quarterly and first-time water-supply well samples (Eurofins WO 320-68521-1). None of the samples collected had reported PFOS and PFOA concentrations above the EPA LHA.

Analytical results for sample *PW-401* exhibited combined PFOS and PFOA concentrations of 31 ng/L. This well had the highest reported PFAS concentration for this sampling event. PFAS analytes were not detected in the first-time sample *PW-466*.

3.1.3 Spring 2021

Table 3 summarizes concentrations of target PFAS analytes for March 2021 quarterly and first-time water-supply well samples (Eurofins WO 320-71796-1).

Analytical results for first-time sample *PW-465* exhibited combined PFOS and PFOA concentrations above the LHA, reported at 119 ng/L. Analytical results for quarterly sample *PW-401* exhibited combined PFOS and PFOA concentrations of 31 ng/L.

3.1.4 Summer 2021

Table 4 summarizes concentrations of target PFAS analytes in June 2021 quarterly and first-time water-supply well samples (Eurofins WO 320-75575-1).

Analytical results for first-time sample *PW-208.1* exhibited combined PFOS and PFOA of 70 ng/L, equivalent to the LHA. This well is considered "affected" and is no longer part of the monitoring sampling events. Analytical results for first time samples *PW-062*, *PW-204.1*, and *PW-205.1* exhibited detections of PFAS less than the LHA.

3.1.5 Historical Results

Historical PFOS results for quarterly water-supply well samples collected between August 2018 and June 2021 are plotted in Figure D.1 (Appendix D). Locations with less than four detectable results of PFOS are excluded.

Select water-supply well locations with detections of multiple PFAS analytes in historical samples collected August 2018 through June 2021 are plotted in Figure D.2 through D.5.

3.2 Monitoring Wells

The following sections summarize the monitoring well results associated with each monitoring well sampling event.

3.2.1 Fall 2020

Table 5 summarizes concentrations of target PFAS analytes in August and September 2020 quarterly monitoring well samples (Eurofins WO 320-64368-1). Analytical results for the following monitoring well samples exhibited PFAS results above the LHA: *MW-2-20, MW-9-30, MW-10-20, MW-11-15*, and *MW-12-10*.

The sum of PFOS and PFOA was 296 ng/L in sample *MW-2-20*. This well exhibited the highest PFAS concentrations for this sampling event.

3.2.2 Winter 2020

Table 6 summarizes concentrations of target PFAS analytes in December 2020 and January 2021 quarterly monitoring well samples (Eurofins WO 320-68519-1). Analytical results for the following monitoring well samples exhibited PFAS results above the LHA: *MW*-2-20, *MW*-9-30, *MW*-11-15, and *MW*-12-10.

The sum of PFOS and PFOA was 6,192 ng/L in sample *MW-11-15*. This well exhibited the highest PFAS concentrations for this sampling event.

3.2.3 Spring 2021

Table 7 summarizes concentrations of target PFAS analytes in March 2021 quarterly monitoring well samples (Eurofins WO 320-71798-1). Analytical results for the following monitoring well samples exhibited PFAS results above the LHA: *MW-2-20, MW-9-30,* and *MW-11-15*.

The sum of PFOS and PFOA was 328 ng/L in sample *MW-2-20*. This well exhibited the highest PFAS concentrations for this sampling event.

3.2.4 Summer 2021

Table 8 summarizes concentrations of target PFAS analytes in June 2021 quarterly monitoring well samples (Eurofins WO 320-75574-1). Analytical results for the following monitoring well samples exhibited PFAS results above the LHA: *MW-2-20, MW-9-30, MW-10-20,* and *MW-11-15*.

The sum of PFOS and PFOA was 482 ng/L in sample *MW-2-20*. This well exhibited the highest PFAS concentrations for this sampling event.

3.2.5 Petroleum Analysis

Table 9 summarizes concentrations of target petroleum compounds from August 2020 through June 2021 monitoring well samples. None of the reported analytes were detected above the laboratory reporting limits for the analytical samples collected during the reporting period.

3.2.6 Historical Results

PFAS results for monitoring well samples collected August 2018 through June 2021 are plotted in Figures D.6 through D.14. Locations with less than 4 detectable results are excluded.

3.3 POET System Monitoring

Table 10 summarize concentrations of PFAS and arsenic analytes in samples associated with the POET system installed at the (PW-200).

Analytical results for samples collected from untreated groundwater had reported concentrations of PFOS and PFOA above the LHA in the sample collected in August 2020. Combined PFOA and PFOA concentrations were less than the LHA in samples collected in December 2020, March 2021, and June 2021.

Analytical arsenic results exceeded regulatory limits in the untreated groundwater samples collected during each sampling events covered in this report.

Except for a low-level detection of PFOA in the August 2020 C-port composite sample, PFAS analytes were not detected in the treated water (sink) or C-port composite samples during each sampling event covered in this report.

4 DISCUSSION AND RECOMMENDATIONS

The following sections provide a detailed discussion of the results of quarterly water-supply and monitoring well sampling, and POET system testing performed July 2020 through June 2021. Observations and recommendations are based on available data and may be revised following future sampling events. We note that conclusions derived from small data sets may be prone to errors and inconsistencies.

4.1 Comparison to Regulatory Levels

Historical results for the water-supply well samples are provided as Table 11.

4.1.1 Water-supply Wells

Between July 2020 and June 2021, two first-time samples from water-supply wells had reported combined PFOS and PFOA concentrations above the drinking-water action level. The combined PFOS and PFOA concentration in sample *PW-208.1* was 70 ng/L during the summer 2021 sampling event (Table 4). This well was installed in March 2021, as a part of a renovation to an existing property. Previous samples collected from the original well on the property (PW-208) did not exceed the LHA. The combined PFOS and PFOA concentration in sample *PW-465* was 119 ng/L during the spring 2021 sampling event (Table 3). This well was historically used for guest houses located on the property. The well servicing the main home on this property exceeded the LHA in a previous sampling event. Locations where the

well concentration exceeds the LHA are receiving bottled water until a long-term alternative water solution is in place.

PFOS was frequently the highest detected PFAS analyte in the quarterly water-supply well samples collected during the events covered in this report.

4.1.2 Monitoring Wells

Between July 2020 and June 2021, 16 samples from groundwater monitoring wells had combined PFOS and PFOA concentrations above the LHA drinking-water action level. Of these, two samples had PFOS results above the DEC groundwater cleanup level of 400 ng/L. Sample *MW-11-15* collected in December 2020, exhibited a PFOS concentration of 6,100 ng/L (Table 6). Sample MW-2-20 collected in June 2021 exhibited a PFOS concentration of 450 ng/L during the summer 2021 sampling event.

PFOS was frequently the highest detected PFAS analyte in the quarterly monitoring well samples collected during the events covered in this report.

4.2 Trend Analysis

Shannon & Wilson performed a statistical analysis on the PFAS data set to provide information regarding the potential future risk to receptors via drinking water exposure. We assessed temporal data for quarterly and/or annual water-supply and monitoring wells using a Mann-Kendall nonparametric trend analysis. Mann-Kendall analyzes for increasing or decreasing trends with a confidence above 95 percent.

We are unable to report a trend for locations where fewer than four sample results are available. Trends were analyzed for C4 PFBS, C5 PFHpA, C6 PFHxS, C6 PFHxA, C8 PFOS, C8 PFOA, and PFOS and PFOA combined values. We note these trends were calculated using between five and eight sampling events and are subject to change as more data are accumulated.

Professional judgement was used to interpret trends derived from data that included a mixture of non-detected results and estimated detections below the laboratory reporting limit. Our statistical analysis referenced the laboratory reporting limit for non-detected results. Trends were not derived from data sets with a mixture of detected and non-detected results where 50 percent or more of the data set was not detected. Trends are reported as stable for analytes with consistent non-detected PFAS results for the reported location.

4.2.1 Water-Supply Wells

Table 12 summarizes the statistical analysis data for the quarterly and/or annual water-supply well locations. There were no locations in the quarterly water-supply well monitoring network that exhibited statistically significant "increasing" trends for PFOS or PFOA (Table 12). However, we note that many of the water-supply wells with higher levels of PFAS have been omitted from statistical analysis for lack of monitoring data. Two water-supply well locations exhibit "possibly increasing" trends for other PFAS.

4.2.1.1 PFOS Trend Analysis

Water-supply wells where trend analysis was conducted did not exhibit a statistically significant increasing trend in PFOS concentrations. Sample results for locations NPS Well and PW-401 exhibited a "decreasing" trend in PFOS concentration. Concentrations of PFOS in locations PW-012 and PW-200 exhibited a "possibly decreasing" trend. PFOS results for locations PW-010, PW-037, PW-038, PW-039, PW-040 and PW-221 exhibited a "stable" trend with no significant change. We note that PFOS was not detected in samples collected from July 2020 through June 2021 for locations PW-037, PW-038, PW-039, and PW-040.

4.2.1.2 PFOA Trend Analysis

Water-supply wells where trend analysis was conducted did not exhibit a statistically significant increasing trend in PFOA concentrations. Sample results for locations NPS Well and PW-200 exhibited a "decreasing" trend in PFOA concentration. PFOA results for locations PW-010, PW-037, PW-038, PW-040, PW-221 and PW-401 exhibited a "stable" trend with no significant change. We note that PFOA was not detected in samples collected from July 2020 through Jun 2021 for locations PW-037, PW-038, PW-040 and PW-221.

4.2.1.3 PFOS and PFOA Combined Trend Analysis

Trends for combined PFOS and PFOA concentrations were analyzed for water-supply well locations with calculable LHA combined values. Locations with no detections of PFOS or PFOA were not analyzed.

Water-supply well location NPS Well exhibited statistically significant evidence of a "decreasing" trend. Locations PW-012, PW-200, and PW-401 exhibited a "possibly decreasing" trend. The trend for locations PW-010, PW-040, PW-221 was calculated as "stable" with no significant change.

4.2.2 Monitoring Wells

Table 13 summarizes the statistical analysis for the monitoring well network.

4.2.2.1 PFOS Trend Analysis

Monitoring wells MW-3-40 and MW-7-20 exhibited statistically significant "increasing" trends for PFOS for samples collected through June 2021. The PFOS trend associated with monitoring wells MW-2-20, MW-2-30, MW-4-20, MW-10-20, and MW-12-10 is reported as "stable" with no significant changes. PFOS concentrations in monitoring well MW-3-15 exhibited a statistically significant "decreasing" trend. A trend was unable to be calculated or "no trend" was reported for the remaining monitoring wells.

4.2.2.2 PFOA Trend Analysis

Statistical analysis of PFOA concentrations for the monitoring wells did not report "increasing" or "decreasing" trends for the monitoring wells. PFOA concentrations are reported as "no trend" or as "stable" with no significant changes.

4.2.2.3 PFOS and PFOA Combined Trend Analysis

Trends for combined PFOS and PFOA concentrations were analyzed for monitoring well locations with calculable combined values. Locations with no detections of PFOS or PFOA were not analyzed.

Monitoring wells MW-2-20, MW-3-40, MW-5-20, and MW-7-20 exhibited statistically significant evidence of an "increasing" trend for PFOS and PFOA combined and monitoring well MW-3-15 exhibited statistically significant evidence of a "decreasing" trend.

Notably the PFOS and PFOA results in monitoring well MW-11-15 near the former fire training area had a reported spike in concentration in the December 2020 sampling event. This is likely attributable to the significant rainfall received prior to the sampling event.

4.3 Recommendations

Based on the water-supply well search and sampling efforts completed between July 2020 and June 2021, Shannon & Wilson recommends the DOT&PF:

- discontinue collecting analytical samples for petroleum analytes at locations associated with monitoring wells MW-11 and MW-12;
- continue to conduct the annual water-supply well sampling event in the summer months due to scheduling considerations;
- following this report maps produced for the water-supply and monitoring well data should avoid depicting current data with historical data, as results may have changed and may not represent the current conditions;

- work with the DEC and Alaska Department of Health and Social Services to educate the public regarding the potential health effects of exposure to PFAS-containing water;
- provide the information for monitoring well MW-2-20 to DEC for the purpose of their investigation, given this well has an increasing trend and is likely associated with a secondary source;
- refrain from discharging PFAS-containing AFFF to the ground, surface water bodies, or groundwater during ARFF training and equipment testing;
- discuss with the DEC the sampling criteria described in Section 1.5 and potential upcoming changes to the regulations following EPA's recent publications; and
- consider the following changes (Exhibit 4-1) to the water-supply well network's monitoring frequency.

Exhibit 4-1: Proposed Water-Supply Well Monitoring Network

Quarterly Location	Previous Sampling Frequency	Proposed Sampling Frequency	Reason
PW-010	Quarterly	Quarterly	Frequency not proposed to change
PW-012	Quarterly	Semi-annual	"Possibly decreasing" trend
PW-037	Quarterly	Annual	PFOS & PFOA consistently not detected
PW-038	Quarterly	Annual	PFOS & PFOA consistently not detected
PW-039	Quarterly	Annual	PFOS & PFOA consistently not detected
PW-040	Quarterly	Annual	PFOS & PFOA consistently not detected
PW-059	Quarterly	Quarterly	Frequency not proposed to change
PW-203	Quarterly	Quarterly	Frequency not proposed to change
PW-204	Quarterly	Removed	Well was replaced by owner
PW-204.1	Quarterly	Quarterly	Limited data set for new location
PW-205.1	Quarterly	Quarterly	Limited data set for new location
PW-208	Quarterly	Removed	Well was replaced by owner. New well considered "affected" and also not part of monitoring network.
PW-211	Quarterly	Semi-annual	Consistent PFAS results below reporting limit
PW-221	Quarterly	Quarterly	Frequency not proposed to change
PW-401	Quarterly	Quarterly	Frequency not proposed to change
PW-419	Quarterly	Semi-annual	Seasonal well, access varies with seasonal weather variation

The information included in this report is based on limited sampling and should be considered representative of the times and locations at which the sampling occurred. Regulatory agencies may reach different conclusions than Shannon & Wilson. "Important

Information about your Geotechnical/Environmental Report" has been prepared and is included, to assist you and others in understanding the use and limitations of this report.

5 REFERENCES

- Alaska Department of Environmental Conservation (DEC), 2017, Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, March, available:

 http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.
- Alaska Department of Environmental Conservation (DEC), 2017, Field Sampling Guidance: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, August, available: http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.
- Alaska Department of Natural Resources (DNR), 2018, Well log tracking system (WELTS):
 Available:
 http://dnr.alaska.gov/mapper/controller?gsid=5A0ECA50689B47945240C5ECB15F5
 2EB.tomcat-91, accessed January 2019 to July 2021.
- Alaska Department of Environmental Conservation (DEC), 2021, 18 AAC 75: Oil and Other Hazardous Substances Pollution Control: Juneau, Alaska, July, available: http://dec.alaska.gov/commish/regulations/.
- Alaska Department of Environmental Conservation (DEC), 2021, 18 AAC 75.345 Table C, Groundwater-Cleanup Levels.
- Aziz, J.J.; Gonzales, J.; Ling, M.; Newell, C.J.; Rifai, H.S.; and Vanderford, M., 2006, Monitoring and Remediation Optimization System (MAROS) Software Version 2.2 User Guide, Air Force Center for Environmental Excellence, March.
- Howell, Wayne, 2019, Historic Use of Aqueous Firefighting Foam In and Around Gustavus, 1969-2015, September.
- U.S. Environmental Protection Agency (EPA), 2016, Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA), Document Number 822-R-16-005: Washington, DC, U.S. EPA Office of Water, Health and Ecological Criteria Division, May, available: https://www.epa.gov/sites/production/files/2016-05/documents/pfoa_health_advisory_final_508.pdf

Table 1 - Summary of August/September 2020 Water-Supply Well Analytical PFAS Results

	San	nple Name	NPS	Well	PW-010	PW	-012	PW-032	PW-037	PW-038	PW-039	PW-040
Analyte	EPA LHA	Units	9/2/2020	9/2/2020 (DUP)	9/2/2020	9/3/2020	9/3/2020 (DUP)	9/1/2020	9/1/2020	9/1/2020	9/1/2020	9/1/2020
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	7.3	7.4	0.60 J	4.7	4.2	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorohexanoic acid (PFHxA)	-	ng/L	4.2	4.3	<1.9	1.2 J	1.1 J	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluoroheptanoic acid (PFHpA)	-	ng/L	1.5 J	1.5 J	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorononanoic acid (PFNA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	0.85 J	0.84 J	<1.9	0.50 J	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorooctanesulfonic acid (PFOS)	70†	ng/L	9.7	10	0.88 J	15	14	<1.9	<1.9	<1.9	<1.9	<1.9
Perfluorooctanoic acid (PFOA)	701	ng/L	1.9	2.0	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9
LHA Combined (PFOS + PFOA)	70†	ng/L	12	12	0.88 J‡	15 ‡	14 ‡	N/A	N/A	N/A	N/A	N/A

Notes: Sample results reported in TestAmerica Work Order J64367-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

DUP Field-duplicate sample

Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Result considered estimated due to a QC failure. Flag applied by Shannon & Wilson, Inc.

Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDI

N/A Not applicable. The combined concentration could not be calculated because PFOS and PFOA were not detected in the project sample.

Table 1 - Summary of August/September 2020 Water-Supply Well Analytical PFAS Results

	San	nple Name	PW-059	PW-061	PW	-203	PW-204	PW-211	PW-212	PW-213	PW-219	PW-221
Analyte	EPA LHA	Units	9/1/2020	9/1/2020	9/1/2020	9/1/2020 (DUP)	9/2/2020	8/31/2020	8/31/2020	9/2/2020	8/31/2020	9/2/2020
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	0.78 J	0.85 J	0.81 J	0.95 J	3.2	<1.9	<1.9	17	<1.9	0.86 J
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.9	1.5 J	0.48 J	0.67 J	0.97 J	<1.9	<1.9	6.7	<1.9	<2.0
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.9	0.82 J	<1.9	<1.9	0.47 J	<1.9	<1.9	2.5	<1.9	<2.0
Perfluorononanoic acid (PFNA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	0.75 J	0.49 J	<1.9	<1.9	<1.9	<1.9	<1.9	1.6 J	<1.9	<2.0
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.0
Perfluorooctanesulfonic acid (PFOS)	70†	ng/L	<1.9	0.49 J	<1.9	0.70 J	6.1	0.65 J	<1.9	61	<1.9	1.5 J
Perfluorooctanoic acid (PFOA)	701	ng/L	<1.9	1.9	<1.9	0.50 J	0.75 J	<1.9	<1.9	1.4 J	<1.9	<2.0
LHA Combined (PFOS + PFOA)	70†	ng/L	N/A	2.4 J	N/A	1.2 J	6.9 J	0.65 J‡	N/A	62 J	N/A	1.5 J‡

Notes: Sample results reported in TestAmerica Work Order J64367-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

DUP Field-duplicate sample

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Result considered estimated due to a QC failure. Flag applied by Shannon & Wilson, Inc.

Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDI

N/A Not applicable. The combined concentration could not be calculated because PFOS and PFOA were not detected in the project sample.

Table 1 - Summary of August/September 2020 Water-Supply Well Analytical PFAS Results

	Sam	ple Name	PW-230	PW-240	PW	-401	PW-414	PW-419	PW-438	PW-462
Analyte	EPA LHA	Units	9/1/2020	9/1/2020	9/1/2020	9/1/2020 (DUP)	9/1/2020	9/2/2020	8/31/2020	9/2/2020
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	0.71 J	2.0	9.9	9.6	0.74 J	1.9	1.9	13 J*
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.8	<1.9	4.1	4.4	<1.9	0.54 J	0.52 J	4.9 J*
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.8	<1.9	1.2 J	1.3 J	<1.9	<1.9	<1.9	2.0 J*
Perfluorononanoic acid (PFNA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	<1.8	<1.9	0.90 J	0.89 J	<1.9	<1.9	<1.9	0.74 J*
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<1.8	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.8 J*
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	0.68 J	1.8 J	38	38	1.2 J	3.4	3.7	68 J*
Perfluorooctanoic acid (PFOA)	70†	ng/L	1.0 J	<1.9	0.68 J	0.71 J	<1.9	<1.9	<1.9	0.99 J*
LHA Combined (PFOS + PFOA)	70†	ng/L	1.7 J	1.8 J‡	39 J	39 J	1.2 J‡	3.4 ‡	3.7 ‡	69 J*

Notes: Sample results reported in TestAmerica Work Order J64367-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

DUP Field-duplicate sample

Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Result considered estimated due to a QC failure. Flag applied by Shannon & Wilson, Inc.

Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDI

N/A Not applicable. The combined concentration could not be calculated because PFOS and PFOA were not detected in the project sample.

Table 2 - Summary of December 2020/January 2021 Water-Supply Well Analytical PFAS Results

	Sam	ple Name	PW-010	PW-012	PW-016	PW-037	PW	-038	PW-039	PW-040	PW-059	PW-203
Analyte	EPA LHA	Units	12/30/2020	1/2/2021	12/29/2020	12/31/2020	12/31/2020	12/31/2020 (DUP)	12/31/2020	12/31/2020	12/30/2020	12/31/2020
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	<1.8	8.5	1.3 J	<1.8	<1.8	<1.9	<1.8	<1.8	1.6 J	<1.9
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.8	3.3	7.3	<1.8	<1.8	<1.9	0.54 J	<1.8	0.55 J	<1.9
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.8	1.1 J	3.4	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
Perfluorononanoic acid (PFNA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	<1.8	0.59 J	1.2 J	<1.8	<1.8	<1.9	<1.8	<1.8	0.72 J	<1.9
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.8	<1.8	<1.9	<1.9
Perfluorooctanesulfonic acid (PFOS)	70†	ng/L	0.46 J	12	0.69 J	<1.8	<1.8	<1.9	<1.8	<1.8	1.0 J	<1.9
Perfluorooctanoic acid (PFOA)	701	ng/L	<1.8	0.47 J	8.6	<1.8	<1.8	<1.9	<1.8	<1.8	0.70 J	<1.9
LHA Combined (PFOS + PFOA)	70†	ng/L	0.46 J‡	12 J	9.3 J	N/A	N/A	N/A	N/A	N/A	1.7 J	N/A

Notes: Sample results reported in TestAmerica Work Order J68521-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

 Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

DUP Field-duplicate sample

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Result considered estimated due to a QC failure. Flag applied by Shannon & Wilson, Inc.

[‡] Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

N/A Not applicable. The combined concentration could not be calculated because PFOS and PFOA were not detected in the project sample.

Table 2 - Summary of December 2020/January 2021 Water-Supply Well Analytical PFAS Results

	Sam	ple Name	PW-211	PW-218	PW-221		PW-235	PW	-401	PW-466
Analyte	EPA LHA	Units	12/30/2020	12/30/2020	12/30/2020	12/30/2020 (DUP)	12/29/2020	12/29/2020	12/29/2020 (DUP)	1/1/2021
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	<1.9	<1.9	1.3 J	1.2 J	<1.9	6.9	6.6	<1.8
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	2.8	2.6	<1.8
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	1.1 J	1.0 J	<1.8
Perfluorononanoic acid (PFNA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	<2.0	<2.0	<1.8
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	0.60 J	<1.9	1.7 J	1.6 J	<1.9	30	28	<1.8
Perfluorooctanoic acid (PFOA)	70†	ng/L	<1.9	<1.9	<1.9	<2.0	<1.9	0.51 J	<2.0	<1.8
LHA Combined (PFOS + PFOA)	70†	ng/L	0.60 J‡	N/A	1.7 J‡	1.6 J‡	N/A	31 J	28 ‡	N/A

Notes: Sample results reported in TestAmerica Work Order J68521-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

DUP Field-duplicate sample

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Result considered estimated due to a QC failure. Flag applied by Shannon & Wilson, Inc.

[‡] Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 3 - Summary of March 2021 Water-Supply Well Analytical PFAS Results

	San	ple Name	NPS Well	PW-010	PW	/-012	PW-037 PW-038		PW-039	PW	-040
Analyte	EPA LHA	Units	3/25/2021	3/24/2021	3/24/2021 (DUP)	3/24/2021	3/25/2021	3/25/2021	3/25/2021	3/25/2021 (DUP)	3/25/2021
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	10	<1.8	1.3 J	1.5 J	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluorohexanoic acid (PFHxA)	-	ng/L	5.1	<1.8	0.62 J	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluoroheptanoic acid (PFHpA)	-	ng/L	2.2	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluorononanoic acid (PFNA)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	1.0 J	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.6	<4.4	<4.4	<4.4	<4.4	<4.1	<4.5	<4.3	<4.5
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.6	<4.4	<4.4	<4.4	<4.4	<4.1	<4.5	<4.3	<4.5
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.9	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.7	<3.5	<3.5	<3.5	<3.5	<3.3	<3.6	<3.5	<3.6
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	7.1	0.79 J	6.1	7.7	<1.7	<1.6	<1.8	<1.7	<1.8
Perfluorooctanoic acid (PFOA)	70†	ng/L	2.7	<1.8	<1.8	<1.8	<1.7	<1.6	<1.8	<1.7	<1.8
LHA Combined (PFOS + PFOA)	70†	ng/L	9.8	0.79 J‡	6.1 ‡	7.7 ‡	N/A	N/A	N/A	N/A	N/A

otes: Sample results reported in TestAmerica Work Order J71796-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

 Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to qualitycontrol (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Flag applied by the laboratory.

JH* Result considered estimated, biased high, due to a QC failure. Flag applied by Shannon & Wilson, Inc.

[‡] Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 3 - Summary of March 2021 Water-Supply Well Analytical PFAS Results

	Sam	ple Name	PW-059	PW-203	PW-208	PW-211	PW-221	PW	-401	PW-	-465
Analyte	EPA LHA	Units	3/24/2021	3/23/2021	3/23/2021	3/24/2021	3/24/2021	3/23/2021	3/23/2021 (DUP)	3/25/2021	3/25/2021 (DUP)
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	1.7	0.90 J	0.52 J	<1.8	0.90 J	7.7	6.5	19 J*	18 J*
Perfluorohexanoic acid (PFHxA)	-	ng/L	1.1 J	<1.7	2.3	<1.8	0.52 J	4.4	3.5	11 J*	9.7 J*
Perfluoroheptanoic acid (PFHpA)	-	ng/L	0.26 J	<1.7	<1.8	<1.8	<1.8	1.5 J	1.4 J	5.6 J*	5.1 J*
Perfluorononanoic acid (PFNA)	-	ng/L	<1.7	0.50 J	<1.8	<1.8	<1.8	<1.8	<1.9	0.30 J*	<1.8
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	1.3 J	<1.7	0.33 JH*	<1.8	<1.8	0.74 J	0.45 J	1.4 J*	0.93 J*
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.7	<1.7	<1.8	<1.8	<1.8	<1.8	<1.9	<1.8	<1.8
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.7	<1.7	<1.8	<1.8	<1.8	<1.8	<1.9	<1.8	<1.8
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.7	<1.7	<1.8	<1.8	<1.8	<1.8	<1.9	<1.8	<1.8
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.7	<1.7	<1.8	<1.8	<1.8	<1.8	<1.9	1.8 J*	<1.8
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.7	<1.7	<1.8	<1.8	<1.8	<1.8	<1.9	<1.8	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.3	<4.3	<4.6	<4.5	<4.5	<4.5	<4.7	<4.6	4.6 J*
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.3	<4.3	<4.6	<4.5	<4.5	<4.5	<4.7	<4.6	<4.6
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.7	<1.7	<1.8	<1.8	<1.8	<1.8	<1.9	<1.8	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.7	<1.7	<1.8	<1.8	<1.8	<1.8	<1.9	<1.8	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.7	<1.7	<1.8	<1.8	<1.8	<1.8	<1.9	<1.8	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.4	<3.4	<3.7	<3.6	<3.6	<3.6	<3.7	<3.7	<3.7
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	1.6 J	1.8	1.6 J	<1.8	2.1	30	29	110 J*	100 J*
Perfluorooctanoic acid (PFOA)	70†	ng/L	0.96 J	<1.7	<1.8	<1.8	<1.8	1.0 J	<1.9	9.1 J*	3.4 J*
LHA Combined (PFOS + PFOA)	70†	ng/L	2.6 J	1.8 ‡	1.6 J‡	N/A	2.1 ‡	31 J	29 ‡	119 J*	103 J*

Notes: Sample results reported in TestAmerica Work Order J71796-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

 Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to qualitycontrol (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Flag applied by the laboratory.

JH* Result considered estimated, biased high, due to a QC failure. Flag applied by Shannon & Wilson, Inc.

[‡] Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 4 - Summary of June 2021 Water-Supply Well Analytical PFAS Results

	Sa	mple Name	PW-010	PW	-012	PW-037	PW-038	PW-039	PW-040	PW-045	PW-059	PW-062	PW-203
Analyte	EPA LHA	Units	6/22/2021	6/21/2021 (DUP)	6/21/2021	6/23/2021	6/23/2021	6/23/2021	6/23/2021	6/22/2021	6/21/2021	6/22/2021	6/21/2021
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	<1.9	5.2	4.8	<2.0	<1.9	<1.9	<2.1	0.94 J	2.1	<2.0	<2.0
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	0.92 J	<2.1	<1.9	1.3 J	0.63 J	<2.0
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	0.33 J	0.39 J	<2.0
Perfluorononanoic acid (PFNA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	<1.9	0.27 J	0.21 J	<2.0	<1.9	<1.9	<2.1	<1.9	0.81 J	0.23 J	<2.0
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.8	<5.2	<5.0	<4.9	<4.8	<4.8	<5.3	<4.8	<5.0	<4.9	<5.1
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.8	<5.2	< 5.0	<4.9	<4.8	<4.8	<5.3	<4.8	< 5.0	<4.9	<5.1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.8	<4.2	<4.0	<3.9	<3.9	<3.8	<4.2	<3.9	<4.0	<3.9	<4.1
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	<1.9	5.5	5.6	<2.0	<1.9	<1.9	<2.1	0.99 J	1.4 J	1.2 J	<2.0
Perfluorooctanoic acid (PFOA)	70†	ng/L	<1.9	<2.1	<2.0	<2.0	<1.9	<1.9	<2.1	<1.9	<2.0	<2.0	<2.0
LHA Combined (PFOS + PFOA)	70†	ng/L	N/A	5.5 ‡	5.6 ‡	N/A	N/A	N/A	N/A	0.99 J‡	1.4 J‡	1.2 J‡	N/A

Notes: Sample results reported in TestAmerica Work Order J75575-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

JH* Result considered estimated, biased high, due to a QC failure. Flag applied by Shannon & Wilson, Inc.

[‡] Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 4 - Summary of June 2021 Water-Supply Well Analytical PFAS Results

	Sa	mple Name	PW-204.1	PW-205.1	PW-208.1	PW-211	PW-	-221	PW-	-401	PW-419
Analyte	EPA LHA	Units	6/21/2021	6/21/2021	6/21/2021	6/21/2021	6/22/2021 (DUP)	6/22/2021	6/23/2021 (DUP)	6/23/2021	6/22/2021
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	30	1.5 J	11	0.76 J	0.60 J	0.59 J	1.8 J	2.2	0.93 J
Perfluorohexanoic acid (PFHxA)	-	ng/L	11	0.78 J	4.0	<2.0	<2.0	<1.9	1.1 J	1.2 J	<2.0
Perfluoroheptanoic acid (PFHpA)	-	ng/L	3.8	<2.1	1.7 J	<2.0	<2.0	<1.9	0.32 J	0.32 JH*	<2.0
Perfluorononanoic acid (PFNA)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	2.4	0.27 J	0.74 J	<2.0	<2.0	<1.9	<2.0	0.28 J	<2.0
Perfluorodecanoic acid (PFDA)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
Perfluorododecanoic acid (PFDoA)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<5.0	<5.2	<5.0	<5.0	<5.0	<4.8	<4.9	<4.9	<5.0
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<5.0	<5.2	<5.0	<5.0	<5.0	<4.8	<4.9	<4.9	<5.0
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<2.0	<2.1	<2.0	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<4.0	<4.2	<4.0	<4.0	<4.0	<3.9	<3.9	<3.9	<4.0
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	49	2.2	67	<2.0	0.97 J	0.98 J	13	14	1.5 J
Perfluorooctanoic acid (PFOA)	70†	ng/L	2.8	<2.1	2.6	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0
LHA Combined (PFOS + PFOA)	70†	ng/L	52	2.2 ‡	70	n/a	0.97 J‡	0.98 J‡	13 ‡	14 ‡	1.5 J‡

lotes: Sample results reported in TestAmerica Work Order J75575-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

JH* Result considered estimated, biased high, due to a QC failure. Flag applied by Shannon & Wilson, Inc.

[‡] Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

	S	ample Name	MW-1-15	MW	-1-40	MW-2-20	MW-2-30	MW-3-15	MW-3-40	MW-4-20	MW-5-20
Analyte	EPA LHA	Units	8/31/2020	8/31/2020 (DUP)	8/31/2020	9/1/2020	9/1/2020	9/1/2020	9/1/2020	9/2/2020	9/2/2020
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	<1.7 B*	<1.7 B*	<1.7 B*	32	<1.7 B*	4.5	19	<1.7 B*	<1.7 B*
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.7	<1.7	<1.7	84	<1.7	1.0 J	2.9	<1.7	0.76 J
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.7	<1.7	<1.7	37	<1.7	0.44 J	0.63 J	0.28 J	0.22 J
Perfluorononanoic acid (PFNA)	-	ng/L	<1.7	<1.7	<1.7	4.0	<1.7	<1.7	<1.7	<1.7	<1.7
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	0.33 J	<1.7	<1.7	3.0	1.3 J	0.57 J	1.9	0.32 J	0.29 J
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.7	0.43 J	<1.7	<1.7	0.39 J	<1.7	<1.7	0.40 J	0.41 J
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<17	<17	<17	<17	<17	<17	<17	<17	<17
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<17	<17	<17	<17	<17	<17	<17	<17	<17
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.4	<3.4	<3.4	<3.4	<3.4	<3.5	<3.4	<3.5	<3.4
Perfluorooctanesulfonic acid (PFOS)	704	ng/L	<1.7	<1.7	<1.7	260	<1.7	6.7	12	<1.7	<2.0 B*
Perfluorooctanoic acid (PFOA)	70†	ng/L	<1.7	<1.7	<1.7	36	<1.7	<1.7	2.2	<1.7	<1.7
LHA Combined (PFOS + PFOA)	70†	ng/L	N/A	N/A	N/A	296	N/A	6.7 ‡	14	N/A	N/A

Notes: Sample results reported in TestAmerica Work Order J64368

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

B* Result is considered not detected due to quality control failures; see checklist for details. Flag applied by Shannon & Wilson, Inc.

‡ Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 5 - Summary of August/September 2020 Monitoring Well Analytical PFAS Results

	S	ample Name	MW-	6-20	MW-7-20	MW-	8-20	MW-9-30	MW-10-20	MW-11-15	MW-12-10
Analyte	EPA LHA	Units	9/2/2020 (DUP)	9/2/2020	9/2/2020	9/1/2020(DUP)	9/1/2020	9/1/2020	9/1/2020	9/2/2020	9/2/2020
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	<1.8 B*	<1.8 B*	<1.7 B*	<1.7 B*	<1.7 B*	23	13	15	52
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.7	<1.7	1.2 J	<1.7	<1.7	16	11	27	17
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.7	<1.7	0.84 J	<1.7	<1.7	6.0	4.5	7.0	15
Perfluorononanoic acid (PFNA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	0.42 J	1.4 J	0.97 J
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	0.28 J	0.30 J	0.45 J	<1.7	<1.7	1.6 J	0.64 J	2.2	1.8
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	1.1 J	<1.7
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.7	0.34 J	<1.7	0.50 J	<1.7	<1.7	<1.7	<1.7	<1.7
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<17	<17	<17	<17	<17	<17	<17	<17	<17
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<17	<17	<17	<17	<17	<17	<17	<17	<17
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.4	<3.4	<3.5	<3.4	<3.4	<3.4	<3.4	<3.4	<3.5
Perfluorooctanesulfonic acid (PFOS)	70†	ng/L	<1.7 B*	<1.7	<3.9 B*	<1.7	<1.7	88	140	76	210
Perfluorooctanoic acid (PFOA)	701	ng/L	<1.7	<1.7	2.7	<1.7	<1.7	2.3	2.6	2.4	9.8
LHA Combined (PFOS + PFOA)	70†	ng/L	N/A	N/A	2.7 B*‡	N/A	N/A	90	143	78	220

lotes: Sample results reported in TestAmerica Work Order J64368

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

 $\label{eq:Jacobs} J = \begin{array}{l} \text{Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.} \end{array}$

B* Result is considered not detected due to quality control failures; see checklist for details. Flag applied by Shannon & Wilson, Inc.

‡ Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 6 - Summary of December 2020/January 2021 Monitoring Well Analytical PFAS Results

	S	ample Name	MW-1-15	MW-1-40	MW-2-20	MW-2-30	MW-3-15	MW-3-40	MW-4-20	MW-5-20	MW-	-6-20
Analyte	EPA LHA	Units	12/30/2020	12/30/2020	12/31/2020	12/31/2020	12/30/2020	12/30/2020	12/31/2020	1/1/2021	1/1/2021	1/1/2021 (DUP)
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	<1.8	1.1 J	64	<1.8	3.6	14	0.65 J	1.3 J	2.8	2.6
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.8	<1.8	63	<1.8	5.1	1.6 J	<1.8	<1.8	<1.8	<1.7
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.8	<1.8	54	0.70 J	2.7	0.43 J	<1.8	<1.8	<1.8	0.29 J*
Perfluorononanoic acid (PFNA)	-	ng/L	<1.8	<1.8	4.0	0.48 J	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	0.20 J	<1.8	9.5	1.4 J	1.2 J	1.2 J	0.46 J*	0.44 J	0.32 J	0.37 J
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.8	<1.8	0.34 J	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.5	<4.6	<4.4	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.3
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.5	<4.6	<4.4	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.3
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.7
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.6	<3.7	<3.5	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.5
Perfluorooctanesulfonic acid (PFOS)	70†	ng/L	<1.8	0.56 J*	250	<1.8	5.1	13 J*	<1.8	1.7 J	1.2 J*	1.3 J*
Perfluorooctanoic acid (PFOA)	701	ng/L	<1.8	<1.8	67	1.4 J	0.94 J	1.3 J	<1.8	1.0 J	<1.8	<1.7
LHA Combined (PFOS + PFOA)	70†	ng/L	N/A	0.56 J I‡	317	1.4 J‡	6.0 J	14 J	N/A	2.7 J	1.2 J ‡	1.3 J ‡

otes: Sample results reported in TestAmerica Work Order J68519-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.

‡ Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 6 - Summary of December 2020/January 2021 Monitoring Well Analytical PFAS Results

	S	ample Name	MW-	-7-20	MW-8-20	MW-9-30	MW-10-20	MW-11-15	MW-	12-10
Analyte	EPA LHA	Units	12/30/2020	12/30/2020 (DUP)	1/1/2021	12/30/2020	1/1/2021	12/31/2020	12/31/2020	12/31/2020 (DUP)
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	1.0 J	1.1 J	0.62 J	11	5.4	830	31	29
Perfluorohexanoic acid (PFHxA)	-	ng/L	1.2 J	1.2 J	<1.7	4.6	5.3	180	13	13
Perfluoroheptanoic acid (PFHpA)	-	ng/L	0.91 J	0.89 J	<1.7	2.0	1.8	19	15	15
Perfluorononanoic acid (PFNA)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	2.2	2.6	2.5
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	0.43 J	<1.9	<1.7	0.66 J	0.42 J	35	0.68 J	0.71 J
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	1.3 J	0.51 J	0.65 J
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.5	<4.8	<4.4	<4.5	<4.6	<4.3	<4.4	<4.6
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.5	<4.8	<4.4	<4.5	<4.6	<4.3	<4.4	<4.6
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.8	<1.9	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.6	<3.8	<3.5	<3.6	<3.7	<3.5	<3.5	<3.7
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	4.8	4.5	<1.7	92	39	6,100	100	100
Perfluorooctanoic acid (PFOA)	70†	ng/L	1.1 J	1.3 J	<1.7	1.0 J	<1.8	92	9.5	8.8
LHA Combined (PFOS + PFOA)	70†	ng/L	5.9 J	5.8 J	N/A	93 J	39 ‡	6,192	110	109

Notes: Sample results reported in TestAmerica Work Order J68519-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

< Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

 ${\sf J}^{\star}$ Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.

‡ Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 7 - Summary of March 2021 Monitoring Well Analytical PFAS Results

	\$	ample Name	MW-1-15	MW-1-40	MW-	-2-20	MW-2-30	MW-3-15	MW-3-40	MW-4-20	MW-5-20	MW-6-20
Analyte	EPA LHA	Units	3/24/2021	3/24/2021	3/24/2021	3/24/2021 (DUP)	3/24/2021	3/24/2021	3/24/2021	3/25/2021	3/25/2021	3/25/2021
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	<1.8	0.68 J	100	98	0.54 J	1.9 J*	17	0.50 J	1.4 J	1.0 J
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.8	<1.7	31	30	<1.8	0.87 J*	2.4	<1.7	0.89 J	<1.8 J*
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.8	<1.7	26	24	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8 J*
Perfluorononanoic acid (PFNA)	-	ng/L	<1.8	<1.7	3.8	4.0	<1.8	<1.7 J*	<1.7	<1.7	0.65 J	<1.8
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	<1.8	<1.7	2.4	2.3	0.91 J	0.24 J*	0.93 J	<1.7	0.45 J	0.30 J*
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8 J*
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8 J*
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8 J*
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8 J*
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.4	<4.3	<4.2	<4.3	<4.4	<4.3 J*	<4.4	<4.3	<4.3	<4.5 J*
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.4	<4.3	<4.2	<4.3	<4.4	<4.3 J*	<4.4	<4.3	<4.3	<4.5 J*
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7 J*	<1.7	<1.7	<1.7	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.5	<3.4	<3.4	<3.5	<3.5	<3.5 J*	<3.5	<3.5	<3.4	<3.6 J*
Perfluorooctanesulfonic acid (PFOS)	70†	ng/L	<1.8	<1.7	250	240	<1.8	3.1 J*	13	<1.7	2.7	1.5 J
Perfluorooctanoic acid (PFOA)	701	ng/L	<1.8	<1.7	78	72	<1.8	<1.7 J*	1.7	<1.7	0.87 J	<1.8
LHA Combined (PFOS + PFOA)	70†	ng/L	N/A	N/A	328	312	N/A	3.1 J*‡	15	N/A	3.6 J	1.5 J‡

Notes: Sample results reported in TestAmerica Work Order J71798-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.

‡ Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 7 - Summary of March 2021 Monitoring Well Analytical PFAS Results

	\$	ample Name	MW-7-20	MW-8-20	MW-9-30	MW-10-20	MW-	11-15	MW-12-10
Analyte	EPA LHA	Units	3/25/2021	3/24/2021	3/24/2021	3/24/2021	3/25/2021	3/25/2021 (DUP)	3/25/2021
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	0.98 J	0.57 J*	15	17 J*	17	20	9.4
Perfluorohexanoic acid (PFHxA)	-	ng/L	1.3 J	<1.8 J*	8.9	16 J*	15	13	4.8
Perfluoroheptanoic acid (PFHpA)	-	ng/L	1.0 J	<1.8 J*	3.0	4.8	3.0	2.7	3.8
Perfluorononanoic acid (PFNA)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7	0.62 J	0.60 J	0.64 J
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	<1.7	<1.8 J*	1.2 J	1.3 J*	1.2 J	1.4 J	0.52 J
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7 J*	<1.7	<1.7	<1.8
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7 J*	<1.7	<1.7	<1.8
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7 J*	<1.7	<1.7	<1.8
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7	<1.7	<1.7	<1.8
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7 J*	<1.7	<1.7	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.4	<4.6 J*	<4.5	<4.3 J*	<4.2	<4.3	<4.5
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.4	<4.6 J*	<4.5	<4.3 J*	<4.2	<4.3	<4.5
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7	<1.7	<1.7	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7	<1.7	<1.7	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.7	<1.8 J*	<1.8	<1.7	<1.7	<1.7	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.5	<3.7 J*	<3.6	<3.5 J*	<3.4	<3.4	<3.6
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	5.0	<1.8 J*	97	37 J*	210	200	36
Perfluorooctanoic acid (PFOA)	70†	ng/L	2.3	<1.8 J*	1.0 J	1.9	2.2	2.2	2.9
LHA Combined (PFOS + PFOA)	70†	ng/L	7.3	N/A	98 J	39	212	202	39

Notes: Sample results reported in TestAmerica Work Order J71798-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.

‡ Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 8 - Summary of June 2021 Monitoring Well Analytical PFAS Results

	S	ample Name	MW-1-15	MW-1-40	MW-	-2-20	MW-2-30	MW-3-15	MW-3-40	MW-4-20	MW-5-20	MW-6-20
Analyte	EPA LHA	Units	6/21/2021	6/21/2021	6/21/2021	6/21/2021	6/21/2021	6/21/2021	6/21/2021	6/21/2021	6/22/2021	6/22/2021
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	0.61 J	0.68 J	120	110	<1.8	1.2 J	15	0.63 J	2.8	1.1 J
Perfluorohexanoic acid (PFHxA)	-	ng/L	<1.7	<1.8	45	48	0.60 J	0.62 J	2.1	<1.7	2.1	<1.7
Perfluoroheptanoic acid (PFHpA)	-	ng/L	<1.7	<1.8	26	27	<1.8	<1.7	0.43 J	<1.7	0.96 J	<1.7
Perfluorononanoic acid (PFNA)	-	ng/L	<1.7	<1.8	15	15	<1.8	<1.7	<1.7	<1.7	0.51 J	<1.7
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	<1.7	<1.8	2.0	2.0	1.2 J	<1.7	1.1 J	0.19 J	0.45 J	<1.7
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.7	<1.8	<1.8	0.46 J	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.7	<1.8	<1.8	<1.8	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.7	<1.8	<1.8	<1.8	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.7	<1.8	<1.8	<1.8	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.7	<1.8	<1.8	<1.8	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.3	<4.5	<4.4	<4.5	<4.4	<4.3	<4.4	<4.4	<4.6	<4.3
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.3	<4.5	<4.4	<4.5	<4.4	<4.3	<4.4	<4.4	<4.6	<4.3
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	-	ng/L	<1.7	<1.8	<1.8	<1.8	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.7	<1.8	<1.8	<1.8	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.7	<1.8	<1.8	<1.8	<1.8	<1.7	<1.7	<1.7	<1.8	<1.7
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.4	<3.6	<3.6	<3.6	<3.5	<3.5	<3.5	<3.5	<3.7	<3.4
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	1.4 J	<1.8	450	430	<1.8	2.0	15	<1.7	3.5	<1.7
Perfluorooctanoic acid (PFOA)	70†	ng/L	<1.7	<1.8	32	32	<1.8	<1.7	1.5 J	<1.7	2.1	<1.7
LHA Combined (PFOS + PFOA)	70†	ng/L	1.4 J‡	N/A	482	462	N/A	2.0 ‡	17 J	N/A	5.6	N/A

Notes: Sample results reported in TestAmerica Work Order J75574-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

‡ Minimum concentration, the combined oconcentration includes one or more result that is not detected greater than the MDI

Table 8 - Summary of June 2021 Monitoring Well Analytical PFAS Results

	S	Sample Name	MW-7-20	MW-8-20	MW	-9-30	MW-10-20	MW-	11-15	MW-12-10
Analyte	EPA LHA	Units	6/22/2021	6/22/2021	6/22/2021	6/22/2021	6/22/2021	6/23/2021	6/23/2021	6/23/2021
Perfluorohexanesulfonic acid (PFHxS)	-	ng/L	1.0 J	0.49 J	15	15	21	13	13	14
Perfluorohexanoic acid (PFHxA)	-	ng/L	1.2 J	<1.7	7.0	6.7	15	18	15	5.6
Perfluoroheptanoic acid (PFHpA)	-	ng/L	0.96 J	0.23 J	3.2	3.2	5.6	2.7	3.0	5.5
Perfluorononanoic acid (PFNA)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	0.88 J	0.85 J	0.66 J
Perfluorobutanesulfonic acid (PFBS)	-	ng/L	0.46 J	<1.7	0.78 J	0.79 J	0.87 J	1.0 J	0.97 J	0.61 J
Perfluorodecanoic acid (PFDA)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	0.86 J	0.85 J	<1.8
Perfluoroundecanoic acid (PFUnA)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
Perfluorododecanoic acid (PFDoA)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
Perfluorotridecanoic acid (PFTrDA)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
Perfluorotetradecanoic acid (PFTeA)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	-	ng/L	<4.5	<4.2	<4.4	<4.4	<4.4	<4.3	<4.4	<4.5
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	-	ng/L	<4.5	<4.2	<4.4	<4.4	<4.4	<4.3	<4.4	<4.5
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	-	ng/L	<1.8	<1.7	<1.7	<1.8	<1.8	<1.7	<1.8	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	-	ng/L	<3.6	<3.4	<3.5	<3.5	<3.5	<3.5	<3.5	<3.6
Perfluorooctanesulfonic acid (PFOS)	70+	ng/L	6.2	<1.7	84	95	95	140	130	50
Perfluorooctanoic acid (PFOA)	70†	ng/L	6.7	<1.7	0.97 J	1.1 J	2.0	2.0	2.1	2.6
LHA Combined (PFOS + PFOA)	70†	ng/L	13	N/A	85 J	96 J	97	142	132	53

Notes: Sample results reported in TestAmerica Work Order J75574-1

ng/L nanograms per liter, equivalent to parts per trillion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; listed as less than the reporting limit (RL) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds EPA LHA level.

DUP Field-duplicate sample

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

‡ Minimum concentration, the combined oconcentration includes one or more result that is not detected greater than the MDI

Table 9 - Summary of August 2020 through June 2021 Monitoring Well Analytical Petroleum Results

							MW-11-15						MW-12-10		
		Cleanup		0/0/000	9/2/2020	40/04/0000	0/05/000/	3/25/2021	0/00/000	6/23/2021	0.10.100.00	40/04/0000	12/31/2020	0/05/000/	0.100.100
nalytical Method	Analyte	Level	Units	9/2/2020	(DUP)	12/31/2020	3/25/2021	(DUP)	6/23/2021	(DUP)	9/2/2020	12/31/2020	(DUP)	3/25/2021	6/23/20
AK101	Gasoline Range Organics	2.2	mg/L	< 0.050	< 0.050	<0.0500 J*	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.050	<0.0500 J*	<0.0500 J*	<0.100 B*	< 0.05
AK102	Diesel Range Organics	1.5	mg/L	< 0.29	< 0.29	<0.612 B*	<0.288	< 0.283	0.225 J	0.233 J	< 0.29	<0.625 B*	<0.600 B*	< 0.283	0.235
AK103	Residual Range Organics	1.1	mg/L	<0.481 B*	<0.481 B*	<0.510 B*	< 0.240	< 0.236	< 0.245	< 0.240	<0.481 B*	<0.521 B*	<0.500 B*	< 0.236	< 0.23
	1,1,1,2-Tetrachloroethane	5.7	μg/L	< 0.250	< 0.250						< 0.250				
	1,1,1-Trichloroethane	8,000	μg/L	< 0.500	< 0.500						< 0.500				
	1,1,2,2-Tetrachloroethane	0.76	μg/L	< 0.250	< 0.250						< 0.250				
	1,1,2-Trichloroethane	0.41	μg/L	<0.200	<0.200						<0.200				
	1,1-Dichloroethane	28	μg/L	< 0.500	< 0.500						< 0.500				
	1,1-Dichloroethene	280	μg/L	< 0.500	< 0.500						< 0.500				
	1,1-Dichloropropene	-	μg/L	< 0.500	< 0.500						< 0.500				
	1,2,3-Trichlorobenzene	7	μg/L	< 0.500	< 0.500						< 0.500				
	1,2,3-Trichloropropane	0.0075	μg/L	< 0.500	< 0.500		-				< 0.500				
	1,2,4-Trichlorobenzene	4	μg/L	< 0.500	< 0.500						< 0.500				
	1,2,4-Trimethylbenzene	56	μg/L	< 0.500	< 0.500						< 0.500				
	1,2-Dibromo-3-chloropropane	-	μg/L	< 5.00	< 5.00						< 5.00				
	1,2-Dibromoethane	0.075	μg/L	< 0.0375	< 0.0375						< 0.0375				
	1,2-Dichlorobenzene	300	μg/L	< 0.500	< 0.500						< 0.500				
	1,2-Dichloroethane	1.7	μg/L	< 0.250	< 0.250						< 0.250				
	1,2-Dichloropropane	8.2	μg/L	< 0.500	< 0.500						< 0.500				
	1,3,5-Trimethylbenzene	60	μg/L	< 0.500	< 0.500						< 0.500				
	1,3-Dichlorobenzene	300	μg/L	< 0.500	< 0.500						< 0.500				
	1,3-Dichloropropane	-	μg/L	< 0.250	< 0.250						< 0.250				
	1,4-Dichlorobenzene	4.8	μg/L	< 0.250	< 0.250						< 0.250				-
SW8260C (VOC)	2,2-Dichloropropane	-	μg/L	< 0.500	< 0.500						< 0.500				
34402000 (400)	2-Butanone (MEK)	5,600	μg/L	<5.00	<5.00						<5.00				
	2-Chlorotoluene	-	μg/L	< 0.500	< 0.500						< 0.500				
	2-Hexanone	38	μg/L	<5.00	< 5.00						<5.00				
	4-Chlorotoluene	-	μg/L	< 0.500	< 0.500						< 0.500				
	4-Methyl-2-pentanone (MIBK)	6,300	μg/L	<5.00	< 5.00						< 5.00				
	Benzene	4.6	μg/L	< 0.200	< 0.200						< 0.200				
	Bromobenzene	62	μg/L	< 0.500	< 0.500		-				< 0.500				
	Bromochloromethane	-	μg/L	< 0.500	< 0.500						< 0.500				
	Bromodichloromethane	1.3	μg/L	< 0.250	< 0.250		-				< 0.250				-
	Bromoform	33	μg/L	< 0.500	< 0.500		-				< 0.500				
	Bromomethane	7.5	μg/L	<2.50	<2.50						<2.50				
	Carbon disulfide	810	μg/L	<5.00	< 5.00						<5.00				-
	Carbon tetrachloride	4.6	μg/L	< 0.500	< 0.500						< 0.500				
	Chlorobenzene	78	μg/L	< 0.250	< 0.250						< 0.250				
	Chloroethane	21,000	μg/L	< 0.500	< 0.500						< 0.500				
	Chloroform	2.2	μg/L	< 0.500	< 0.500						< 0.500				
	Chloromethane	190	μg/L	< 0.500	< 0.500	-	-				< 0.500				
	cis-1,2-Dichloroethene	36	μg/L	< 0.500	< 0.500		-				< 0.500			-	
	cis-1,3-Dichloropropene	4.7	μg/L	< 0.250	< 0.250		-				< 0.250		-		
	Dibromochloromethane	8.7	μg/L	< 0.250	< 0.250						< 0.250				
	Dibromomethane	8.3	μg/L	< 0.500	< 0.500						< 0.500				

Table 9 - Summary of August 2020 through June 2021 Monitoring Well Analytical Petroleum Results

Project								MW-11-15						MW-12-10		
Properties Pro	Analytical Method	Analyte		Units	9/2/2020		12/31/2020	3/25/2021		6/23/2021		9/2/2020	12/31/2020		3/25/2021	6/23/2021
Process		Dichlorodifluoromethane	200	μg/L	< 0.500						•	< 0.500		•		
Methylenchoride		Ethylbenzene	15	μg/L	< 0.500	< 0.500						< 0.500				
Methy-Horly defer		Hexachlorobutadiene	1.4		< 0.500	< 0.500						< 0.500				
Methyl-budy ether 140		Isopropylbenzene	450	μg/L	< 0.500	< 0.500						< 0.500				
Neghthelane 1,70		Methylene chloride	110	μg/L	< 5.00	<5.00						<5.00				
Naphthelenere 1,000		Methyl-t-butyl ether	140	μg/L	< 5.00	<5.00						<5.00				
Propyleherane		Naphthalene	1.7		< 0.500	< 0.500						< 0.500				
PAM		n-Butylbenzene	1,000	µg/L	< 0.500	< 0.500						< 0.500				
SW260C (VCC) SW		n-Propylbenzene	660		< 0.500	< 0.500						< 0.500				
P. & M. Xylene		o-Xylene	190		< 0.500	< 0.500						< 0.500				
See EurlyNehrene 2,000		P & M -Xylene	(total)		<1.00	<1.00						<1.00				
Syrene 1,200 µgl. <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,500 <0,5	SW8260C (VOC)	sec-Butylbenzene	2,000		< 0.500	< 0.500						< 0.500				
Fets-bulyblenzene		Styrene	1,200		< 0.500	< 0.500						< 0.500				
Tetrachforcethene		tert-Butylbenzene	690		< 0.500	< 0.500						< 0.500				
Tollene		Tetrachloroethene	41		< 0.500	< 0.500						< 0.500				
Total Xylenes		Toluene	1,100									< 0.500				
trans-1,2 Dichloroethene 360		Total Xylenes	190		<1.5	<1.5						<1.5				
Trichloropenee 4.7 yg/L <0.500 <0.500					< 0.500											
Trichloroethene 2.8		trans-1,3-Dichloropropene			< 0.500							< 0.500				
Trichlorofluoromethane 5,200 pg/L <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500 <0.500		Trichloroethene	2.8		< 0.500	< 0.500						< 0.500				
Vinyl acetate 410		Trichlorofluoromethane	5,200		< 0.500	< 0.500						< 0.500				
Vinyl chloride 0.19		Vinyl acetate			< 5.00							< 5.00				
1.Methylnaphthalene		•	0.19		< 0.0750	< 0.0750						< 0.0750				
2-Methylnaphthalene 36							<0.0240 J*	< 0.0240	< 0.0240	< 0.0240	< 0.0232		<0.0250 J*	<0.0240 J*		< 0.0250
Acenaphthlene 530 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <0.0000 <0.0230 <0.0250 J* <0.0240 J* <0.0000 <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0250 J* <0.0240 J* <0.0000 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0250 J* <0.0240 J* <0.0000 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0250 J* <0.0240 J* <0.0000 <0.0240 J* <0.0		, ,														< 0.0250
Acenaphthylene 260 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0232 <0.0250 J* <0.0240 J* - <0.0260 J* <0.0240 J* - <0.0260 J* <0.0240 J* - <0.0260 J* <0.026			530				<0.0240 J*	< 0.0240	< 0.0240			< 0.0232	<0.0250 J*	<0.0240 J*		< 0.0250
Anthracene 43 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0232 <0.0250 J* <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0250 J* <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0250 J* <0.0250 J* <0.0250 J* <0.0240 J* <-0.0250 J* <0.0240 J* <-0.0250 J* <0.0250 J* <0.0240 J* <-0.0250 J* <0.0240 J* <-0.0250 J* <0.0250 J* <0.0250 J* <0.0240 J* <-0.0250 J* <0.0250 J* <0.0250 J* <0.0240 J* <-0.0250 J* <0.0250 J* <																< 0.0250
Benzo(a)anthracene 0.3																< 0.0250
Benzo(a)pyrene 0.25 µg/L <0.0093 <0.0096 J* <0.00960 <0.00960 <0.00960 <0.00960 <0.00925 <0.0093 <0.0100 J* <0.00960 J* <0.00960 <0.00960 <0.00960 <0.00925 <0.0093 <0.0100 J* <0.00960 J* <0.00960 <0.00960 <0.00960 <0.00925 <0.0093 <0.0100 J* <0.00960 J* <0.00960 <0.00960 <0.00960 <0.00925 <0.0093 <0.0100 J* <0.00960 J* <0.00960 <0.00960 <0.00960 <0.00940 <0.00240 <0.00232 <0.00232 <0.00250 J* <0.00240 J* <0.00250 J* <0.00240 <0.00240 <0.00240 <0.00240 <0.00232 <0.00250 J* <0.00240 J* <0.00240 <0.00240 <0.00240 <0.00240 <0.00232 <0.00250 J* <0.00240 J* <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00232 <0.00250 J* <0.00240 J* <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00232 <0.00250 J* <0.00240 J* <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.00240 <0.0024		Benzo(a)anthracene	0.3				<0.0240 J*	< 0.0240	< 0.0240			< 0.0232		<0.0240 J*		< 0.0250
Benzo(b)fluoranthene 2.5 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0232 <0.0230 J* <0.0240 J* <0.0280 J* <0.0240 J* <0.0280 J* <0.0280 J* <0.0280 J* <0.0240 J* <0.0280 J* <0.0280 J* <0.0280 J* <0.0240 J* <0.0280 J* <0.0		Benzo(a)pyrene														< 0.0100
Benzo(g,h,i)perylene 0.26 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <0.0000 <0.0000 <0.0000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.0000000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0																< 0.0250
Benzo(k)fluoranthene 0.8 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0232 <0.0232 <0.0232 <0.0240 J* <-0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0232 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0232 <0.0240 J* <-0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0240 J* <-0.0232 <0.0240 J* <-0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0240 J* <-0.0240 J* <-0.0232 <0.0250 J* <0.0240 J* <-0.0240 J* <-0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0240 J* <-0.0240	20700 0114114 (0411)				< 0.0232		<0.0240 J*	< 0.0240	< 0.0240	< 0.0240	< 0.0232	< 0.0232	<0.0250 J*	<0.0240 J*		< 0.0250
Chrysene 2 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0232 <0.0250 J* <0.0240 J* - <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J*	3270D SIM LV (PAH)															< 0.0250
Dibenzo(a,h)anthracene 0.25 μg/L < 0.0093 < 0.00960 J* < 0.00960 < 0.00960 < 0.00925 < 0.0093 < 0.0100 J* < 0.00960 J* < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00960 < 0.00230 < 0.0230 < 0.0240 < 0.0240 < 0.0232 < 0.0232 < 0.0240 < 0.0240 < 0.0232 < 0.0232 < 0.0240 < 0.0232 < 0.0232 < 0.0240 < 0.0240 < 0.0240 < 0.0232 < 0.0232 < 0.0240 < 0.0240 < 0.0240 < 0.0232 < 0.0232 < 0.0240 < 0.0240 < 0.0463 < 0.0463		Chrysene	2													< 0.0250
Fluorenthene 260 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0250 J* <0.0240 J* - <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0250 J* <0.0250 J* <0.0250 J* <0.0240 J* - <0.0240 <0.0240 <0.0240 J* - <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 J* <0.0240 J* - <0.0240 <0.0240 J* <0.024		•														< 0.0100
Fluorene 290 $\mu g/L$ <0.0232 <0.0232 <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0232 <0.0250 J* <0.0240 J* <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0250 J* <0.0240 J* <0.0240 J* <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0240 <0.0232 <0.0250 J* <0.0250 J* <0.0240 J* <0.02																<0.0250
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																<0.0250
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-														<0.0250
Phenanthrene 170 µg/L <0.0232 <0.0232 <0.0240 J* <0.0240 0.0151 J 0.0227 J 0.0250 J <0.0232 <0.0250 J* <0.0240 J* 0.02																< 0.0500
		-														0.0233 J
EVIENE 170 1000 \$110737 \$110737 \$110740 \$110740 \$110740 \$110737 \$110737 \$110740 \$110740 \$1		Pyrene	120	μg/L	<0.0232	<0.0232	<0.0240 J*	<0.0240	<0.0240	<0.0240	<0.0232	<0.0232	<0.0250 J*	<0.0240 J*		<0.0250

Table 9 - Summary of August 2020 through June 2021 Monitoring Well Analytical Petroleum Results

							MW-11-15						MW-12-10		
Analytical Method	Analyte	Cleanup Level	Units	9/2/2020	9/2/2020 (DUP)	12/31/2020	3/25/2021	3/25/2021 (DUP)	6/23/2021	6/23/2021 (DUP)	9/2/2020	12/31/2020	12/31/2020 (DUP)	3/25/2021	6/23/2021
	Benzene	4.6	μg/L			<0.250 J*	< 0.250	< 0.250	< 0.250	< 0.250		<0.250 J*	<0.250 J*	< 0.250	< 0.250
	Ethylbenzene	15	μg/L			<0.500 J*	<1.00 B*	<1.00 B*	< 0.500	< 0.500		<0.500 J*	<0.500 J*	<1.00 B*	< 0.500
8021 BTEX	o-Xylene	190 (total)	μg/L			<0.500 J*	<1.00 B*	<1.00 B*	<1.00	<1.00		<0.500 J*	<0.500 J*	<1.00 B*	<1.00
OUZIBIEA	P & M -Xylene	190 (total)	μg/L			<1.00 J*	<2.00 B*	<2.00 B*	< 0.500	< 0.500		<1.00 J*	<1.00 J*	<2.00 B*	< 0.500
	Toluene	1,100	μg/L			<0.500 J*	<1.00 B*	<1.00 B*	< 0.500	< 0.500		<0.500 J*	<0.500 J*	<1.00 B*	< 0.500
	Total Xylenes	190	μg/L			<1.50 J*	<3.00 B*	<3.00 B*	<1.50	<1.50		<1.50 J*	<1.50 J*	<3.00 B*	<1.50

NOTES:

Analytical results reported from SGS North America laboratory reports 1204821, 1210031, 1211331, and 1213682.

ADEC Groundwater Cleanup Levels from 18 AAC 75.341 Table C - Groundwater Human Health Cleanup Level.

DEC Alaska Department of Environmental Conservation

PAH polynuclear aromatic hydrocarbons

VOC volatile organic compounds

mg/L milligrams per liter

μg/L micrograms per liter

< Analyte was not detected; reported as less than the limit of detection (LOD).

<Bold The laboratory's LOD is greater than the regulatory limit.

- Groundwater cleanup level not established for this analyte

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.

B* Result is considered not detected at the LOQ or reported concentration (higher value reported) due to contamination identified in a blank.

	.	Sample Date		8/31/2020			12/30/2020			3/23/2021			6/21/2021	
Analyte	Applicable limit	Units	Sink	C-Port Composite	Pre- treatment	Sink	C-Port Composite	Pre-treatment	Sink	C-Port Composite	Pre- treatment	Sink	C-Port Composite	Pre- treatment
Perfluorohexanesulfonic acid (PFHxS)	_	ng/L	<1.9	<1.8	25	<1.9	<1.9	7.6	<1.7	<1.7	12	<1.9	<1.9	12
Perfluorohexanoic acid (PFHxA)	_	ng/L	<1.9	<1.8	12	<1.9	<1.9	3.3	<1.7	<1.7	7.4	<1.9	<1.9	8.1
Perfluoroheptanoic acid (PFHpA)	_	ng/L	<1.9	<1.8	5.2	<1.9	<1.9	1.7 J	<1.7	<1.7	3.8	<1.9	<1.9	2.8
Perfluorononanoic acid (PFNA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.78 J	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
Perfluorobutanesulfonic acid (PFBS)	_	ng/L	<1.9	<1.8	1.6 J	<1.9	<1.9	0.84 J	<1.7	<1.7	1.2 J*	<1.9	<1.9	0.68 J
Perfluorodecanoic acid (PFDA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.88 J	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
Perfluoroundecanoic acid (PFUnA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.84 J	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
Perfluorododecanoic acid (PFDoA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.83 J	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
Perfluorotridecanoic acid (PFTrDA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.87 J	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
Perfluorotetradecanoic acid (PFTeA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.79 J	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.89 J	<4.2	<4.2	<4.2	<4.8	<4.8	<4.5
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.96 J	<4.2	<4.2	<4.2	<4.8	<4.8	<4.5
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.79 J	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	0.84 J	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<1.7	<1.7	<1.7	<1.9	<1.9	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	_	ng/L	<1.9	<1.8	<1.9	<1.9	<1.9	<1.9	<3.4	<3.4	<3.4	<3.8	<3.9	<3.6
Perfluorooctanesulfonic acid (PFOS)	70†	ng/L	<1.9	<1.8	98	<1.9	<1.9	50	<1.7	<1.7	60	<1.9	<1.9	45
Perfluorooctanoic acid (PFOA)	707	ng/L	<1.9	0.60 J	2.0	<1.9	<1.9	1.1 J	<1.7	<1.7	1.3 J	<1.9	<1.9	1.4 J
EPA LHA Combined (PFOS + PFOA)	70†	ng/L	N/A	0.60 J‡	100	N/A	N/A	51 J	N/A	N/A	61 J	N/A	N/A	46 J
Arsenic	10	μg/L	<2.5	_	11.8	<2.5	_	19.5	<2.5	_	20.7	<2.50	_	14.9 J*

Notes: PFAS results from Eurofin TestAmerica work orders J64370-1, J68522-1, J71800-1, and J75577-1.

Arsenic results from SGS work orders 1204822, 1210032, 1211330, and 1213677.

ng/L nanograms per liter, equivalent to parts per trillion

μg/L micrograms per liter, equivalent to parts per billion

EPA Environmental Protection Agency

LHA Lifetime Health Advisory

† EPA LHA level is 70 ppt for PFOS and PFOA combined.

Analyte not detected; PFAS results listed as less than the reporting limit (RL) and arsenic results listed as less than the limit of detection (LOD) unless otherwise flagged due to quality-control (QC) failures.

Bold Concentration exceeds regulatory limit

Analysis not requested or regulatory limit not available

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the RL. Flag applied by the laboratory.

J* Estimated concentration due to quality control failure. Flag applied by Shannon & Wilson, Inc.

‡ Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		City Hall	Firehouse					NPS Well				
Analyte	Units	9/27/18	9/27/18	8/27/18	9/25/18	3/7/19	6/8/19	10/11/2019 DUP	10/11/19	9/2/2020 DUF	9/2/20	3/25/21
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	2.3	12	11	13	14	10	9.3	7.3	7.4	10
Perfluorohexanoic acid (PFHxA)	ng/L							2.2	1.8 J	4.2	4.3	5.1
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	1.8 J	1.7 J	1.9 J	1.8 J	1.4 J	1.3 J	1.5 J	1.5 J	2.2
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.9	<1.8	<1.9
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	1.3 J	1.2 J	1.4 J	1.5 J	1.0 J*	0.73 J*	0.85 J	0.84 J	1.0 J
Perfluorodecanoic acid (PFDA)	ng/L							<1.8	<1.9	<1.9	<1.8	<1.9
Perfluoroundecanoic acid (PFUnA)	ng/L							<1.8	<1.9	<1.9	<1.8	<1.9
Perfluorododecanoic acid (PFDoA)	ng/L							<1.8	<1.9	<1.9	<1.8	<1.9
Perfluorotridecanoic acid (PFTrDA)	ng/L							<1.8	<1.9	<1.9	<1.8	<1.9
Perfluorotetradecanoic acid (PFTeA)	ng/L							<1.8	<1.9	<1.9	<1.8	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L							<1.8	<1.9	<1.9	<1.8	<4.6
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L							<1.8	<1.9	<1.9	<1.8	<4.6
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L							<1.8	<1.9	<1.9	<1.8	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L							<1.8	<1.9	<1.9	<1.8	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L							<1.8	<1.9	<1.9	<1.8	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L							4.0 J*	<1.9 J*	<1.9	<1.8	<3.7
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	23	22	13	16	19	18	9.7	10	7.1
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	4.6	4.3	3.5	<3.4 B*	2.9	2.8	1.9	2.0	2.7
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	28	26	17	16 B*‡	22	21	12	12	9.8

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name			PW-001			PW-002		PW-003	PW-004	PW-005	PW-007	PW-008	PW-009
Analyte	Units	8/28/18	3/7/19	6/7/19	8/28/18	3/9/19	6/8/19	8/28/18	8/28/18	8/28/18	8/28/18	8/28/18	8/28/18
Perfluorohexanesulfonic acid (PFHxS)	ng/L	350	320	489	32	21	20	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorohexanoic acid (PFHxA)	ng/L			216									
Perfluoroheptanoic acid (PFHpA)	ng/L	13	17	26	4.4	3.4	1.8 J	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorononanoic acid (PFNA)	ng/L	3.0	2.3	4.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	20	21	25	2.2	1.8 J	1.9 J	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorodecanoic acid (PFDA)	ng/L			<2.0		-		-					
Perfluoroundecanoic acid (PFUnA)	ng/L			<2.0 J*									
Perfluorododecanoic acid (PFDoA)	ng/L			<2.0 J*		-							
Perfluorotridecanoic acid (PFTrDA)	ng/L			<2.0		-	-	-					
Perfluorotetradecanoic acid (PFTeA)	ng/L			<2.0 J*		-		-					
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L			<8.0 J*		-							
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L			<8.0									
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L					-							
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	ng/L					-		-					
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L					-							
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L					-							
Perfluorooctanesulfonic acid (PFOS)	ng/L	2,300	1,200	2,880	160	72	33	<2.0	<2.0	<2.0	5.6	<2.0	<2.0
Perfluorooctanoic acid (PFOA)	ng/L	19	13	24	3.0	<2.0 B*	1.8 J	1.4 J	<2.0	0.90 J	1.2 J	1.3 J	<2.0
LHA Combined (PFOS + PFOA)	ng/L	2,319	1,213	2,904	163	72 B*‡	35 J	1.4 J‡	N/A	0.90 J‡	6.8 J	1.3 J‡	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name					PW-	010						PW-011		
Analyte	Units	8/29/18	6/9/19	10/12/2019 DUP	10/12/19	9/2/20	12/30/20	3/24/21	6/22/21	8/29/18	9/25/18	3/8/19	6/8/2019 DUP	6/8/19
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	<2.0	2.5	2.9	0.60 J	<1.8	<1.8	<1.9	30	34	32	23	23
Perfluorohexanoic acid (PFHxA)	ng/L		-	0.97 J	1.0 J	<1.9	<1.8	<1.8	<1.9		-			
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9	3.4	3.1	4.5	3.5	3.4
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9	2.9	3.2	2.4	1.9 J	1.8 J
Perfluorodecanoic acid (PFDA)	ng/L			<1.9	<2.0	<1.9	<1.8	<1.8	<1.9					
Perfluoroundecanoic acid (PFUnA)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9					
Perfluorododecanoic acid (PFDoA)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9					
Perfluorotridecanoic acid (PFTrDA)	ng/L			<1.9	<2.0	<1.9	<1.8	<1.8	<1.9					
Perfluorotetradecanoic acid (PFTeA)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9					
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<4.4	<4.8					
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<4.4	<4.8					
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9					
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9		-			
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9					
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L		-	<1.9	<2.0	<1.9	<1.8	<3.5	<3.8					
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	2.0	2.2	0.88 J	0.46 J	0.79 J	<1.9	93	80	96	82	80
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	<1.9	<2.0	<1.9	<1.8	<1.8	<1.9	3.3	3.1	<2.6 B*	2.0	<2.2 B*
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	2.0 ‡	2.2 ‡	0.88 J‡	0.46 J‡	0.79 J‡	N/A	96	83	96 B*‡	84	80 B*‡

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

- Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name							PW-012							PW-013	
Analyte	Units	8/29/18	3/8/19	6/8/19	10/12/19	9/3/2020 DUP	9/3/20	1/2/21	3/24/2021 DUP	3/24/21	6/21/2021 DUP	6/21/21	8/29/18	3/7/19	6/8/19
Perfluorohexanesulfonic acid (PFHxS)	ng/L	8.9	11	7.0	9.3	4.7	4.2	8.5	1.3 J	1.5 J	5.2	4.8	860	650	692
Perfluorohexanoic acid (PFHxA)	ng/L				2.8	1.2 J	1.1 J	3.3	0.62 J	<1.8	<2.1	<2.0			1,320
Perfluoroheptanoic acid (PFHpA)	ng/L	0.81 J	0.87 J	<2.0	0.86 J	<1.9	<1.9	1.1 J	<1.8	<1.8	<2.1	<2.0	230	150	272
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0	8.9	18	14
Perfluorobutanesulfonic acid (PFBS)	ng/L	1.8 J	1.5 J	1.1 J	0.99 J	0.50 J	<1.9	0.59 J	<1.8	<1.8	0.27 J	0.21 J	57	34	32
Perfluorodecanoic acid (PFDA)	ng/L				<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0			2.9 J
Perfluoroundecanoic acid (PFUnA)	ng/L				<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0			<2.0
Perfluorododecanoic acid (PFDoA)	ng/L				<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0			<2.0
Perfluorotridecanoic acid (PFTrDA)	ng/L				<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0			<2.0
Perfluorotetradecanoic acid (PFTeA)	ng/L				<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0			<2.0
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L				<1.9	<1.9	<1.9	<1.8	<4.4	<4.4	<5.2	<5.0			<8.0
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L				<1.9	<1.9	<1.9	<1.8	<4.4	<4.4	<5.2	<5.0			<8.0
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L				<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0			
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L				<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0			
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L				<1.9	<1.9	<1.9	<1.8	<1.8	<1.8	<2.1	<2.0			
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L				<1.9	<1.9	<1.9	<1.8	<3.5	<3.5	<4.2	<4.0			
Perfluorooctanesulfonic acid (PFOS)	ng/L	7.7	25	14	13	15	14	12	6.1	7.7	5.5	5.6	5,500	6,000	5,490
Perfluorooctanoic acid (PFOA)	ng/L	0.77 J	<2.0 B*	0.81 J	0.74 J	<1.9	<1.9	0.47 J	<1.8	<1.8	<2.1	<2.0	130	110	129
LHA Combined (PFOS + PFOA)	ng/L	8.5 J	25 B*‡	15 J	14 J	15 ‡	14 ‡	12 J	6.1 ‡	7.7 ‡	5.5 ‡	5.6 ‡	5,630	6,110	5,619

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW-014	PW-015	PW-	·016	PW-017	PW-018	PW-019	PW-020	PW-021		P	W-022	
Analyte	Units	8/29/18	8/29/18	8/30/18	12/29/20	8/30/18	8/30/18	8/30/18	8/30/18	8/30/18	8/30/18	3/7/19	6/7/2019 DUP	6/7/19
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	<2.0	1.7 J	1.3 J	<2.0	1.2 J	<2.0	<2.0	<2.0	58	230	19	19
Perfluorohexanoic acid (PFHxA)	ng/L				7.3									
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<2.0	3.4	<2.0	<2.0	<2.0	<2.0	<2.0	4.8	20	1.8 J	1.9 J
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	1.7 J I	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	1.2 J	<2.0	<2.0	<2.0	<2.0	<2.0	6.4	28	1.4 J	1.4 J
Perfluorodecanoic acid (PFDA)	ng/L				<1.9									
Perfluoroundecanoic acid (PFUnA)	ng/L				<1.9									
Perfluorododecanoic acid (PFDoA)	ng/L				<1.9									
Perfluorotridecanoic acid (PFTrDA)	ng/L				<1.9									
Perfluorotetradecanoic acid (PFTeA)	ng/L				<1.9									
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L				<1.9									
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L				<1.9									
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L				<1.9		-							
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L				<1.9									
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L				<1.9									
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L				<1.9									
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	<2.0	0.69 J	<2.0	2.5	<2.0	<2.0	<2.0	520	1,500	120	120
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	1.3 J	8.6	<2.0	<2.0	<2.0	<2.0	<2.0	6.9	25	1.3 J	1.7 J
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	1.3 J‡	9.3 J	N/A	2.5 ‡	N/A	N/A	N/A	527	1,525	121 J	122 J

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW-031	PW	-032	PW-033	PW-034	PW-036				PW	-037			
Analyte	Units	8/27/18	8/28/18	9/1/20	8/28/18	8/28/18	8/28/18	8/31/18	3/8/19	6/7/19	10/11/19	9/1/20	12/31/20	3/25/21	6/23/21
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	<2.0	<1.9	<2.0	1.1 J	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<2.0
Perfluorohexanoic acid (PFHxA)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<2.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<2.0
Perfluorodecanoic acid (PFDA)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
Perfluoroundecanoic acid (PFUnA)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
Perfluorododecanoic acid (PFDoA)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
Perfluorotridecanoic acid (PFTrDA)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
Perfluorotetradecanoic acid (PFTeA)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L			<1.9							<1.9	<1.9	<1.8	<4.4	<4.9
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L			<1.9							<1.9	<1.9	<1.8	<4.4	<4.9
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L			<1.9							<1.9	<1.9	<1.8	<1.7	<2.0
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L			<1.9							0.89 J	<1.9	<1.8	<3.5	<3.9
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	<1.9	<2.0	1.5 J	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<2.0
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<2.0
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	N/A	N/A	1.5 J‡	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name						P	W-038									PW-039					
Analyte	Units	8/28/2018 DUP	8/28/18	3/8/19	6/7/19	10/11/19	9/1/20	12/31/2020 DUP	12/31/20	3/25/21	6/23/21	8/29/2018 DU	P 8/29/18	3/8/2019 DUP	3/8/19	6/8/19	10/11/19	9/1/20	12/31/20	3/25/21	6/23/21
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.9	<1.6	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.8	<1.9
Perfluorohexanoic acid (PFHxA)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	0.54 J	<1.8	0.92 J
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.9	<1.6	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.8	<1.9
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.9	<1.6	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.8	<1.9
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.9	<1.6	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.8	<1.9
Perfluorodecanoic acid (PFDA)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	<1.8	<1.8	<1.9
Perfluoroundecanoic acid (PFUnA)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	<1.8	<1.8	<1.9
Perfluorododecanoic acid (PFDoA)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	<1.8	<1.8	<1.9
Perfluorotridecanoic acid (PFTrDA)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	<1.8	<1.8	<1.9
Perfluorotetradecanoic acid (PFTeA)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	<1.8	<1.8	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L					<1.8	<1.9	<1.8	<1.9	<4.1	<4.8						<1.8	<1.9	<1.8	<4.5	<4.8
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L					<1.8	<1.9	<1.8	<1.9	<4.1	<4.8						<1.8	<1.9	<1.8	<4.5	<4.8
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	<1.8	<1.8	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	<1.8	<1.8	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L					<1.8	<1.9	<1.8	<1.9	<1.6	<1.9						<1.8	<1.9	<1.8	<1.8	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L					<1.8	<1.9	<1.8	<1.9	<3.3	<3.9						<1.8	<1.9	<1.8	<3.6	<3.8
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.9	<1.6	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.8	<1.9
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.9	<1.6	<1.9	<2.0	0.79 J	<2.0	<2.0	<2.0	<1.8	<1.9	<1.8	<1.8	<1.9
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.79J‡	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name						PW-040					PW-041	PW-042	PW-043	PW-044
Analyte	Units	8/28/18	3/8/19	6/8/19	10/11/19	9/1/20	12/31/20	3/25/2021 DUP	3/25/21	6/23/21	8/28/18	8/29/18	8/29/18	8/29/18
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<1.8	<2.1	<2.0	<2.0	<2.0	<2.0
Perfluorohexanoic acid (PFHxA)	ng/L				<1.9	<1.9	<1.8	<1.7	<1.8	<2.1				
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<1.8	<2.1	<2.0	<2.0	0.94 J	<2.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<1.8	<2.1	<2.0	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<1.8	<2.1	<2.0	<2.0	<2.0	<2.0
Perfluorodecanoic acid (PFDA)	ng/L				<1.9	<1.9	<1.8	<1.7	<1.8	<2.1				
Perfluoroundecanoic acid (PFUnA)	ng/L				<1.9	<1.9	<1.8	<1.7	<1.8	<2.1				
Perfluorododecanoic acid (PFDoA)	ng/L				<1.9	<1.9	<1.8	<1.7	<1.8	<2.1				
Perfluorotridecanoic acid (PFTrDA)	ng/L				<1.9	<1.9	<1.8	<1.7	<1.8	<2.1				
Perfluorotetradecanoic acid (PFTeA)	ng/L				<1.9	<1.9	<1.8	<1.7	<1.8	<2.1				
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L				<1.9	<1.9	<1.8	<4.3	<4.5	<5.3				
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L				<1.9	<1.9	<1.8	<4.3	<4.5	<5.3				
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L			-	<1.9	<1.9	<1.8	<1.7	<1.8	<2.1			-	-
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L				<1.9	<1.9	<1.8	<1.7	<1.8	<2.1				
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L				<1.9	<1.9	<1.8	<1.7	<1.8	<2.1				-
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L				0.66 J	<1.9	<1.8	<3.5	<3.6	<4.2				
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<1.8	<2.1	<2.0	<2.0	6.6	2.0
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.8	<1.7	<1.8	<2.1	<2.0	<2.0	7.6	1.3 J
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14	3.3 J

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name			PW-045			PW-	-046		PW-047	PW	/-048
Analyte	Units	8/29/18	10/11/19	6/22/21	8/30/2018 DUP	8/30/18	3/8/19	6/9/19	8/31/18	8/31/18	6/9/19
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	0.48 J	0.94 J	1,900	1,700	320	865	<2.0	<2.0	<2.0
Perfluorohexanoic acid (PFHxA)	ng/L		<1.9	<1.9				37			<2.0
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<1.9	<1.9	29	27	6.2	8.3	<2.0	<2.0	<2.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<1.9	<1.9	<2.0	<2.0	<2.0	1.8 J	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<1.9	<1.9	120	110	20	29	<2.0	<2.0	<2.0
Perfluorodecanoic acid (PFDA)	ng/L		<1.9	<1.9				<2.0			<2.0
Perfluoroundecanoic acid (PFUnA)	ng/L		<1.9	<1.9				<2.0			<2.0 J*
Perfluorododecanoic acid (PFDoA)	ng/L		<1.9	<1.9				<2.0			<2.0 J*
Perfluorotridecanoic acid (PFTrDA)	ng/L		<1.9	<1.9				<2.0			<2.0
Perfluorotetradecanoic acid (PFTeA)	ng/L		<1.9	<1.9				<2.0			<2.0
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L		<1.9	<4.8				<8.0			<8.0
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L		<1.9	<4.8				<8.0			<8.0
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L		<1.9	<1.9							
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L		<1.9	<1.9							
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L		<1.9	<1.9							
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L		<1.9	<3.9							
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	0.79 J	0.99 J	83	79	63	68	<2.0	<2.0	<2.0 J*
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<1.9	<1.9	82	77	20 B	31	<2.0	<2.0	<2.0
LHA Combined (PFOS + PFOA)	ng/L	N/A	0.79 J‡	0.99 J‡	165	156	83 B	99	N/A	N/A	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name					PW-	059				PW	-061	PW-062	PW-066	PW-070
Analyte	Units	8/29/18	3/7/19	6/9/19	10/12/19	9/1/20	12/30/20	3/24/21	6/21/21	8/27/18	9/1/20	6/22/21	12/8/18	8/31/18
Perfluorohexanesulfonic acid (PFHxS)	ng/L	1.2 J	0.98 J	<2.0	1.1 J	0.78 J	1.6 J	1.7	2.1	1.3 J	0.85 J	<2.0	<2.0	1.4 J
Perfluorohexanoic acid (PFHxA)	ng/L				<1.9	<1.9	0.55 J	1.1 J	1.3 J		1.5 J	0.63 J		
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	0.26 J	0.33 J	1.3 J	0.82 J	0.39 J	<2.0	<2.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	<1.7	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	<1.9	0.75 J	0.72 J	1.3 J	0.81 J	<2.0	0.49 J	0.23 J	<2.0	1.8 J
Perfluorodecanoic acid (PFDA)	ng/L				<1.9	<1.9	<1.9	<1.7	<2.0		<1.9	<2.0		
Perfluoroundecanoic acid (PFUnA)	ng/L				<1.9	<1.9	<1.9	<1.7	<2.0		<1.9	<2.0		
Perfluorododecanoic acid (PFDoA)	ng/L				<1.9	<1.9	<1.9	<1.7	<2.0		<1.9	<2.0		
Perfluorotridecanoic acid (PFTrDA)	ng/L				<1.9	<1.9	<1.9	<1.7	<2.0		<1.9	<2.0		
Perfluorotetradecanoic acid (PFTeA)	ng/L				<1.9	<1.9	<1.9	<1.7	<2.0		<1.9	<2.0		
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L				<1.9	<1.9	<1.9	<4.3	<5.0		<1.9	<4.9		
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L				<1.9	<1.9	<1.9	<4.3	<5.0		<1.9	<4.9		
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L				<1.9	<1.9	<1.9	<1.7	<2.0		<1.9	<2.0		
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L				<1.9	<1.9	<1.9	<1.7	<2.0		<1.9	<2.0		
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L				<1.9	<1.9	<1.9	<1.7	<2.0		<1.9	<2.0		
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L				<1.9	<1.9	<1.9	<3.4	<4.0		<1.9	<3.9		
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	1.0 J	1.6 J	1.4 J	1.4 J	0.49 J	1.2 J	<2.0	<2.0
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	<2.0	<1.9	<1.9	0.70 J	0.96 J	<2.0	3.8	1.9	<2.0	<2.0	1.0 J
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	N/A	N/A	N/A	1.7 J	2.6 J	1.4 J‡	5.2 J	2.4 J	1.2 J‡	N/A	1.0 J‡

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW-071	PW-0	74	PW-075	PW	-201		PW-	202	
Analyte	Units	6/8/19	9/25/2018 DUP	9/25/18	8/31/18	9/25/18	12/30/20	9/25/18	12/8/18	3/7/19	6/7/19
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	1.1 J	1.1 J	<2.0	1.7 J	1.3 J	20	8.8	17	17
Perfluorohexanoic acid (PFHxA)	ng/L						2.1		<8.0 B*		
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	1.3 J	2.7	2.3 J	2.0	3.2
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<4.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	2.1	2.5 J	2.4	2.9
Perfluorodecanoic acid (PFDA)	ng/L						<1.9		<4.0		
Perfluoroundecanoic acid (PFUnA)	ng/L						<1.9		<4.0		
Perfluorododecanoic acid (PFDoA)	ng/L						<1.9		<4.0		
Perfluorotridecanoic acid (PFTrDA)	ng/L						<1.9		<4.0		
Perfluorotetradecanoic acid (PFTeA)	ng/L						<1.9		<4.0		
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L						<1.9		<16		
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L						<1.9		<16		
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L						<1.9				
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L						<1.9				
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L						<1.9				
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L						<1.9				
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	<2.0	<2.0	1.4 J	2.1	68	20	32	38
Perfluorooctanoic acid (PFOA)	ng/L	0.82 J	<2.0	<2.0	1.4 J	<2.0	0.97 J	3.1	<8.2 B*	3.0	4.2
LHA Combined (PFOS + PFOA)	ng/L	0.82 J‡	N/A	N/A	1.4 J‡	1.4 J‡	3.1 J	71	20 B*‡	35	42

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

- Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name						PW-203						PW-204		PW-204.1
Analyte	Units	9/25/18	3/8/19	6/8/19	10/14/19	9/1/2020 DUP	9/1/20	12/31/20	3/23/21	6/21/21	9/25/18	6/7/19	9/2/20	6/21/21
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	<2.0	<2.0	<2.0	0.81 J	0.95 J	<1.9	0.90 J	<2.0	3.3	2.4	3.2	30
Perfluorohexanoic acid (PFHxA)	ng/L				<2.0	0.48 J	0.67 J	<1.9	<1.7	<2.0			0.97 J	11
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	<1.7	<2.0	0.93 J	<2.0	0.47 J	3.8
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	0.50 J	<2.0	<2.0	<2.0	<1.9	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	<1.7	<2.0	<2.0	<2.0	<1.9	2.4
Perfluorodecanoic acid (PFDA)	ng/L				<2.0	<1.9	<1.9	<1.9	<1.7	<2.0			<1.9	<2.0
Perfluoroundecanoic acid (PFUnA)	ng/L				<2.0	<1.9	<1.9	<1.9	<1.7	<2.0			<1.9	<2.0
Perfluorododecanoic acid (PFDoA)	ng/L				<2.0	<1.9	<1.9	<1.9	<1.7	<2.0			<1.9	<2.0
Perfluorotridecanoic acid (PFTrDA)	ng/L				<2.0	<1.9	<1.9	<1.9	<1.7	<2.0			<1.9	<2.0
Perfluorotetradecanoic acid (PFTeA)	ng/L				<2.0	<1.9	<1.9	<1.9	<1.7	<2.0			<1.9	<2.0
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L				<2.0	<1.9	<1.9	<1.9	<4.3	<5.1			<1.9	<5.0
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L				<2.0	<1.9	<1.9	<1.9	<4.3	<5.1			<1.9	<5.0
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L				<2.0	<1.9	<1.9	<1.9	<1.7	<2.0			<1.9	<2.0
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L				<2.0	<1.9	<1.9	<1.9	<1.7	<2.0			<1.9	<2.0
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L				<2.0	<1.9	<1.9	<1.9	<1.7	<2.0			<1.9	<2.0
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L				<2.0	<1.9	<1.9	<1.9	<3.4	<4.1			<1.9	<4.0
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.9	0.70 J	<1.9	1.8	<2.0	5.4	4.7	6.1	49
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.9	0.50 J	<1.9	<1.7	<2.0	<2.0	<2.0	0.75 J	2.8
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	N/A	N/A	N/A	1.2 J	N/A	1.8 ‡	N/A	5.4 ‡	4.7 ‡	6.9 J	52

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW	/-205	PW-205.1	PW-206	PW-207	PW	V-208	PW-208.1		PW-209	
Analyte	Units	6/9/19	10/12/19	6/21/21	9/28/18	6/7/19	6/7/19	3/23/21	6/21/21	9/26/18	3/7/19	6/7/19
Perfluorohexanesulfonic acid (PFHxS)	ng/L	11	10	1.5 J	<2.0	<2.0	2.5	0.52 J	11	26	35	24
Perfluorohexanoic acid (PFHxA)	ng/L		3.0	0.78 J				2.3	4.0			
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	0.63 J	<2.1	<2.0	<2.0	<2.0	<1.8	1.7 J	3.0	5.0	3.8
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<1.9	<2.1	<2.0	<2.0	<2.0	<1.8	<2.0	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	2.0	1.4 J	0.27 J	<2.0	<2.0	<2.0	0.33 JH*	0.74 J	2.2	2.7	1.6 J
Perfluorodecanoic acid (PFDA)	ng/L		<1.9	<2.1				<1.8	<2.0			
Perfluoroundecanoic acid (PFUnA)	ng/L		<1.9	<2.1				<1.8	<2.0			
Perfluorododecanoic acid (PFDoA)	ng/L		<1.9	<2.1				<1.8	<2.0			
Perfluorotridecanoic acid (PFTrDA)	ng/L		<1.9	<2.1				<1.8	<2.0			
Perfluorotetradecanoic acid (PFTeA)	ng/L		<1.9	<2.1				<1.8	<2.0			
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L		<1.9	<5.2				<4.6	<5.0			
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L		<1.9	<5.2				<4.6	<5.0			
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L		<1.9	<2.1				<1.8	<2.0			
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L		<1.9	<2.1				<1.8	<2.0			
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L		<1.9	<2.1				<1.8	<2.0			
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L		<1.9	<4.2				<3.7	<4.0			
Perfluorooctanesulfonic acid (PFOS)	ng/L	9.0	10	2.2	<2.0	<2.0	8.4	1.6 J	67	100	120	120
Perfluorooctanoic acid (PFOA)	ng/L	0.93 J	0.76 J	<2.1	<2.0	1.0 J	0.80 J I	<1.8	2.6	3.3	2.7	2.5
LHA Combined (PFOS + PFOA)	ng/L	9.9 J	11 J	2.2 ‡	N/A	1.0 J‡	9.2 J I	1.6 J‡	70	103	123	123

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

- Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name			PW-	210				PW	-211				PW-212	
Analyte	Units	9/26/18	9/26/18	3/7/19	6/8/19	9/26/18	10/13/19	8/31/20	12/30/20	3/24/21	6/21/21	9/26/18	10/14/19	8/31/20
Perfluorohexanesulfonic acid (PFHxS)	ng/L	30	32	26	24	1.1 J	<1.9	<1.9	<1.9	<1.8	0.76 J	<2.0	<1.9	<1.9
Perfluorohexanoic acid (PFHxA)	ng/L				-	-	0.83 J	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
Perfluoroheptanoic acid (PFHpA)	ng/L	3.1	3.0	2.6	3.2	3.3	0.51 J	<1.9	<1.9	<1.8	<2.0	<2.0	<1.9	<1.9
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	<1.8	<2.0	<2.0	<1.9	<1.9
Perfluorobutanesulfonic acid (PFBS)	ng/L	2.5	2.7	2.7	1.9 J	<2.0	1.4 J	<1.9	<1.9	<1.8	<2.0	<2.0	<1.9	<1.9
Perfluorodecanoic acid (PFDA)	ng/L		-	-	-	1	<1.9	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
Perfluoroundecanoic acid (PFUnA)	ng/L					1	<1.9	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
Perfluorododecanoic acid (PFDoA)	ng/L					1	<1.9	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
Perfluorotridecanoic acid (PFTrDA)	ng/L					-	<1.9	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
Perfluorotetradecanoic acid (PFTeA)	ng/L					ı	<1.9	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L					ı	3.7	<1.9	1.9	<4.5	<5.0		<1.9	<1.9
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L					ı	<1.9	<1.9	<1.9	<4.5	<5.0		<1.9	<1.9
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L					-	<1.9	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L					-	<1.9	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L					ı	<1.9	<1.9	<1.9	<1.8	<2.0		<1.9	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L					1	<1.9	<1.9	<1.9	<3.6	<4.0		<1.9	<1.9
Perfluorooctanesulfonic acid (PFOS)	ng/L	92	95	70	77	9.1	1.0 J	0.65 J	0.60 J	<1.8	<2.0	<2.0	<1.9	<1.9
Perfluorooctanoic acid (PFOA)	ng/L	2.6	2.8	2.5	2.4	15	1.0 J	<1.9	<1.9	<1.8	<2.0	<2.0	<1.9	<1.9
LHA Combined (PFOS + PFOA)	ng/L	95	98	73	79	24	2.0 J	0.65 J‡	0.60 J‡	N/A	N/A	N/A	N/A	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name			PW	-213		PW-214	PW-216	PW	-218		PW	-219	
Analyte	Units	11/1/18	3/7/19	6/9/19	9/2/20	9/27/18	9/27/18	11/1/18	12/30/20	9/27/18	9/27/18	10/14/19	8/31/20
Perfluorohexanesulfonic acid (PFHxS)	ng/L	24	24	20	17	0.88 J	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9
Perfluorohexanoic acid (PFHxA)	ng/L				6.7				<1.9			0.74 J	<1.9
Perfluoroheptanoic acid (PFHpA)	ng/L	2.2	2.5	2.1	2.5	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	0.49 J	<1.9
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9
Perfluorobutanesulfonic acid (PFBS)	ng/L	3.2	3.1	2.2	1.6 J	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	1.2 J	<1.9
Perfluorodecanoic acid (PFDA)	ng/L				<1.9				<1.9			<1.9	<1.9
Perfluoroundecanoic acid (PFUnA)	ng/L				<1.9				<1.9			<1.9	<1.9
Perfluorododecanoic acid (PFDoA)	ng/L				<1.9				<1.9			<1.9	<1.9
Perfluorotridecanoic acid (PFTrDA)	ng/L				<1.9				<1.9			<1.9	<1.9
Perfluorotetradecanoic acid (PFTeA)	ng/L				<1.9				<1.9			<1.9	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L				<1.9				<1.9			<1.9	<1.9
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L				<1.9				<1.9			<1.9	<1.9
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L				<1.9				<1.9			<1.9	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L				<1.9				<1.9			<1.9	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L				<1.9				<1.9			<1.9	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L				<1.9				<1.9			<1.9	<1.9
Perfluorooctanesulfonic acid (PFOS)	ng/L	51	53	44	61	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<1.9	<1.9
Perfluorooctanoic acid (PFOA)	ng/L	2.3	2.2	<2.2 B*	1.4 J	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	0.84 J	<1.9
LHA Combined (PFOS + PFOA)	ng/L	53	55	44 B*‡	62 J	N/A	N/A	N/A	N/A	N/A	N/A	0.84 J‡	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name						PW-221					PW-	230	PW-231	PW-232
Analyte	Units	11/1/18	6/9/19	10/12/19	9/2/20	12/30/2020 DUF	12/30/20	3/24/21	6/22/2021 DUP	6/22/21	10/31/18	9/1/20	10/31/18	10/31/18
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	<2.0	2.1	0.86 J	1.3 J	1.2 J	0.90 J	0.60 J	0.59 J	1.2 J	0.71 J	2.6	<2.0
Perfluorohexanoic acid (PFHxA)	ng/L			0.87 J	<2.0	<1.9	<2.0	0.52 J	<2.0	<1.9		<1.8		
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9	<2.0	<1.8	0.96 J	<2.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9	<2.0	<1.8	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9	<2.0	<1.8	<2.0	<2.0
Perfluorodecanoic acid (PFDA)	ng/L			<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9		<1.8		
Perfluoroundecanoic acid (PFUnA)	ng/L			<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9		<1.8		
Perfluorododecanoic acid (PFDoA)	ng/L			<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9		<1.8		
Perfluorotridecanoic acid (PFTrDA)	ng/L			<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9		<1.8		
Perfluorotetradecanoic acid (PFTeA)	ng/L			<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9		<1.8	-	
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L			<1.9	<2.0	<1.9	<2.0	<4.5	<5.0	<4.8		<1.8	-	
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L			<1.9	<2.0	<1.9	<2.0	<4.5	<5.0	<4.8		<1.8		
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L			<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9		<1.8		
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L			<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9		<1.8		
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L			<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9		<1.8		
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L			<1.9	<2.0	<1.9	<2.0	<3.6	<4.0	<3.9		<1.8		
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	2.4	1.5 J	1.7 J	1.6 J	2.1	0.97 J	0.98 J	<2.0	0.68 J	<2.0	<2.0
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	<1.9	<2.0	<1.9	<2.0	<1.8	<2.0	<1.9	1.1 J	1.0 J	1.1 J	<2.0
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	2.4 ‡	1.5 J‡	1.7 J‡	1.6 J‡	2.1 ‡	0.97 J‡	0.98 J‡	1.1 J‡	1.7 J	1.1 J‡	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW-233	PW-234	PW-	235	PW-2	236	PW-237	PW-238	PW-239	PW	-240	PW-2	241
Analyte	Units	10/31/18	10/31/18	11/1/18	12/29/20	0/31/2018 DUF	10/31/18	11/1/18	11/1/18	11/1/18	11/1/18	9/1/20	11/1/2018 DUP	11/1/18
Perfluorohexanesulfonic acid (PFHxS)	ng/L	<2.0	<2.0	<2.0	<1.9	0.96 J	1.0 J	<2.0	3.5	<2.0	3.3	2.0	5.8	6.1
Perfluorohexanoic acid (PFHxA)	ng/L				<1.9							<1.9		
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0
Perfluorodecanoic acid (PFDA)	ng/L			-	<1.9		-					<1.9		
Perfluoroundecanoic acid (PFUnA)	ng/L				<1.9							<1.9		
Perfluorododecanoic acid (PFDoA)	ng/L				<1.9							<1.9		
Perfluorotridecanoic acid (PFTrDA)	ng/L			-	<1.9		-					<1.9		
Perfluorotetradecanoic acid (PFTeA)	ng/L			-	<1.9		-					<1.9		
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L			-	<1.9							<1.9		
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L			-	<1.9							<1.9		
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L				<1.9							<1.9		
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L			-	<1.9		-					<1.9		
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L			-	<1.9							<1.9		
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L				<1.9							<1.9		
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	2.0	<2.0	<2.0	1.8 J	2.9	2.7
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	0.77 J	<2.0	<2.0	<1.9	0.98 J	0.89 J
LHA Combined (PFOS + PFOA)	ng/L	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.8 J	N/A	N/A	1.8 J‡	3.9 J	3.6 J

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW-247	PW-248	PW-2	249	PW-255	PW-2	75	PW-400
Analyte	Units	11/2/18	11/2/18	11/2/2018 DUP	11/2/18	10/31/18	12/9/2018 DUP	12/9/18	9/25/18
Perfluorohexanesulfonic acid (PFHxS)	ng/L	2.7	6.3	1.5 J	1.4 J	<2.0	<2.0	<2.0	<2.0
Perfluorohexanoic acid (PFHxA)	ng/L								
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorodecanoic acid (PFDA)	ng/L								
Perfluoroundecanoic acid (PFUnA)	ng/L								
Perfluorododecanoic acid (PFDoA)	ng/L								
Perfluorotridecanoic acid (PFTrDA)	ng/L								
Perfluorotetradecanoic acid (PFTeA)	ng/L								
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L								
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L								
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L								
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L								
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L								
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L				-	-	-		
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	1.8 J	1.4 J	1.3 J	<2.0	<2.0	<2.0	<2.0
Perfluorooctanoic acid (PFOA)	ng/L	1.1 J	0.97 J	<2.0	0.84 J	<2.0	<2.0	<2.0	<2.0
LHA Combined (PFOS + PFOA)	ng/L	1.1 J‡	2.8 J	1.4 J‡	2.1 J	N/A	N/A	N/A	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name								PW-401						
Analyte	Units	9/25/18	10/31/18	3/8/19	6/9/19	10/11/19	9/1/2020 DUP	9/1/20	12/29/2020 DUF	12/29/20	3/23/2021 DUP	3/23/21	6/23/2021 DUP	6/23/21
Perfluorohexanesulfonic acid (PFHxS)	ng/L	18	20	20	15	16	9.9	9.6	6.9	6.6	6.5	7.7	1.8 J	2.2
Perfluorohexanoic acid (PFHxA)	ng/L					5.4	4.1	4.4	2.8	2.6	3.5	4.4	1.1 J	1.2 J
Perfluoroheptanoic acid (PFHpA)	ng/L	1.6 J	1.7 J	2.0	1.7 J	1.8 J	1.2 J	1.3 J	1.1 J	1.0 J	1.4 J	1.5 J	0.32 J	0.32 JH*
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
Perfluorobutanesulfonic acid (PFBS)	ng/L	2.4	2.3	1.8 J	1.2 J	1.3 J	0.90 J	0.89 J	<2.0	<2.0	0.45 J	0.74 J	<2.0	0.28 J
Perfluorodecanoic acid (PFDA)	ng/L					<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
Perfluoroundecanoic acid (PFUnA)	ng/L		-			<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
Perfluorododecanoic acid (PFDoA)	ng/L		-			<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
Perfluorotridecanoic acid (PFTrDA)	ng/L		-		-	<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
Perfluorotetradecanoic acid (PFTeA)	ng/L		-			<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L		-			<1.9	<1.9	<1.9	<2.0	<2.0	<4.7	<4.5	<4.9	<4.9
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L					<1.9	<1.9	<1.9	<2.0	<2.0	<4.7	<4.5	<4.9	<4.9
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L		-		-	<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	ng/L					<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L					<1.9	<1.9	<1.9	<2.0	<2.0	<1.9	<1.8	<2.0	<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L					<1.9	<1.9	<1.9	<2.0	<2.0	<3.7	<3.6	<3.9	<3.9
Perfluorooctanesulfonic acid (PFOS)	ng/L	40	36	31	43	45	38	38	30	28	29	30	13	14
Perfluorooctanoic acid (PFOA)	ng/L	1.4 J	1.6 J	<2.0 B*	<2.0 B*	1.4 J	0.68 J	0.71 J	0.51 J	<2.0	<1.9	1.0 J	<2.0	<1.9
LHA Combined (PFOS + PFOA)	ng/L	41 J	38 J	31 B*‡	43 B*‡	46 J	39 J	39 J	31 J	28 ‡	29 ‡	31 J	13 ‡	14 ‡

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name			PW-402			PW-403				PW-405		
Analyte	Units	9/25/18	3/7/19	6/8/19	9/25/18	6/8/2019 DUP	6/8/19	9/25/18	12/8/18	3/7/19	3/7/19	6/8/19
Perfluorohexanesulfonic acid (PFHxS)	ng/L	36	30	22	41	30	30	44	27	28	27	20
Perfluorohexanoic acid (PFHxA)	ng/L								<9.3 B*			
Perfluoroheptanoic acid (PFHpA)	ng/L	3.3	4.4	2.9	3.4	2.8	3.1	4.1	4.2 J	2.8	2.3	2.3
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<3.8	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	3.7	2.2	1.7 J	5.7	3.1	3.2	3.8	2.0 J	2.8	2.8	1.7 J
Perfluorodecanoic acid (PFDA)	ng/L								<3.8			
Perfluoroundecanoic acid (PFUnA)	ng/L								<3.8			
Perfluorododecanoic acid (PFDoA)	ng/L								<3.8			
Perfluorotridecanoic acid (PFTrDA)	ng/L								<3.8			
Perfluorotetradecanoic acid (PFTeA)	ng/L								<3.8			
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L								<15			
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L								<15			
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L											
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L											
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L											
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L											
Perfluorooctanesulfonic acid (PFOS)	ng/L	72	100	92	83	67	65	86	106	78	76	66
Perfluorooctanoic acid (PFOA)	ng/L	3.4	<2.2 B*	1.5 J	3.3	<2.9 B*	2.6	3.9	<17 B*	2.7	2.5	<2.0 B*
LHA Combined (PFOS + PFOA)	ng/L	75	100 B*‡	94 J	86	67 B*‡	68	90	106 B*‡	81	79	66 B*‡

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

B* Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name				PW-406				PW-	-408		PW-413	PW	/-414
Analyte	Units	9/25/18	12/7/18	3/7/2019 DUP	3/7/19	6/8/19	9/26/18	12/8/18	3/7/19	6/7/19	9/27/18	6/8/19	9/1/20
Perfluorohexanesulfonic acid (PFHxS)	ng/L	36	24	28	30	24	30	21	22	28	<2.0	2.1	0.74 J
Perfluorohexanoic acid (PFHxA)	ng/L		12 JH*	-	-			8.7		-		-	<1.9
Perfluoroheptanoic acid (PFHpA)	ng/L	5.2	5.4 J	4.3	4.8	3.1	4.8	3.2 J	3.9	3.0	<2.0	<2.0	<1.9
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<3.8	<2.0	<2.0	<2.0	<2.0	<3.8	<2.0	<2.0	<2.0	<2.0	<1.9
Perfluorobutanesulfonic acid (PFBS)	ng/L	2.6	2.0 J	2.2	2.3	2.7	2.1	<3.8	2.0	2.4	<2.0	<2.0	<1.9
Perfluorodecanoic acid (PFDA)	ng/L		<3.8	-	-			<3.8		-		-	<1.9
Perfluoroundecanoic acid (PFUnA)	ng/L		<3.8					<3.8					<1.9
Perfluorododecanoic acid (PFDoA)	ng/L		<3.8					<3.8					<1.9
Perfluorotridecanoic acid (PFTrDA)	ng/L		<3.8	-	-			<3.8		-		-	<1.9
Perfluorotetradecanoic acid (PFTeA)	ng/L		<3.8	-	-			<3.8		-		-	<1.9
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L		<15					<15				-	<1.9
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L		<15					<15					<1.9
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L		-	-	-			-		-		-	<1.9
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L		-	-	-			-		-		-	<1.9
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L							-					<1.9
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L							-					<1.9
Perfluorooctanesulfonic acid (PFOS)	ng/L	150	113	94	92	74	130	115	97	88	<2.0	2.3	1.2 J
Perfluorooctanoic acid (PFOA)	ng/L	3.3	<13 B*	5.6 J*	8.9 J*	<2.1 B*	2.5	2.6 J	2.5	2.7	<2.0	<2.0	<1.9
LHA Combined (PFOS + PFOA)	ng/L	153	113 B*‡	100 J*	101 J*	74 B*‡	133	118 J	100	91	N/A	2.3 ‡	1.2 J‡

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.

Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW	/-415		PW	-418			PW-419		PW-4	30	PW-431	PW-432
Analyte	Units	6/7/19	10/11/19	9/27/18	3/8/19	6/9/19	6/9/19	6/8/19	9/2/20	6/22/21	10/31/2018 DUF	10/31/18	11/2/18	10/31/18
Perfluorohexanesulfonic acid (PFHxS)	ng/L	19	27	40	30	22	22	7.7	1.9	0.93 J	<2.0	<2.0	5.4	2.5
Perfluorohexanoic acid (PFHxA)	ng/L		15						0.54 J	<2.0				
Perfluoroheptanoic acid (PFHpA)	ng/L	2.4	6.0	4.1	3.0	2.0	2.0	0.81 J	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	1.4 J	1.7 J	3.9	2.6	2.2	2.1	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
Perfluorodecanoic acid (PFDA)	ng/L		<1.9						<1.9	<2.0				
Perfluoroundecanoic acid (PFUnA)	ng/L		<1.9						<1.9	<2.0				
Perfluorododecanoic acid (PFDoA)	ng/L		<1.9						<1.9	<2.0				
Perfluorotridecanoic acid (PFTrDA)	ng/L		<1.9						<1.9	<2.0				
Perfluorotetradecanoic acid (PFTeA)	ng/L		<1.9						<1.9	<2.0				
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L		<1.9						<1.9	<5.0				
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L		<1.9						<1.9	<5.0				
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L		<1.9						<1.9	<2.0				
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L		<1.9						<1.9	<2.0				
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L		<1.9						<1.9	<2.0				
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L		<1.9						<1.9	<4.0				
Perfluorooctanesulfonic acid (PFOS)	ng/L	67	120	74	89	63	66	14	3.4	1.5 J	<2.0	<2.0	6.1	2.0
Perfluorooctanoic acid (PFOA)	ng/L	1.6 J	2.4	3.4	<3.1 B*	<2.0 B*	<2.0 B*	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0
LHA Combined (PFOS + PFOA)	ng/L	69 J	122	77	89 B*‡	63 B*‡	66 B*‡	14 ‡	3.4 ‡	1.5 J‡	N/A	N/A	6.1 ‡	2.0 ‡

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

- Sestimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW-433	PW-434	PW-435	PW-436	PW-438	PW-440	PW-441	PW-442	PW-460	PW-461	PW	-462	PW-463
Analyte	Units	6/9/19	10/31/18	10/31/18	10/31/18	8/31/20	11/1/18	6/7/19	12/7/18	11/2/18	11/2/18	6/7/19	9/2/20	6/8/19
Perfluorohexanesulfonic acid (PFHxS)	ng/L	1.3 J	4.6	<2.0	<2.0	1.9	<2.0	3.9	1.1 J	1.7 J	1.4 J	18	13	29
Perfluorohexanoic acid (PFHxA)	ng/L					0.52 J							4.9	
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	0.82 J	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	1.6 J	2.1	2.0	3.0
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.8	<2.0
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	1.4 J	<2.0	1.6 J	0.74 J	2.6
Perfluorodecanoic acid (PFDA)	ng/L					<1.9							<1.8	
Perfluoroundecanoic acid (PFUnA)	ng/L					<1.9							<1.8	
Perfluorododecanoic acid (PFDoA)	ng/L					<1.9							<1.8	
Perfluorotridecanoic acid (PFTrDA)	ng/L					<1.9							<1.8	
Perfluorotetradecanoic acid (PFTeA)	ng/L					<1.9							<1.8	
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L					<1.9	-						<1.8	
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L					<1.9							<1.8	
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	ng/L			-		<1.9	-			-			<1.8	
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L					<1.9							<1.8	
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L					<1.9	-						<1.8	
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L					<1.9	-						<1.8	
Perfluorooctanesulfonic acid (PFOS)	ng/L	<2.0	2.8	<2.0	<2.0	3.7	<2.0	1.4 J	<2.0	<2.0	1.3 J	48	68	74
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	0.85 J	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.0	1.2 J	1.8 J	0.99 J	2.8
LHA Combined (PFOS + PFOA)	ng/L	N/A	3.7 J	N/A	N/A	3.7 ‡	N/A	1.4 J‡	N/A	N/A	2.5 J	50 J	69 J	77

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 11: Summary of Historical Water-Supply Well PFAS Results

Sample Name		PW-464	PW	PW-466	
Analyte	Units	10/13/19	3/25/2021 DUP	3/25/21	1/1/21
Perfluorohexanesulfonic acid (PFHxS)	ng/L	2.1	18 J*	19 J*	<1.8
Perfluorohexanoic acid (PFHxA)	ng/L	0.51 J	9.7 J*	11 J*	<1.8
Perfluoroheptanoic acid (PFHpA)	ng/L	<2.0	5.1 J*	5.6 J*	<1.8
Perfluorononanoic acid (PFNA)	ng/L	<2.0	<1.8	0.30 J*	<1.8
Perfluorobutanesulfonic acid (PFBS)	ng/L	<2.0	0.93 J*	1.4 J*	<1.8
Perfluorodecanoic acid (PFDA)	ng/L	<2.0	<1.8	<1.8	<1.8
Perfluoroundecanoic acid (PFUnA)	ng/L	<2.0	<1.8	<1.8	<1.8
Perfluorododecanoic acid (PFDoA)	ng/L	<2.0	<1.8	<1.8	<1.8
Perfluorotridecanoic acid (PFTrDA)	ng/L	<2.0	<1.8	<1.8	<1.8
Perfluorotetradecanoic acid (PFTeA)	ng/L	<2.0	<1.8	<1.8	<1.8
N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	ng/L	<2.0	<4.6	<4.6	<1.8
N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	ng/L	<2.0	<4.6	<4.6	<1.8
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)	ng/L	<2.0	<1.8	<1.8	<1.8
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	ng/L	<2.0	<1.8	<1.8	<1.8
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	ng/L	<2.0	<1.8	<1.8	<1.8
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ng/L	<2.0	<3.7	<3.7	<1.8
Perfluorooctanesulfonic acid (PFOS)	ng/L	1.6 J	100 J*	110 J*	<1.8
Perfluorooctanoic acid (PFOA)	ng/L	<2.0	3.4 J*	9.1 J*	<1.8
LHA Combined (PFOS + PFOA)	ng/L	1.6 J‡	103 J*	119 J*	N/A

DEC Alaska Department of Environmental Conservation

DUP Field-duplicate sample

EPA United States Environmental Protection Agency

PFAS per- and poly-fluoroalkyl substances

ng/L nanograms per liter, equivalent to parts per trillion (ppt)

No applicable regulatory limit exists for the associated analyte.

< Analyte was not detected; reported as less than the Reporting Limit (RL).

Bold Detected concentration exceeds the DEC groundwater cleanup level reported in 18 AAC 75, Table C.

- J Estimated concentration, detected greater than the method detection limit (MDL) and less than the reporting limit (RL). Flag applied by the laboratory.
- Result is included in the same preparatory batch as a blank detection for the associated analyte. Flag applied by Shannon & Wilson, Inc. (*)
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)
- # Minimum concentration, the combined concentration includes one or more result that is not detected greater than the MDL.

Table 12 - Summary of Historical Water-Supply Well Selected PFAS Results and Trends

	Monitoring	Quarterly	PFBS	PFHpA "	PFHxA	PFHxS	PFOA	PFOS	LHA Combined †
ample Name	Network	Event	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
		Aug-18 Sep-18	1.3 J 1.2 J	1.8 J 1.7 J		12 11	4.6	23	28 26
		Mar-19	1.4 J	1.7 J 1.9 J		13	3.5	13	17
		Jun-19	1.4 J	1.8 J		14	<3.4 B*	16	16 B*‡
NPS Well	Annual	Oct-19	1.0 J*	1.4 J	2.2	10	2.9	19	22
		Sep-20	0.85 J	1.5 J	4.3	7.4	2.0	10	12
		Mar-21	1.0 J	2.2	5.1	10	2.7	7.1	9.8
		Trend:	Stable	No Trend	N/A	Possibly Decreasing	Decreasing	Decreasing	Decreasing
		Aug-18	<2.0	<2.0	_	<2.0	<2.0	<2.0	N/A
		Jun-19	<2.0	<2.0		<2.0	<2.0	<2.0	N/A
		Oct-19 Sep-20	<1.9 <1.9	<1.9 <1.9	1.0 J <1.9	2.9 0.60 J	<1.9 <1.9	2.2 0.88 J	2.2 ‡ 0.88 J‡
PW-010	Quarterly	Dec-20	<1.8	<1.8	<1.8	<1.8	<1.8	0.46 J	0.46 J‡
		Mar-21	<1.8	<1.8	<1.8	<1.8	<1.8	0.79 J	0.79 J‡
		Jun-21	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	N/A
		Trend:	Stable	Stable	N/A	N/A	Stable	Stable	Stable
		Aug-18	1.8 J	0.81 J		8.9	0.77 J	7.7	8.5 J
		Mar-19	1.5 J	0.87 J		11	<2.0 B*	25	25 B*‡
		Jun-19	1.1 J	<2.0	_	7.0	0.81 J	14	15 J
		Oct-19 Sep-20	0.99 J 0.50 J	0.86 J <1.9	2.8 1.2 J	9.3	0.74 J <1.9	13 15	14 J 15 ‡
PW-012	Quarterly	Jan-21	0.59 J	1.1 J	3.3	8.5	0.47 J	12	12 J
		Mar-21	<1.8	<1.8	0.62 J	1.5 J	<1.8	7.7	7.7 ‡
		Jun-21	0.27 J	<2.0	<2.0	5.2	<2.0	5.6	5.6 ‡
		Trend:	Decreasing	Possibly	Possibly	Possibly	No Trend	Possibly	Possibly
		Aug-18	<2.0	Increasing <2.0	Increasing —	Decreasing <2.0	<2.0	Decreasing <2.0	Decreasing N/A
PW-032	Annual	Sep-20	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	N/A
		·		In	suficient Data t	for Trend Analys	sis		
		Aug-18	<2.0	<2.0	_	<2.0	<2.0	<2.0	N/A
		Mar-19	<2.0	<2.0		<2.0	<2.0	<2.0	N/A
		Jun-19	<2.0	<2.0		<2.0	<2.0	<2.0	N/A
DIA/ 027	Ouartarly	Oct-19	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	N/A
PW-037	Quarterly	Sep-20 Dec-20	<1.9	<1.9 <1.8	<1.9 <1.8	<1.9 <1.8	<1.9 <1.8	<1.9	N/A N/A
		Mar-21	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	N/A
		Jun-21	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	N/A
		Trend:	Stable	Stable	Stable	Stable	Stable	Stable	N/A
		Aug-18	<2.0	<2.0	_	<2.0	<2.0	<2.0	N/A
		Mar-19	<2.0	<2.0		<2.0	<2.0	<2.0	N/A
		Jun-19	<2.0	<2.0	_	<2.0	<2.0	<2.0	N/A
PW-038	Ouartarly	Oct-19 Sep-20	<1.8	<1.8 <1.9	<1.8	<1.8	<1.8	<1.8	N/A
F VV-030	Quarterly	Dec-20	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9 <1.9	N/A N/A
		Mar-21	<1.6	<1.6	<1.6	<1.6	<1.6	<1.6	N/A
		Jun-21	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	N/A
		Trend:	Stable	Stable	Stable	Stable	Stable	Stable	N/A
		Aug-18	<2.0	<2.0	_	<2.0	0.79 J	<2.0	0.79 J‡
		Mar-19	<2.0	<2.0	_	<2.0	<2.0	<2.0	N/A
		Jun-19	<2.0	<2.0	_	<2.0	<2.0	<2.0	N/A
DIA/ 000	O	Oct-19	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	N/A
PW-039	Quarterly	Sep-20 Dec-20	<1.9	<1.9 <1.8	<1.9 0.54 J	<1.9 <1.8	<1.9	<1.9	N/A N/A
		D€0-20	\1.0	\1.0	U.34 J	\1.0	~1.0		IN/A
		Mar-21	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	N/A
		Mar-21 Jun-21	<1.8 <1.9	<1.8 <1.9	<1.8 0.92 J	<1.8 <1.9	<1.8 <1.9	<1.8 <1.9	N/A N/A
		Jun-21	<1.9	<1.9	0.92 J	<1.9	<1.9	<1.9	N/A
		Jun-21 Trend:	<1.9 Stable	<1.9 Stable	0.92 J	<1.9 Stable	<1.9 N/A	<1.9 Stable	N/A N/A
		Jun-21 Trend: Aug-18 Mar-19 Jun-19	<1.9 Stable <2.0 <2.0 <2.0	<1.9 Stable <2.0 <2.0 <2.0	0.92 J N/A — —	<1.9 Stable <2.0 <2.0 <2.0	<1.9 N/A <2.0 <2.0 <2.0	<1.9 Stable <2.0 <2.0 <2.0	N/A N/A N/A N/A
		Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19	<1.9 Stable <2.0 <2.0 <2.0 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9	0.92 J N/A — — — — <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9	<1.9 N/A <2.0 <2.0 <2.0 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9	N/A N/A N/A N/A N/A N/A
PW-040	Quarterly	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9	0.92 J N/A — — — <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9	N/A N/A N/A N/A N/A N/A
PW-040	Quarterly	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8	0.92 J N/A <1.9 <1.8	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.9 <1.8	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8	N/A N/A N/A N/A N/A N/A N/A N/A N/A
PW-040	Quarterly	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	0.92 J N/A <1.9 <1.8 <1.7	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	N/A
PW-040	Quarterly	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1	0.92 J N/A <1.9 <1.9 <1.8 <1.7 <2.1	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1	N/A
		Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend:	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	0.92 J N/A <1.9 <1.8 <1.7	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7	N/A
PW-040 PW-047	Quarterly	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0	0.92 J N/A — — <1.9 <1.8 <1.7 <2.1 Stable —	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable	N/A
		Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend:	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0	0.92 J N/A — — <1.9 <1.8 <1.7 <2.1 Stable —	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable	N/A
		Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable <2.0	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0	0.92 J N/A — — <1.9 <1.8 <1.7 <2.1 Stable —	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analyse	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable <2.0	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0	N/A
		Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Aug-18 Mar-19 Jun-19	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <2.0	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 in <2.0 <2.0 <2.0	0.92 J N/A — — <1.9 <1.8 <1.7 <2.1 Stable — sufficient Data t	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 1.2 J 0.98 J <2.0	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <2.0 <4.20	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <2.0	N/A
PW-047	Annual	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Aug-18 Mar-19 Jun-19 Oct-19	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <2.1 Stable <2.0 <1.9 <1.9	0.92 J N/A — — <1.9 <1.8 <1.7 <2.1 Stable — sufficient Data t — — <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 1.2 J 0.98 J <2.0 1.1 J	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <1.9 Stable <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <1.7 <1.7 <1.7 Stable <1.7 <1.7 Stable <1.7 <1.7 Stable <1.7 Stable <1.9	N/A
		Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Aug-18 Mar-19 Jun-19 Oct-19 Sep-20	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.7 <2.1 Stable <2.0 <1.9 <1.7 <2.1 Stable <2.0 <1.9 <1.7 <2.1 Stable <2.0 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.19 <1.8 <1.7 <2.1 Stable <1.9	0.92 J N/A <1.9 <1.8 <1.7 <2.1 Stable sufficient Data 1 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 1.2 J 0.98 J <2.0 1.1 J 0.78 J	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <2.1 Stable <1.7 <2.1	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <2.1 Stable <1.7 <2.1 Stable <1.7 <2.1 Stable <1.9 <1.9	N/A
PW-047	Annual	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Dec-20	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.7 <2.1 Stable <2.0 <2.0 <2.0 <2.0 <2.0 <1.9 0.75 J	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 In <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <2.1 Stable <1.9 <1.9 <1.9	0.92 J N/A — — <1.9 <1.8 <1.7 <2.1 Stable — sufficient Data i — — <1.9 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 0.98 J <2.0 1.1 J 0.78 J 1.6 J	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.0 J	N/A
PW-047	Annual	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21	<1.9 Stable <2.0 <2.0 <1.9 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.7 <2.1 Stable <1.7 <1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <2.1 Stable <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	0.92 J N/A — — — — — — — — — — — — — Stable — — suficient Data t — — — — — — — — — — — — — — — — — — —	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 1.2 J 0.98 J <2.0 1.1 J 0.78 J 1.6 J 1.7	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 One of J	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <1.8 Stable <1.7 Stable <1.9 1.0 J 1.6 J	N/A
PW-047	Annual	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Jun-19 Jun-19 Jun-19 Jun-20 Jun-21 Jun-21	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.3 1.3 0.81 J	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <2.1 Stable <2.0 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	0.92 J N/A — — — — — — — — — — — — — — Stable — — sufficient Data t — — — — — — — — — — — — — — — — — — —	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 1.2 J 0.98 J <2.0 1.1 J 0.78 J 1.6 J 1.7 2.1	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.0 1.6 J 1.4 J	N/A
PW-047	Annual	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-19 Trend: Trend: Trend: Trend: Trend:	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 1.3 January 2.0 <2.0 <2.0 <2.0 <1.9 0.75 J 0.72 J 1.3 J 0.81 J Decreasing	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <1.8 <1.7 <2.1 Stable <1.7 <2.1 Stable <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	0.92 J N/A — — — — — — — — — — — — — Stable — — suficient Data t — — — — — — — — — — — — — — — — — — —	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 1.2 J 0.98 J <2.0 1.1 J 0.78 J 1.6 J 1.7 2.1 No Trend	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 Sis	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.0 1.4 J N/A	N/A
PW-047	Annual	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Jun-19 Jun-19 Jun-19 Jun-20 Jun-21 Jun-21	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 1.3 June 1.9 1.3 J 0.81 J Stable <2.0 C2.0 C2.0	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <1.8 1.7 <2.1 Stable <2.0 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	0.92 J N/A — — <1.9 <1.8 <1.7 <2.1 Stable — sufficient Data 1 — — <1.9 <1.9 1.1 J 1.3 J N/A	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 1.2 J 0.98 J <2.0 1.1 J 0.78 J 1.6 J 1.7 2.1	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.4	N/A
PW-047 PW-059	Annual	Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18 Mar-19 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Aug-18	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 1.3 January 2.0 <2.0 <2.0 <2.0 <1.9 0.75 J 0.72 J 1.3 J 0.81 J Decreasing	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.8 <1.7 <2.1 Stable <1.7 <2.1 Stable <1.7 <2.1 Stable <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 0.26 J 0.33 J N/A 1.3 J 0.82 J	0.92 J N/A — — <1.9 <1.8 <1.7 <2.1 Stable — sufficient Data 1 — — <1.9 <1.9 <1.19 <1.9 <1.9 <1.5 J	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 for Trend Analys 1.2 J 0.98 J <2.0 1.1 J 0.78 J 1.6 J 1.7 2.1 No Trend 1.3 J	<1.9 N/A <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9 <1.9	<1.9 Stable <2.0 <2.0 <2.0 <1.9 <1.8 <1.7 <2.1 Stable <2.0 <1.0 1.4 J N/A	N/A

Table 12 - Summary of Historical Water-Supply Well Selected PFAS Results and Trends

	Monitoring	Quarterly	PFBS	PFHpA	PFHxA	PFHxS	PFOA	PFOS	LHA Combined
ample Name	Network	Event	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
		Sep-18	3.4	3.7	-	37	3.1	92	95
	_	Dec-18	2.2 J	2.8 J*	<7.7 B*	23	<7.7 B*	98	98 B*‡
	_	Mar-19	2.7	2.5	-	26	2.8	76	79
	-	Jun-19	2.3 JL*	3.0 JL*	-	28 JL*	2.1 JL*	74 JL*	76 JL*
	POE,	Oct-19	2.0	3.4	9.9	30	2.5	130	133
PW-200	Quarterly	Aug-20	1.6 J	5.2	12	25	2.0	98	100
		Dec-20	0.84 J	1.7 J	3.3	7.6	1.1 J	50	51 J
	-	Mar-21	1.2 J*	3.8	7.4	12	1.3 J	60	61 J
	-	Jun-21	0.68 J	2.8	8.1	12	1.4 J	45	46 J
		Trend:	Decreasing	No Trend	Stable	Decreasing	Decreasing	Possibly	Possibl
		Sep-18	<2.0	<2.0		<2.0	<2.0	Decreasing <2.0	Decreasii N/A
	-	Mar-19	<2.0	<2.0		<2.0	<2.0	<2.0	N/A
	-								
	=	Jun-19	<2.0	<2.0		<2.0	<2.0	<2.0	N/A
DIA/ 202	Quartarly	Oct-19	<2.0	<2.0 <1.9	<2.0	<2.0	<2.0	<2.0 0.70 J	N/A
PW-203	Quarterly	Sep-20	<1.9		0.67 J	0.95 J	0.50 J		1.2 J
	=	Dec-20	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	N/A
	-	Mar-21	<1.7	<1.7	<1.7	0.90 J	<1.7	1.8	1.8 ‡
	-	Jun-21	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	N/A
		Trend:	Stable	Stable	N/A	N/A	N/A	N/A	N/A
	Removed,	Sep-18	<2.0	0.93 J	_	3.3	<2.0	5.4	5.4 ‡
PW-204	due to	Jun-19	<2.0	<2.0		2.4	<2.0	4.7	4.7 ‡
	replacement well	Sep-20	<1.9	0.47 J	0.97 J	3.2	0.75 J	6.1	6.9 J
						for Trend Analys			
PW-204.1	Quarterly	Jun-21	2.4	3.8	11	30 for Trend Analys	2.8	49	52
	Removed,	Jun-19	2.0	<2.0	Suncient Data	11	0.93 J	9.0	9.9 J
5144.005	due to				2.0				
PW-205	replacement -	Oct-19	1.4 J	0.63 J	3.0	10	0.76 J	10	11 J
	well			In		for Trend Analys	is		
PW-205.1	Quarterly	Jun-21	0.27 J	<2.1	0.78 J	1.5 J	<2.1	2.2	2.2 ‡
200.7	quartorry				suficient Data	for Trend Analys			
PW-207	Annual -	Jun-19	<2.0	<2.0	_	<2.0	1.0 J	<2.0	1.0 J‡
7 77 207				In	suficient Data	for Trend Analys	is		
	Removed,	Jun-19	<2.0	<2.0	_	2.5	0.80 J	8.4	9.2 J I
PW-208	due to replacement	Mar-21	0.33 JH*	<1.8	2.3	0.52 J	<1.8	1.6 J	1.6 J‡
	well			Ins	suficient Data	for Trend Analys	is		
		Sep-18	<2.0	3.3	_	1.1 J	15	9.1	24
	-	Oct-19	1.4 J	0.51 J	0.83 J	<1.9	1.0 J	1.0 J	2.0 J
	-	Aug-20	<1.9	<1.9	<1.9	<1.9	<1.9	0.65 J	0.65 J‡
PW-211	Quarterly	Dec-20	<1.9	<1.9	<1.9	<1.9	<1.9	0.60 J	0.60 J‡
	-	Mar-21	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	N/A
	-	Jun-21	<2.0	<2.0	<2.0	0.76 J	<2.0	<2.0	N/A
	-	Trend:	N/A	N/A	N/A	N/A	N/A	No Trend	No Tren
		Sep-18	<2.0	<2.0	_	<2.0	<2.0	<2.0	N/A
PW-212	Annual	Oct-19	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	N/A
	-			In:	suficient Data	for Trend Analys	is		
		Nov-18	<2.0	<2.0		<2.0	<2.0	<2.0	N/A
		1107-10					<1.9	<1.9	N/A
PW-218	Annual	Dec-20	<1.9	<1.9	<1.9	<1.9		~1.5	
PW-218	Annual		<1.9	<1.9			is	~1.5	
PW-218	Annual	Dec-20		<1.9		for Trend Analys			N/A
PW-218	Annual .	Dec-20 Sep-18	<2.0	<1.9 In:	suficient Data —	for Trend Analys	<2.0	<2.0	N/A 0.84 .H
PW-218	Annual -	Dec-20 Sep-18 Oct-19	<2.0 1.2 J	<1.9 In: <2.0 0.49 J	suficient Data — 0.74 J	for Trend Analys	<2.0 0.84 J	<2.0 <1.9	0.84 J‡
	-	Dec-20 Sep-18	<2.0	<1.9 In: <2.0 0.49 J <1.9	suficient Data — 0.74 J <1.9	<pre>for Trend Analys</pre>	<2.0 0.84 J <1.9	<2.0	
	-	Sep-18 Oct-19 Aug-20	<2.0 1.2 J <1.9	<1.9 In: <2.0 0.49 J <1.9 In:	under the sufficient Data 0.74 J <1.9 sufficient Data	for Trend Analys <2.0 <1.9 <1.9 for Trend Analys	<2.0 0.84 J <1.9	<2.0 <1.9 <1.9	0.84 J‡ N/A
	-	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18	<2.0 1.2 J <1.9	<1.9 In: <2.0 0.49 J <1.9 In: <2.0	suficient Data — 0.74 J <1.9	for Trend Analys <2.0 <1.9 <1.9 for Trend Analys <2.0	<2.0 0.84 J <1.9 is	<2.0 <1.9 <1.9	0.84 J‡ N/A N/A
	-	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19	<2.0 1.2 J <1.9 <2.0 <2.0	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <2.0 <2.0	suficient Data 0.74 J <1.9 suficient Data	 for Trend Analys <2.0 <1.9 <1.9 for Trend Analys <2.0 <2.0 	<2.0 0.84 J <1.9 is <2.0 <2.0	<2.0 <1.9 <1.9 <2.0 <2.0	0.84 J‡ N/A N/A N/A
	-	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <4.0 <4.0 <4.0 <4.0	suficient Data 0.74 J <1.9 suficient Data 0.87 J	<pre>for Trend Analys</pre>	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9	<2.0 <1.9 <1.9 <2.0 <2.0 <2.4	0.84 J‡ N/A N/A N/A 2.4 ‡
	-	Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0	suficient Data 0.74 J <1.9 sufficient Data 0.87 J <2.0	 for Trend Analys <2.0 <1.9 <1.9 for Trend Analys <2.0 <2.0 <2.1 0.86 J 	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9	<2.0 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡
PW-219	Annual - - - -	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.0	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.0	suficient Data 0.74 J <1.9 suficient Data 0.87 J <2.0 <2.0	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <2.0 <1.9 <2.0 <2.1	<2.0 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J	0.84 J; N/A N/A N/A 2.4 ‡ 1.5 J;
PW-219	Annual - - - -	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.9 <2.0 <1.8	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.8	suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.1 <1.8	<2.0 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 2.1 ‡
PW-219	Annual - - - -	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.8 <2.0	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.8 <2.0		for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0	<2.0 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡
PW-219	Annual - - - -	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend:	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.0 Stable	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.8 <2.0 Stable	suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.9 <2.0 Stable	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable
PW-219	Annual -	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18	<2.0 1.2 J <1.9 <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0	suficient Data 0.74 J <1.9 suficient Data 0.87 J <2.0 <2.0 0.52 J <2.0 N/A	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <1.9 <2.0 Stable 1.1 J	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡
PW-219	Annual - - - -	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend:	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.0 Stable	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <1.8	suficient Data 0.74 J <1.9 suficient Data 0.87 J <2.0 <2.0 0.52 J <2.0 N/A <1.8	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable
PW-219	Annual -	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <1.8 <2.0 Stable <2.0 <1.8	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0 <1.8 In:	suficient Data 0.74 J <1.9 suficient Data 0.87 J <2.0 <2.0 0.52 J <2.0 N/A <1.8	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡
PW-219 PW-221 PW-230	Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <1.8 <2.0 Stable <2.0 <1.8	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0 <1.8 In: <2.0 <2.0 <1.8 <2.0	0.74 J	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J
PW-219	Annual -	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <1.8 <2.0 Stable <2.0 <1.8	<1.9	0.74 J	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J
PW-219 PW-221 PW-230	Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <2.0 <1.8 <2.0 Stable <2.0 <1.8	<1.9	0.74 J	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡
PW-219 PW-221 PW-230 PW-240	Annual Quarterly Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <1.8 <2.0 Stable <2.0 <1.8	<1.9	suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J
PW-219 PW-221 PW-230	Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <2.0 <1.8 <2.0 Stable <2.0 <1.8	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0 <1.8 In: <2.0 In: In: <2.0 In:	suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡
PW-219 PW-221 PW-230 PW-240	Annual Quarterly Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <2.0 <1.8 <2.0 Stable <2.0 <1.8	<1.9	suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡
PW-219 PW-221 PW-230 PW-240	Annual Quarterly Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20 Nov-18	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0 <1.8 <2.0 <1.8	<1.9 In: <2.0 0.49 J <1.9 In: <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0 <1.8 In: <2.0 In: In: <2.0 In:	suficient Data 0.74 J <1.9 suficient Data 0.87 J <2.0 <2.0 0.52 J <2.0 N/A <1.8 suficient Data <1.9 suficient Data suficient Data suficient Data	for Trend Analys <2.0 <1.9 <1.9 for Trend Analys <2.0 <2.0 2.1 0.86 J 1.3 J 0.90 J 0.60 J Decreasing 1.2 J 0.71 J for Trend Analys 3.3 2.0 for Trend Analys 6.1 for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9 is	<2.0 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡
PW-219 PW-221 PW-230 PW-240	Annual Quarterly Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0 <1.8 <2.0 2.1.8	<1.9	suficient Data 0.74 J <1.9 suficient Data 0.87 J <2.0 <2.0 0.52 J <2.0 N/A <1.8 suficient Data <1.9 suficient Data suficient Data suficient Data	for Trend Analys <2.0 <1.9 <1.9 for Trend Analys <2.0 <2.0 2.1 0.86 J 1.3 J 0.90 J 0.60 J Decreasing 1.2 J 0.71 J for Trend Analys 3.3 2.0 for Trend Analys 6.1 for Trend Analys 18	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9 is 0.98 J is	<2.0 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J	0.84 J‡ N/A N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡ 3.9 J 41 J 38 J
PW-219 PW-221 PW-230 PW-240	Annual Quarterly Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8	<1.9	suficient Data 0.74 J <1.9 suficient Data 0.87 J <2.0 <2.0 0.52 J <2.0 N/A <1.8 suficient Data <1.9 suficient Data suficient Data suficient Data suficient Data suficient Data suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable 1.1 J 1.0 J is 0.98 J is 1.4 J 1.6 J	<2.0 <1.9 <1.9 <2.0 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J 2.9	0.84 J‡ N/A N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡ 3.9 J 41 J 38 J 31 B*‡
PW-219 PW-221 PW-230 PW-240	Annual Quarterly Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8	<1.9	suficient Data 0.74 J <1.9 suficient Data 0.87 J <2.0 <2.0 0.52 J <2.0 N/A <1.8 suficient Data <1.9 suficient Data suficient Data suficient Data suficient Data suficient Data suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9 is <2.0 <1.9 is	<2.0 <1.9 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J 2.9	0.84 J‡ N/A N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡ 3.9 J 41 J 38 J 31 B*‡
PW-219 PW-221 PW-230 PW-240	Annual Quarterly Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-18 Oct-18 Mar-19 Jun-19	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <2.1 <1.8 <2.0 <1.8 <2.0 <1.9 <2.1 <1.9 <2.0 <1.9	<1.9	suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9 is <2.0 <1.9 is	<2.0 <1.9 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J 2.9	0.84 J‡ N/A N/A N/A 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡ 3.9 J 41 J 38 J 31 B*‡ 43 B*‡
PW-219 PW-221 PW-230 PW-240 PW-241	Annual Annual Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-19 Oct-18 Oct-18 Oct-19	<2.0 1.2 J <1.9 <2.0 <2.0 <1.9 <2.0 <2.0 <1.8 <2.0 Stable <2.0 <1.8 <2.0 1.8 <2.0 1.8 <1.9	<1.9	Suficient Data	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9 is <2.0 <1.9 is <1.0 J is <1.9 is 0.98 J is 1.4 J 1.6 J <2.0 B* <1.4 J	<2.0 <1.9 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J 2.9 40 36 31 43 45	0.84 J‡ N/A N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡ 3.9 J 41 J 38 J 31 B*‡ 43 B*‡ 46 J
PW-219 PW-221 PW-230 PW-240 PW-241	Annual Annual Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-20 Oct-18 Sep-20 Dec-20 Nov-18 Sep-20 Dec-20 Dec-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 <1.8 <2.0 <1.8 <2.0 1.8 <2.0 1.8 <2.0 1.8 <2.0 <1.9 <2.0 <1.9 <2.0 <1.9 <2.0	<1.9	0.74 J	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <2.1 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9 is <2.0 <1.9 is <1.4 J 1.6 J <2.0 B* <2.0 B* 1.4 J 0.51 J	<2.0 <1.9 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J 2.9 40 36 31 43 45 38	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡ 3.9 J 41 J 38 J 31 B*‡ 46 J 39 J
PW-219 PW-221 PW-230 PW-240 PW-241	Annual Annual Annual	Dec-20 Sep-18 Oct-19 Aug-20 Nov-18 Jun-19 Oct-19 Sep-20 Dec-20 Mar-21 Jun-21 Trend: Oct-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-20 Nov-18 Sep-19 Oct-19 Sep-20 Sep-20	<2.0 1.2 J <1.9 <2.0 <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable <2.0 <1.8 <2.0 1.8 <2.1 1.8 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0	<1.9	0.74 J	for Trend Analys	<2.0 0.84 J <1.9 is <2.0 <2.0 <1.9 <2.0 <1.8 <2.0 Stable 1.1 J 1.0 J is <2.0 <1.9 <2.0 5 table 1.1 J 1.0 J	<2.0 <1.9 <1.9 <1.9 <2.0 <2.0 2.4 1.5 J 1.7 J 2.1 0.97 J Stable <2.0 0.68 J <2.0 1.8 J 2.9 40 36 31 43 45 38 30	0.84 J‡ N/A N/A N/A 2.4 ‡ 1.5 J‡ 1.7 J‡ 2.1 ‡ 0.97 J‡ Stable 1.1 J‡ 1.7 J n/a 1.8 J‡ 3.9 J 41 J 38 J 31 B*‡ 46 J 39 J 31 J

Table 12 - Summary of Historical Water-Supply Well Selected PFAS Results and Trends

Sample Name	Monitoring Network	Quarterly Event	PFBS ng/L	PFHpA	PFHxA	PFHxS ng/L	PFOA	PFOS	LHA Combined † ng/L
Sample Name	Network		<u> </u>			2.1		<u> </u>	<u> </u>
		Jun-19	<2.0	<2.0		2.1	<2.0	2.3	2.3 ‡
PW-414	Annual	Sep-20	<1.9	<1.9	<1.9	0.74 J	<1.9	1.2 J	1.2 J‡
				In	suficient Data f	or Trend Analys	sis		
		Jun-19	<2.0	0.81 J	_	7.7	<2.0	14	14 ‡
PW-419	Quarterly	Sep-20	<1.9	<1.9	0.54 J	1.9	<1.9	3.4	3.4 ‡
PVV-419	Quarterly	Jun-21	<2.0	<2.0	<2.0	0.93 J	<2.0	1.5 J	1.5 J‡
	-			In	suficient Data f	or Trend Analys	sis		
PW-438	Annual	Aug-20	<1.9	<1.9	0.52 J	1.9	<1.9	3.7	3.7 ‡
FVV-430	Annual			In	suficient Data f	or Trend Analys	sis		
	Removed,	Jun-19	1.6 J	2.1	_	18	1.8 J	48	50 J
PW-462	due to well	Sep-20	0.74 J*	2.0 J*	4.9 J*	13 J*	0.99 J*	68 J*	69 J*
	category			In	suficient Data f	or Trend Analys	sis		

Notes: Table includes the results of Mann-Kendall nonparametric trend analysis with Monitoring and Remediation Optimization System (MAROS) classification.

Trend analyses requires at least four samples for the data set in order to provide a meaningful statistical assessment. Sample locations with less than four data points are omitted from statistical analysis.

Sample locations with greater than or equal to 50 percent non-detect results are omitted form statistical analysis.

ng/L nanograms per liter, equivalent to parts per trillion

PFBS perfluorobutanesulfonic acid

PFHpA perfluoroheptanoic acid

PFHxA perfluorohexanoic acid

PFHxS perfluorohexanesulfonic acid

PFOA perfluorooctanoic acid

PFOS perfluorooctane sulfonic acid

- † U.S. Environmental Protection Agency (EPA) Lifetime Health Advisory (LHA) level is 70 ng/L for PFOS and PFOA combined.
- < Analyte was not detected; reported as < the laboratory reporting limit (RL)
- Analyte not requested
- J Estimated concentration, detected greater than the detection limit (DL) and less than the limit of quantitation (LOQ). Flag applied by the laboratory.
- J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.
- JL* Estimated concentration, biased low due to quality control failures. Flag applied by Shannon & Wilson, Inc.
- JH* Estimated concentration, biased high due to quality control failures. Flag applied by Shannon & Wilson, Inc.
- B* Result is considered not detected due to quality control failures; see checklist for details. Flag applied by Shannon & Wilson, Inc.
- Not applicable. The LHA Combined concentration could not be calculated because PFOS and PFOA were not detected in the project sample or there is insufficient data or a lack of quantifiable results (less than 50 percent) from which to conduct a Mann-Kendall analysis.
- ‡ Minimum concentration, the LHA Combined concentration includes one or more result that is not detected greater than the MDL.

Table 13 - Summary of Historical Monitoring Well Selected PFAS Results and Trends

		PFBS	PFHpA	PFHxA	PFHxS	PFNA	PFOA	PFOS	LHA Combin
Sample Name	Quarterly Event	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Jampio Itamo	Oct-19	<1.8	<1.8	<1.8	1.1 J	<1.8	<1.8	<1.8	N/A
	Aug-20	0.33 J	<1.7	<1.7	<1.7 B*	<1.7	<1.7	<1.7	N/A
	Dec-20	0.20 J	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	N/A
MW-1-15	Mar-21	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	N/A
	Jun-21	<1.7	<1.7	<1.7	0.61 J	<1.7	<1.7	1.4 J	1.4 J
	Trend:	N/A	Stable	Stable	N/A	Stable	Stable	N/A	N/A
	Oct-19	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	N/A
	Aug-20	<1.7	<1.7	<1.7	<1.7 B*	<1.7	<1.7	<1.7	N/A
MW-1-40	Dec-20	<1.8	<1.8	<1.8	1.1 J	<1.8	<1.8	0.56 J*	0.56 J
	Mar-21	<1.7	<1.7	<1.7	0.68 J	<1.7	<1.7	<1.7	N/A
	Jun-21	<1.8	<1.8	<1.8	0.68 J	<1.8	<1.8	<1.8	N/A
	Trend:	Stable	Stable	Stable	Decreasing	Stable	Stable	N/A	N/A
	Oct-19	<1.9	0.95 J	4.6	3.9	<1.9	1.5 J	3.8	5.3
	Sep-20	3.0	37	84	32	4.0	36	260	296
MW-2-20	Dec-20	9.5	54	63	64	4.0	67	250	317
	Mar-21	2.4	26	31	100	4.0	78	250	328
	Jun-21	2	27	48	120	15	32	450	482
	Trend:	Stable	No Trend	Stable	Increasing	Increasing	No Trend	Stable	Increas
	Oct-19	1.5 J	<1.8	<1.8	1.4 J	<1.8	<1.8	<1.8	N/A
	Sep-20	1.3 J	<1.7	<1.7	<1.7 B*	<1.7	<1.7	<1.7	N/A
1414/ 0.20	Dec-20	1.4 J	0.70 J	<1.8	<1.8	0.48 J	1.4 J	<1.8	1.4 .
MW-2-30	Mar-21	0.91 J	<1.8	<1.8	0.54 J	<1.8	<1.8	<1.8	N/A
	Jun-21	1.2 J	<1.8	0.60 J	<1.8	<1.8	<1.8	<1.8	N/A
	Trend:	Stable	N/A	N/A	N/A	N/A	N/A	Stable	N/A
	Oct-19	<1.8	<1.8	<1.8	3.7	<1.8	<1.8	9.5	9.5
	Sep-20	0.57 J	0.44 J	1.0 J	4.5	<1.7	<1.7	6.7	6.7
	 Dec-20	1.2 J	2.7	5.1	3.6	<1.8	0.94 J	5.1	6.0
MW-3-15	Mar-21	0.24 J*	<1.7 J*	0.87 J*	1.9 J*	<1.7 J*	<1.7 J*	3.1 J*	3.1
	Jun-21	<1.7	<1.7	0.62 J	1.9 J	<1.7	<1.7	2.0	2.0
							N/A		
	Trend:	Stable	N/A	Stable	Decreasing	Stable		Decreasing	Decrea
	Oct-19	3.2	1.1 J	5.3	32	<1.9	2.8	9.0 J*	11 .
	Sep-20	1.9	0.63 J	2.9	19	<1.7	2.2	12	14
MW-3-40	Dec-20	1.2 J	0.43 J	1.6 J	14	<1.8	1.3 J	13 J*	14 .
	Mar-21	0.93 J	<1.7	2.4	17	<1.6	1.7	13	15
	Jun-21	1.1 J	0.43 J	2.1	15	<1.7	1.5 J	15	17
	Trend:	Decreasing	Stable	Stable	Stable	Stable	Stable	Increasing	Increa
	Oct-19	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	N/A
	Sep-20	0.32 J	0.28 J	<1.7	<1.7 B*	<1.7	<1.7	<1.7	N/A
1414/ 4 20	Dec-20	0.46 J*	<1.8	<1.8	0.65 J	<1.8	<1.8	<1.8	N/A
MW-4-20	Mar-21	<1.7	<1.7	<1.7	0.50 J	<1.7	<1.7	<1.7	N/A
	Jun-21	0.19 J	<1.7	<1.7	0.63 J	<1.7	<1.7	<1.7	N/A
	Trend:	Stable	N/A	Stable	Decreasing	Stable	Stable	Stable	N/A
	Oct-19	0.31 J	<1.9	<1.9	3.1	<1.9	<1.9	<1.9	N/A
	Sep-20	0.29 J	0.22 J	0.76 J	<1.7 B*	<1.7	<1.7	2.0	2.0
	Jan-21	0.44 J	<1.8	<1.8	1.3 J	<1.8	1.0 J	1.7 J	2.7
MW-5-20	Mar-21	0.45 J	<1.7	0.89 J	1.4 J	0.65 J	0.87 J	2.7	3.6
	Jun-21	0.45 J	0.96 J	2.1	2.8	0.51 J	2.1	3.5	5.6
	-	Probably					2.1		3.0
	Trend:	Increasing	N/A	No Trend	Stable	N/A	Stable	No Trend	Increa
	Oct-19	<1.9	<1.9	<1.9	2.9	<1.9	<1.9	<1.9	N/A
	Sep-20	0.30 J	<1.7	<1.7	<1.8 B*	<1.7	<1.7	0.91 J	0.91
	Jan-21	0.37 J	0.29 J*	<1.7	2.7	<1.8	<1.8	1.3 J*	1.3 J
MW-6-20	Mar-21	0.37 J*	<1.8 J*	<1.8 J*	1.0 J*	<1.8	<1.8	1.5 J*	1.5 J
	Jun-21	<1.7	<1.7	<1.7	1.0 J	<1.7	<1.7	<1.7	N/A
	Trend:	Stable	N/A	Stable	Stable	Stable	Stable	No Trend	No Tr
	Oct-19	0.35 J	0.56 J	1.1 J	1.5 JH*	<1.9	1.4 J	1.3 J	2.7
	Sep-20	0.45 J	0.84 J	1.2 J	<1.7 B*	<1.7	2.7	3.9	6.6
MW-7-20	Dec-20	0.43 J	0.91 J	1.2 J	1.1 J	<1.9	1.3 J	4.8	5.9
	Mar-21	<1.7	1.0 J	1.3 J	0.98 J	<1.7	2.3	5.0	7.3
	Jun-21	0.46 J	0.96 J	1.2 J	1.0 J	<1.8	6.7	6.2	13
	Trend:	No Trend	Increasing	No Trend	Stable	Stable	No Trend	Increasing	Increa
	Oct-19	<1.9	<1.9	<1.9	<1.9 B*	<1.9	<1.9	0.81 J	0.81
	Sep-20	<1.7	<1.7	<1.7	<1.7 B*	<1.7	<1.7	<1.7	N/A
MW-8-20	Jan-21	<1.7	<1.7	<1.7	0.62 J	<1.7	<1.7	<1.7	N/A
1V1 V V - O- 2U	Mar-21	<1.8 J*	<1.8 J*	<1.8 J*	0.57 J*	<1.8 J*	<1.8 J*	<1.8 J*	N/A
	Jun-21	<1.7	0.23 J	<1.7	0.49 J	<1.7	<1.7	<1.7	N/A
	Trend:	Stable	N/A	Stable	Decreasing	Stable	Stable	N/A	N/A
	Oct-19	1.2 J	2.2	5.5	15 B	<1.9	1.5 J	97	99
	Sep-20	1.6 J	6.0	16	23	<1.7	2.3	88	90
	Dec-20	0.66 J	2.0	4.6	11	<1.8	1.0 J	92	93
MW-9-30	Mar-21	1.2 J	3.0	8.9	15	<1.8	1.0 J	97	98
	Jun-21	0.79 J	3.2	7.0	15	<1.8	1.1 J	95	96
	Trend:	Stable	No Trend	Stable	Stable	Stable	Stable	No Trend	Stab
	Oct-19	0.75 J	2.3	5.6	12	<1.9	1.2 J	49	50
		0.64 J	4.5	11	13	0.42 J	2.6	140	143
	Sep-20								
MW-10-20	Sep-20 Jan-21	0.42 J	1.8	5.3	5.4	<1.8	<1.8	39	39 :
MW-10-20			1.8 4.8	5.3 16 J*	5.4 17 J*	<1.8 <1.7	<1.8 1.9	39 37 J*	39 ±
MW-10-20	Jan-21	0.42 J							

Table 13 - Summary of Historical Monitoring Well Selected PFAS Results and Trends

Sample Name	Quarterly Event	PFBS ng/L	PFHpA ng/L	PFHxA ng/L	PFHxS ng/L	PFNA ng/L	PFOA ng/L	PFOS ng/L	LHA Combined † ng/L
	Oct-19	1.3 J	4.8	18	12 B	1.0 J	1.9	39	41
	Sep-20	2.2	7.0	27	15	1.4 J	2.4	76	78
MW-11-15	Dec-20	35	19	180	830	2.2	92	6,100	6,192
10100-11-15	Mar-21	1.4 J	3.0	15	20	0.62 J	2.2	210	212
	Jun-21	1.0 J	3.0	18	13	0.88 J	2.1	140	142
	Trend:	No Trend	Stable	No Trend	No Trend	Stable	No Trend	No Trend	No Trend
	Oct-19	3.1	10	17	52 B	0.83 J	8.4	180	188
	Sep-20	1.8	15	17	52	0.97 J	9.8	210	220
	Dec-20	0.71 J	15	13	31	2.6	9.5	100	110
MW-12-10	Mar-21	0.52 J	3.8	4.8	9.4	0.64 J	2.9	36	39
	Jun-21	0.61 J	5.5	5.6	14	0.66 J	2.6	50	53
	Trend:	Stable	Stable	Probably Decreasing	Probably Decreasing	Stable	Stable	Stable	Stable

Notes: Table includes the results of Mann-Kendall nonparametric trend analysis with Monitoring and Remediation Optimization System (MAROS) classification.

Trend analyses requires at least four samples for the data set in order to provide a meaningful statistical assessment. Sample locations with less than four data points are omitted from statistical analysis.

Sample locations with greater than or equal to 50 percent non-detect results are omitted form statistical analysis

ng/L nanograms per liter, equivalent to parts per trillion

PFBS perfluorobutanesulfonic acid

PFHpA perfluoroheptanoic acid

PFHxA perfluorohexanoic acid
PFHxS perfluorohexanesulfonic acid

PFNA perfluorononanoic acid

PFOA perfluorooctanoic acid

PFOS perfluorooctane sulfonic acid

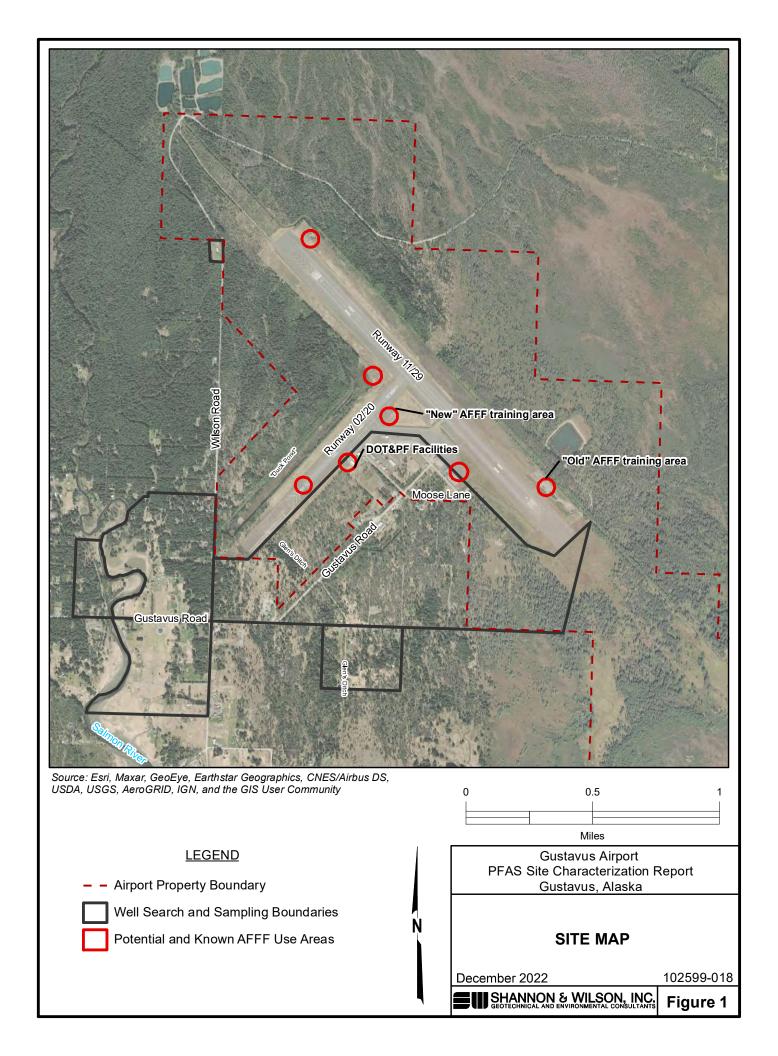
† U.S. Environmental Protection Agency (EPA) Lifetime Health Advisory (LHA) level is 70 ng/L for PFOS and PFOA combined.

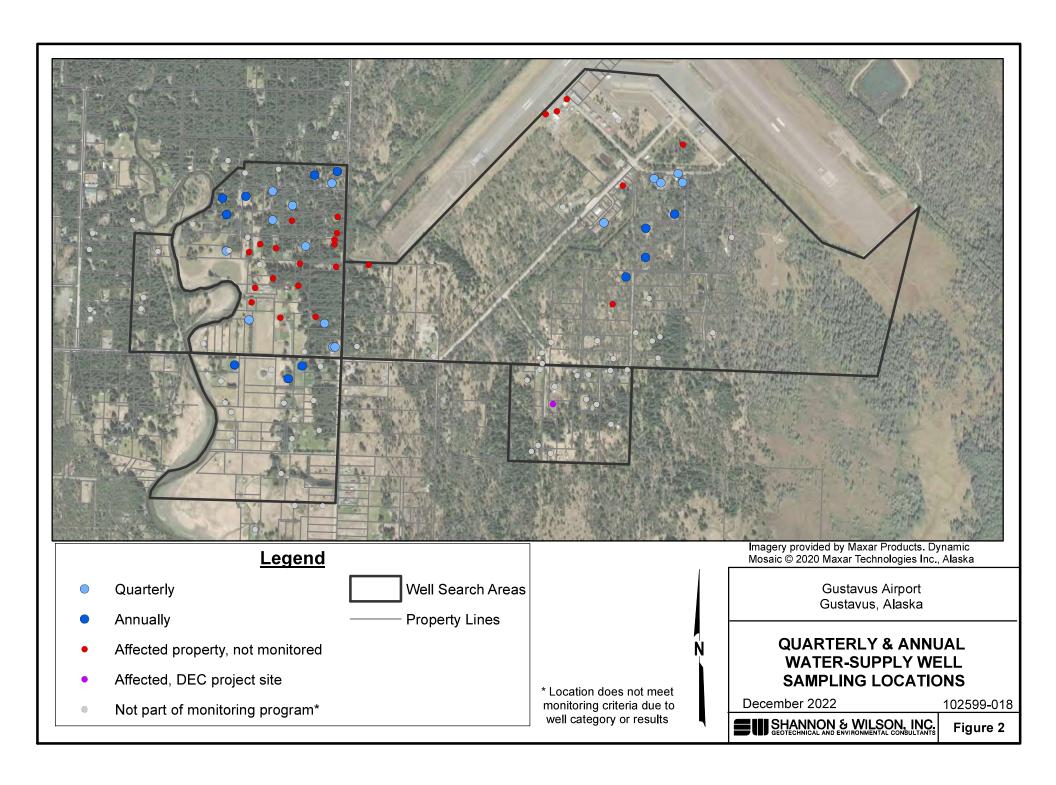
Analyte was not detected; reported as < the laboratory reporting limit (RL)

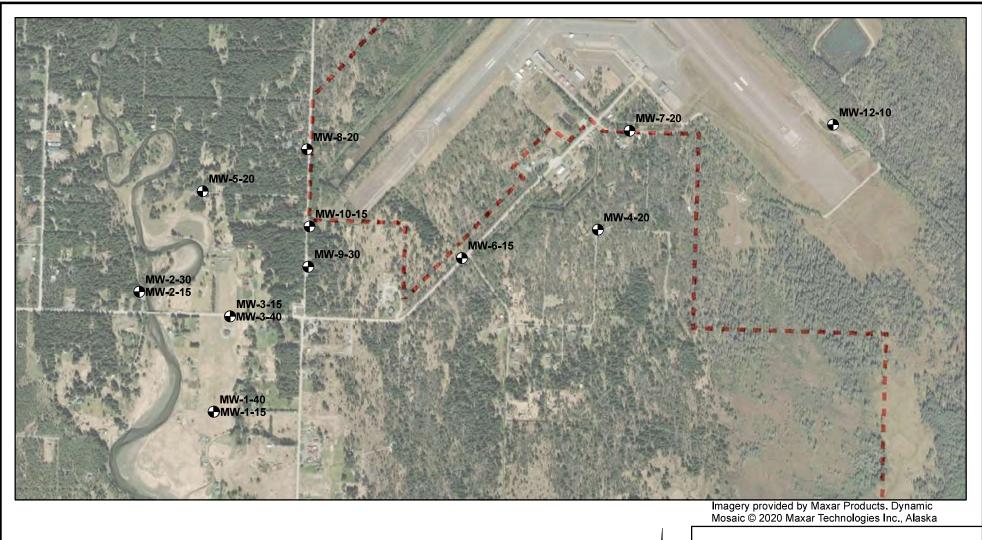
Analyte not requested

J Estimated concentration, detected greater than the detection limit (DL) and less than the limit of quantitation (LOQ). Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc.


JL* Estimated concentration, biased low due to quality control failures. Flag applied by Shannon & Wilson, Inc.


JH* Estimated concentration, biased high due to quality control failures. Flag applied by Shannon & Wilson, Inc.


B* Result is considered not detected due to quality control failures; see checklist for details. Flag applied by Shannon & Wilson, Inc.

/A Not applicable. The LHA Combined concentration could not be calculated because PFOS and PFOA were not detected in the project sample or there is insufficient data or a lack of quantifiable results (less than 50 percent) from which to conduct a Mann-Kendall analysis.

‡ Minimum concentration, the LHA Combined oconcentration includes one or more result that is not detected greater than the MDL.

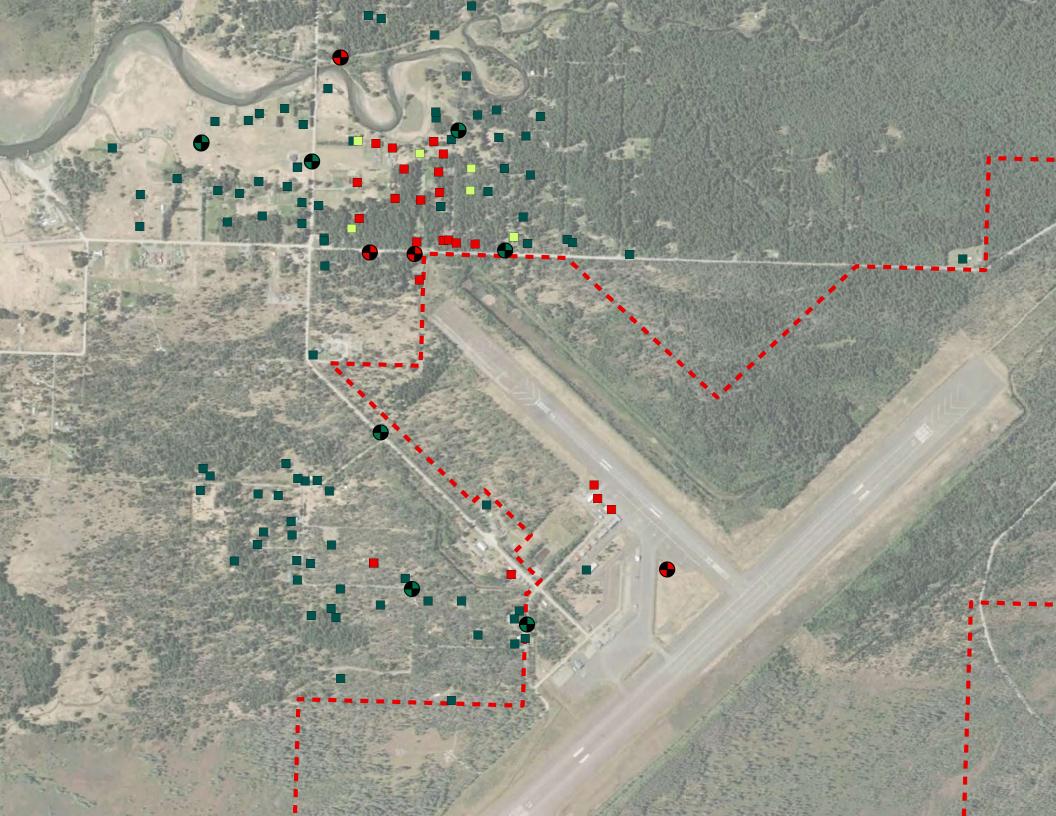
Legend

Monitoring well

Airport Property Boundary

Gustavus Airport Gustavus, Alaska

MONITORING WELL LOCATIONS


December 2022

102599-018

SHANNON & WILSON, INC.

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

Figure 3

Appendix A

Field Notes

CONTENTS

- Residential Well Sampling Logs and Private Well Inventory Survey Forms
- Monitoring Well Sampling Logs

Redacted for Privacy

Appendix B

Public Information

CONTENTS

- Results Letter Template
- Gustavus Airport PFAS Fact Sheet

January 20, 2021

Full Name/s
Mailing Address
Gustavus, AK 99826

RE: RESULTS OF DECEMBER 2020/JANUARY 2021 PFAS PRIVATE WELL SAMPLING, GUSTAVUS AIRPORT

Dear Mr. and Ms. Name,

Thank you for participating in our private-well sampling program to evaluate the potential presence of per- and polyfluoroalkyl substances (PFAS) in groundwater near the Gustavus Airport. Shannon & Wilson, Inc. collected a water sample on December , 2020, from the well at your residence/business. Enclosed are the analytical results for the sample from your residential/commercial water-supply well at PHYSICAL ADDRESS. We have prepared an identical letter for your tenant/s NAME.

The well-water sample was analyzed for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and other PFAS compounds. We compare these concentrations to the U.S. Environmental Protection Agency's (EPA) health advisory level for drinking water. The lifetime health advisory level is 70 parts per trillion (ppt) for the sum of PFOS and PFOA. Please note that these units are equivalent to nanograms per liter (ng/L).

Results of the analysis conducted by TestAmerica Laboratories, Inc. indicate that PFOS was not/was detected at X ppt, and PFOA was not/was detected at X ppt in the water sample from your well. The sum of these PFOS and PFOA concentrations is less than the lifetime health advisory level. The portions of the original laboratory report that apply to your well (sample number XXXXXX and field-duplicate sample XXXXXX) are enclosed for your records.

The Alaska Department of Transportation and Public Facilities (DOT&PF) is providing an alternate source of drinking water to the occupants of homes and businesses whose well water exceeds the health advisory level, and who use their water for drinking or cooking.

Name/s Business Name January 20, 2021

Page 2

We sampled over 116 private water-supply wells near the Gustavus Airport on behalf of DOT&PF. Please see the enclosed PFAS fact sheet for a link to the DOT&PF project website, as results are received, we will update the website map. Feel free to contact us if you have questions regarding your results.

Sincerely,

SHANNON & WILSON, INC.

Amber Masters Environmental Scientist

Enc: Select Pages of Test America Laboratory Report No. 320-68521-1

PFAS Fact Sheet - Gustavus Airport

Department of Transportation and Public Facilities

STATEWIDE AVIATION

P.O. Box 196900, 99519-6900 4111 Aviation Avenue, 99502 Anchorage, AK Main: 907.269.0730 Fax: 907.269.0489 dot.state.ak.us

PFAS Fact Sheet – Gustavus Airport

June 2021

Per- and polyfluoroalkyl substances (PFAS) are a group of manmade chemicals used for a wide variety of residential, commercial, and industrial uses. PFAS are considered emerging environmental contaminants and the health effects are not well known.

The presumed source of PFAS in groundwater in your community is the use of a fire-fighting foam called aqueous film forming foam (AFFF). Airport firefighters used the foam to extinguish petroleum fires during training exercises and emergency events.

The Alaska Department of Transportation & Public Facilities (DOT&PF) has tested 120 private water-supply wells starting in August 2018. Private wells on airport property and wells along and off the southern portion of Wilson Road were found to be impacted.

The DOT&PF has hired Shannon & Wilson to test private wells for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). The U.S. Environmental Protection Agency (EPA) lifetime health advisory (LHA) level for drinking water is 70 parts per trillion for the sum of PFOS and PFOA.

We advise residents with test results above this level not to use their water for drinking or cooking. If your well is considered affected, you can continue to shower, clean, and do laundry.

Test results are typically available within three to four weeks of sample collection. If your well is found to have PFAS above the EPA LHA, DOT&PF will assist with access to an alternate source of drinking water.

For results and sampling area map:

www.dot.alaska.gov/airportwater/gustavus

For questions about well testing:

Shannon & Wilson, Inc. Kristen Freiburger, Project Manager

Phone: 907-458-3146 Email: krf@shanwil.com

For regulatory questions:

Dept. of Environmental Conservation Erin Gleason, Contaminated Sites Program

Phone: 907-269-7556

Email: erin.gleason@alaska.gov

For questions about PFAS and health:

Dept. of Health & Social Services Sarah Yoder, Public Health Scientist

Phone: 907-269-8054

Email: sarah.yoder@alaska.gov

To arrange your next water delivery:

Jarred Mitrea

Phone: 559-515-3680

To file an insurance claim:

Dept. of Admin., Risk Management Scott Jordan, Risk Assessor

Phone: 907-465-2183

Email: scott.jordan@alaska.gov

For questions about fire training and other inquiries:

DOT&PF - Statewide Aviation Sammy Cummings, Project Manager

Phone: 907-888-5671

Email: <u>airportwater@alaska.gov</u>

Appendix C

Analytical Results

CONTENTS

- Quality Control / Quality Assurance Summary
- SGS Laboratory Reports and LDRCs
 - **1204821**
 - **1204822**
 - **1210031**
 - **1210032**
 - **1211330**
 - **1211331**
 - **1213677**
 - **1213682**
- Eurofins Laboratory Reports and LDRCs
 - **320-64367**
 - 320-64368
 - **320-64370**
 - 320-68519
 - **320-68521**
 - **320-68522**
 - **320-71796**
 - **320-71798**
 - **320-71800**
 - **320-75574**
 - **320-75575**
 - **320-75577**

ACROYNMS

°C degrees Celsius

BTEX benzene, toluene, ethylbenzene, and xylenes

COC chain-of-custody

DEC Alaska Department of Environmental Conservation

DRO diesel range organics
DQO data quality objective
GRO gasoline range organics

HFPO-DA hexafluoropropylene oxide dimer acid

IDA isotope dilution analysis LCS laboratory control samples

LCSD LCS duplicate

LDRC Laboratory Data Review Checklist

LOD limit of detection
LOQ limit of quantitation
MB method blank

MS matrix spike
MSD MS duplicate

PAH polycyclic aromatic hydrocarbons PFAS per- and polyfluoroalkyl substances

PFBS perfluorobutanesulfonic acid

PFDA perluorodecanoic acid
PFDoA perluorododecanoic acid
PFHpA perfluoroheptanoic acid
PFHxA perfluorohexanoic acid

PFHxS perfluorohexanesulfonic acid

PFOA perfluorooctanoic acid

PFOS perfluorooctane sulfonic acid PFTrDA or PFTriA perfluorotridecanoic acid PFUnA perfluoroundecanoic acid

QA quality assurance
QC quality control
RL reporting limit

RPD relative percent difference RRO residual range organics SGS SGS North America, Inc.

TB trip blank
WO work order

QA/QC SUMMARY

Quality Assurance/Quality Control (QA/QC) procedures assist in producing data of acceptable quality and reliability. Shannon & Wilson reviewed the analytical results for laboratory QC samples and conducted a QA assessment for this project. Staff reviewed the chain-of-custody records and laboratory-receipt forms to verify custody was not breached, sample holding-times were met, and the samples were properly handled from the point of collection through analysis by the laboratory. QA review procedures document the accuracy and precision of the analytical data, as well as check the analyses were sufficiently sensitive to detect analytes at levels below regulatory standards.

Please note, the laboratory applies the flag 'J' to a detection reported less than the reporting limit but greater than the detection limit; this "flagged" datum is considered an estimated concentration. Qualified environmental staff reviewed the data using the current DEC laboratory data review checklist (LDRC) and applied standardized qualifiers to any result found to have been affected by a QC issue. Unless rejected, a qualified result is considered usable data. During the QC review, flags were applied to indicate estimated data or analytical bias, as applicable.

Our summary below provides details regarding QA/QC failures that resulted in flags being applied to the data set. For further details of failures not resulting in flags, please refer to the LDRCs.

SAMPLE HANDLING

Monitoring well samples are collected following stabilization of parameters, as noted in Section 2.1 or once three well volumes have been purged. The following samples were collected prior to full stabilization.

■ Eurofins 320-71798: per- and polyfluoroalkyl substances (PFAS) samples *MW-3-15* and *MW-8-20* were collected prior to full stabilization. The sample results are considered estimated, flagged with a 'J' for detected results and a 'UJ' for non-detect results.

Our water-supply well sampling protocols describe sampling directly from the homes plumbing system to prevent PFAS contamination not associated with the drinking-water system. However, samples *PW-465* and *PW-565* associated with Eurofins 320-71797 were collected through a hose due to plumbing repairs at the time. Detected results have been flagged 'J' as estimated for a deviation from the sampling method.

Coolers containing water samples were shipped via Alaska Goldstreak to the laboratories to perform the analyses noted on the chain-of-custody (COC). The coolers with water samples

contained a temperature blank to measure whether samples were kept appropriately cold. Lab personnel measured the temperature blank at the time the samples arrived at each of their facilities; the temperature blank was recorded within the proper temperature range upon arrival at the laboratories, with the following exception.

SGS North America, Inc. (SGS) work order (WO) 1210031: the sample cooler was measured at 7.6 degrees Celsius (°C) and the associated gasoline range organics (GRO), diesel range organics (DRO), residual range organics (RRO), benzene, toluene, ethylbenzene, and xylenes (BTEX) and polyaromatic hydrocarbon (PAH) results are considered affected. Results are considered estimated, biased low due to the aboverange cooler temperature. Detected results are flagged 'JL' and non-detect results are flagged 'UJ' unless flagged due to other QC failures.

Our review of COC records and laboratory sample-receipt documents did not reveal sample-handling anomalies that would affect the quality or usability of the data, and the samples were processed within the appropriate method holding times. Data is considered usable with the flags noted above.

ANALYTICAL SENSITIVITY

Shannon & Wilson compared groundwater-sample limits of detection (LODs) for SGS data and reporting limits (RLs) for Eurofins data to the DEC regulatory levels. For groundwater data, LODs and RLs were less than DEC-established cleanup or action levels, where applicable, with the following exceptions.

 The LODs for analyte 1,2,3-trichloropropane is reported above the DEC regulatory limit for SGS WO 1204821.

PFAS analysis uses isotope dilution method for analysis. This analytical technique requires the observation of the transition mass ratios. The ratios associated with PFAS analysis were within limit for the project data set with the following exceptions.

- Eurofins 320-68519: the following analytes for the listed samples are considered estimated and flagged 'J' in the associated data tables due to transition mass ratios outside of laboratory limits: perfluorooctane sulfonic acid (PFOS) results for samples MW-1-40, MW-3-40, and MW-6-20 / MW-106-20; perfluoroheptanoic acid (PFHpA) results for MW-106-20; and perfluorobutanesulfonic acid (PFBS) results for MW-4-20.
- Eurofins 320-71796: the transition mass ratio was outside of established ratio limits for PFBS for sample *PW-208*. The laboratory noted a potential for high bias; therefore, this analyte has been flagged with a 'JH' in the analytical tables.

- Eurofins 320-71800: the transition mass ratio was outside of established limits for PFBS for sample PW-200. The laboratory noted a potential for high bias; therefore, this analyte has been flagged with a 'JH' in the analytical tables.
- Eurofins 320-75575: the transition mass ratio was outside of established ratio limits for PFHpA for sample PW-401. The laboratory noted a potential for high bias; therefore, this analyte has been flagged with a 'JH' in the analytical tables.

The laboratory analyzes a method blank (MB) with each sample batch to provide information regarding potential for analyte carryover during analysis. Project analytes were not detected in the MBs associated with the project WOs with the following exceptions.

- Eurofins 320-64368: perfluorohexanesulfonic acid (PFHxS) was detected below RL in the MB affecting samples MW-1-15, MW-1-40/ MW-1-140, MW-2-30, MW-4-20, MW-5-20, MW-6-20/ MW-6-120, MW-7-20, and MW-8-20/ MW-8-120. PFHxS results for these samples are considered not-detected due to sample contamination identified in the MB and are flagged 'UB' at the RL or detected concentration, whichever is greater.
- SGS 1210031: DRO and RRO were detected below the limit of quantitation (LOQ) in the MB. Results for samples *MW-11-15*, *MW-12-10*, and *MW-112-10* are considered not-detected, flagged with a 'UB' at the LOQ.
- SGS 1211331: ethylbenzene, o-xylene, p&m-xylenes, total xylenes, and toluene were detected below the LOQ in the BTEX MB associated with this WO. These analytes were also detected below the LOQ in MW-11-15, MW-111-15, and MW-12-10. These analytes are considered not detected and have been flagged 'UB' at the LOQ for the affected samples.

The laboratory noted arsenic sample *PW-200* for SGS 1213677 was received with ice present in the sample. The result for this sample is considered estimated, flagged with a 'J' in the analytical data table.

Shannon & Wilson submits a laboratory-provided trip blank (TB) with each of the volatile analyses for this project. A TB is used to determine if cross-contamination associated with sample handling and transport is contributing to the project sample results. TB results did not affect the project samples with the following exception.

• SGS 1211331: GRO detected in project sample *MW-12-10* is considered not detected due to a detection in the TB. The result is flagged 'UB' at the LOQ.

Shannon & Wilson also collected equipment blanks for each sampling event where sampling was conducted with reusable equipment. These samples are collected to detect residual contamination on equipment that may contribute to cross contamination in the

project samples. Project analytes were not detected in the project samples with the following exceptions.

SGS 1204821: RRO were detected below the LOQ in the equipment blank affecting samples *MW-11-15*, *MW-11-115*, and *MW-12-10*. The RRO results associated with the project samples are considered not detected at the LOQ, flagged with a 'UB' to denote the QC failure.

ACCURACY

The laboratory assessed the accuracy of its analytical procedures by analyzing laboratory control samples (LCS), LCS duplicate samples (LCSD) matrix spike samples (MS), MS duplicate samples (MSD) and laboratory duplicate samples. LCS/LCSD analysis allows the laboratory to evaluate their ability to recover analytes added to clean aqueous matrices, and MS/MSD analysis allows the laboratory to evaluate their ability to recovery analytes added to project sample matrices.

LCS/LCSD and MS/MSD recoveries were within laboratory limits for the project samples, where reported.

The laboratory also assessed the accuracy of isotope dilution analysis (IDA) analytes and surrogates added to individual project samples. IDAs and surrogates allow the laboratory to assess the accuracy of their analytical method using chemically similar compounds as those requested for the project sample set. Surrogate and IDA recoveries were within QC limits for the project samples with the following exceptions.

Eurofins 320-71798: IDA recoveries associated with perfluorohexanoic acid (PFHxA), perluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), perluorododecanoic acid (PFDoA), perfluorotridecanoic acid (PFTDA), PFBS, PFHxS, PFOS, d3-NMeFOSAA, d5-NEtFOSAA, and hexafluoropropylene oxide dimer acid (HFPO-DA) for project sample *MW-10-20* and PFHxA, PFHpA, PFDA, PFUnA, PFDoA, PFTDA, PFBS, PFHxS, PFOS, d3-NMeFOSAA, d5-NEtFOSAA, and HFPO-DA for project sample *MW-6-20* were outside QC limits. The associated analytes for the listed project samples are considered estimated. Detected analytes are flagged 'J' and not detected analytes are flagged 'UJ' in the associated data tables.

PRECISION

Shannon & Wilson submitted twenty-four field duplicate samples in our WOs. To evaluate data precision and reproducibility of our sampling techniques, the relative percent difference (RPD) was calculated between the sample and its duplicate. Shannon & Wilson can only evaluate RPDs if the results of the analysis for both the sample and its duplicate are greater than the LOQ or RL for a given analyte. The field-duplicate RPDs for detected

analytes were within the project-specified data quality objective (DQO) of 30 percent for groundwater, with the following exception.

- Eurofins 320-64367: RPD for PFHxA exceeds the DQO for field duplicate pair PW-203 / PW-303. Results for these samples are reported below the RL at an estimated value. No further flagging was added.
- Eurofins 320-71796: RPDs for PFBS exceeded the DQO for field duplicate pair PW-401 / PW-501. Results for these samples are reported below the RL at an estimate value. No further flagging was added.
- Eurofins 320-71797: RPDs for perfluorooctanoic acid (PFOA) and PFBS exceed the DQO for field duplicate pair PW-465 / PW-565. PFOA results for the duplicate pair are considered estimated, flagged with a 'J' to denote the imprecision. PFBS results were detected below the RL and are considered estimated by the laboratory; no further flagging was added.

DATA QUALITY SUMMARY

By working in general accordance with our proposed scope of services, Shannon & Wilson consider the samples collected for this project to be representative of site conditions at the locations and times they were obtained. Based on our QA review, no samples were rejected as unusable due to QC failures. In general, the quality of the analytical data for this project does not appear to have been compromised by analytical irregularities and is adequate for the purposes of our assessment.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks

2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: 1204821

Client Project: 102599-012 Gustavus MWS

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 09/16/2020 4:45:31PM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson-Fairbanks**SGS Project: **1204821**

Project Name/Site: 102599-012 Gustavus MWS
Project Contact: Kristen Freiburger

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 09/16/2020 4:45:32PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/16/2020 4:45:34PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-11-15	1204821001	09/02/2020	09/08/2020	Water (Surface, Eff., Ground)
MW-11-115	1204821002	09/02/2020	09/08/2020	Water (Surface, Eff., Ground)
MW-12-10	1204821003	09/02/2020	09/08/2020	Water (Surface, Eff., Ground)
EB-11-15	1204821004	09/02/2020	09/08/2020	Water (Surface, Eff., Ground)
Trip Blank	1204821005	09/02/2020	09/08/2020	Water (Surface, Eff., Ground)

MethodMethod Description8270D SIM LV (PAH)8270 PAH SIM GC/MS LVAK102DRO/RRO Low Volume WaterAK103DRO/RRO Low Volume WaterAK101Gasoline Range Organics (W)SW8260DVolatile Organic Compounds (W) FULL

Print Date: 09/16/2020 4:45:36PM

Detectable Results Summary

Client Sample ID: MW-11-15 Lab Sample ID: 1204821001 Semivolatile Organic Fuels	Parameter Residual Range Organics	Result 0.235J	<u>Units</u> mg/L
Client Sample ID: MW-11-115 Lab Sample ID: 1204821002 Semivolatile Organic Fuels	<u>Parameter</u> Residual Range Organics	Result 0.367J	<u>Units</u> mg/L
Client Sample ID: MW-12-10 Lab Sample ID: 1204821003 Semivolatile Organic Fuels	Parameter Residual Range Organics	Result 0.316J	Units mg/L
Client Sample ID: EB-11-15 Lab Sample ID: 1204821004 Semivolatile Organic Fuels	Parameter Residual Range Organics	Result 0.319J	Units mg/L

Print Date: 09/16/2020 4:45:38PM

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821001 Lab Project ID: 1204821 Collection Date: 09/02/20 12:04 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
2-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Acenaphthene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		09/10/20 23:28
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		09/10/20 23:28
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Fluorene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Naphthalene	0.0463 U	0.0926	0.0287	ug/L	1		09/10/20 23:28
Phenanthrene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:28
Surrogates							
2-Methylnaphthalene-d10 (surr)	63.8	37-78		%	1		09/10/20 23:28
Fluoranthene-d10 (surr)	76.7	24-116		%	1		09/10/20 23:28

Batch Information

Analytical Batch: XMS12258

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/10/20 23:28 Container ID: 1204821001-C Prep Batch: XXX43817 Prep Method: SW3535A Prep Date/Time: 09/08/20 17:00 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821001 Lab Project ID: 1204821 Collection Date: 09/02/20 12:04 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>		
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed	
Diesel Range Organics	0.288 U	0.577	0.173	mg/L	1		09/15/20 23:14	
Surrogates								
5a Androstane (surr)	96.7	50-150		%	1		09/15/20 23:14	

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/15/20 23:14 Container ID: 1204821001-A Prep Batch: XXX43852 Prep Method: SW3520C Prep Date/Time: 09/14/20 16:11 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.235 J	0.481	0.144	mg/L	1		09/15/20 23:14
Surrogates							
n-Triacontane-d62 (surr)	104	50-150		%	1		09/15/20 23:14

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 09/15/20 23:14 Container ID: 1204821001-A Prep Batch: XXX43852 Prep Method: SW3520C Prep Date/Time: 09/14/20 16:11 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821001 Lab Project ID: 1204821 Collection Date: 09/02/20 12:04 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		09/11/20 18:31
Surrogates							
4-Bromofluorobenzene (surr)	95	50-150		%	1		09/11/20 18:31

Batch Information

Analytical Batch: VFC15340 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 09/11/20 18:31 Container ID: 1204821001-H

Prep Batch: VXX36331
Prep Method: SW5030B
Prep Date/Time: 09/11/20 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821001 Lab Project ID: 1204821 Collection Date: 09/02/20 12:04 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	<u>Result Qual</u>	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits Date A	<u>nalyzed</u>
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		20 21:48
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1	09/08/2	20 21:48
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1	09/08/2	20 21:48
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1	09/08/2	20 21:48
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1	09/08/2	20 21:48
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1	09/08/2	20 21:48
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1	09/08/2	20 21:48
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/08/2	20 21:48
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1	09/08/2	20 21:48
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
2-Hexanone	5.00 U	10.0	3.10	ug/L	1	09/08/2	20 21:48
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1	09/08/2	20 21:48
Benzene	0.200 U	0.400	0.120	ug/L	1	09/08/2	20 21:48
Bromobenzene	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1	09/08/2	20 21:48
Bromoform	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
Bromomethane	2.50 U	5.00	2.00	ug/L	1	09/08/2	20 21:48
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1	09/08/2	20 21:48
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1	09/08/2	20 21:48
Chloroethane	0.500 U	1.00	0.310	ug/L	1	09/08/2	20 21:48

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821001 Lab Project ID: 1204821 Collection Date: 09/02/20 12:04 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:48
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:48
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:48
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
lsopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:48
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:48
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/08/20 21:48
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Styrene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Toluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:48
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:48
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/08/20 21:48
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/08/20 21:48
urrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/08/20 21:48
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/08/20 21:48
Toluene-d8 (surr)	97.1	89-112		%	1		09/08/20 21:48

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821001 Lab Project ID: 1204821 Collection Date: 09/02/20 12:04 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20292 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/08/20 21:48 Container ID: 1204821001-E Prep Batch: VXX36303 Prep Method: SW5030B Prep Date/Time: 09/08/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-11-115

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821002 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
2-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Acenaphthene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		09/10/20 23:48
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		09/10/20 23:48
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Fluorene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Naphthalene	0.0463 U	0.0926	0.0287	ug/L	1		09/10/20 23:48
Phenanthrene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/10/20 23:48
Surrogates							
2-Methylnaphthalene-d10 (surr)	65.7	37-78		%	1		09/10/20 23:48
Fluoranthene-d10 (surr)	81.1	24-116		%	1		09/10/20 23:48

Batch Information

Analytical Batch: XMS12258

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/10/20 23:48 Container ID: 1204821002-C Prep Batch: XXX43817 Prep Method: SW3535A Prep Date/Time: 09/08/20 17:00 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-115

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821002 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u>	<u>Date Analyzed</u>
Diesel Range Organics	0.288 U	0.577	0.173	mg/L	1	<u>Limits</u>	09/15/20 23:24
Surrogates 5a Androstane (surr)	99.3	50-150	0.110	g/ <u></u>	1		09/15/20 23:24

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/15/20 23:24 Container ID: 1204821002-A Prep Batch: XXX43852 Prep Method: SW3520C Prep Date/Time: 09/14/20 16:11 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.367 J	0.481	0.144	mg/L	1		09/15/20 23:24
Surrogates							
n-Triacontane-d62 (surr)	107	50-150		%	1		09/15/20 23:24

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 09/15/20 23:24 Container ID: 1204821002-A Prep Batch: XXX43852 Prep Method: SW3520C Prep Date/Time: 09/14/20 16:11 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-115

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821002 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0500 U	0.100	0.0310	mg/L	1	Limits	09/11/20 18:49
Surrogates 4-Bromofluorobenzene (surr)	97.7	50-150		%	1		09/11/20 18:49

Batch Information

Analytical Batch: VFC15340 Analytical Method: AK101 Analyst: ALJ

Analytical Date/Time: 09/11/20 18:49 Container ID: 1204821002-H Prep Batch: VXX36331
Prep Method: SW5030B
Prep Date/Time: 09/11/20 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 09/16/2020 4:45:39PM J flagging is activated

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Client Sample ID: MW-11-115

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821002 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/08/20 22:03
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/08/20 22:03
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
Benzene	0.200 U	0.400	0.120	ug/L	1		09/08/20 22:03
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/08/20 22:03
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-115

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821002 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

			-			Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:03
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/08/20 22:03
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Styrene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Toluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:03
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:03
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/08/20 22:03
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/08/20 22:03
Surrogates							
1,2-Dichloroethane-D4 (surr)	101	81-118		%	1		09/08/20 22:03
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/08/20 22:03
Toluene-d8 (surr)	99.2	89-112		%	1		09/08/20 22:03

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-11-115

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821002 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20292 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/08/20 22:03 Container ID: 1204821002-E Prep Batch: VXX36303 Prep Method: SW5030B Prep Date/Time: 09/08/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821003 Lab Project ID: 1204821 Collection Date: 09/02/20 14:09 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
2-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Acenaphthene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		09/11/20 00:09
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		09/11/20 00:09
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Fluorene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Naphthalene	0.0463 U	0.0926	0.0287	ug/L	1		09/11/20 00:09
Phenanthrene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:09
Surrogates							
2-Methylnaphthalene-d10 (surr)	66.7	37-78		%	1		09/11/20 00:09
Fluoranthene-d10 (surr)	81.6	24-116		%	1		09/11/20 00:09

Batch Information

Analytical Batch: XMS12258

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/11/20 00:09 Container ID: 1204821003-C Prep Batch: XXX43817 Prep Method: SW3535A Prep Date/Time: 09/08/20 17:00 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821003 Lab Project ID: 1204821 Collection Date: 09/02/20 14:09 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.288 U	0.577	0.173	mg/L	1		09/15/20 23:34
Surrogates							
5a Androstane (surr)	93.7	50-150		%	1		09/15/20 23:34

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/15/20 23:34 Container ID: 1204821003-A

Prep Batch: XXX43852 Prep Method: SW3520C Prep Date/Time: 09/14/20 16:11 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.316 J	0.481	0.144	mg/L	1		09/15/20 23:34
Surrogates							
n-Triacontane-d62 (surr)	101	50-150		%	1		09/15/20 23:34

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 09/15/20 23:34 Container ID: 1204821003-A Prep Batch: XXX43852 Prep Method: SW3520C Prep Date/Time: 09/14/20 16:11 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821003 Lab Project ID: 1204821 Collection Date: 09/02/20 14:09 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	<u>Result Qual</u>	LOQ/CL	DL	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		09/11/20 19:07
Surrogates							
4-Bromofluorobenzene (surr)	93	50-150		%	1		09/11/20 19:07

Batch Information

Analytical Batch: VFC15340 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 09/11/20 19:07 Container ID: 1204821003-H Prep Batch: VXX36331
Prep Method: SW5030B
Prep Date/Time: 09/11/20 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821003 Lab Project ID: 1204821 Collection Date: 09/02/20 14:09 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

5 .	D 110 1	1.00/01			DE	<u>Allowable</u>	5.4.
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:34
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:34
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/08/20 21:34
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:34
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/08/20 21:34
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:34
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:34
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:34
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:34
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:34
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:34
Benzene	0.200 U	0.400	0.120	ug/L	1		09/08/20 21:34
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:34
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:34
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/08/20 21:34
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:34
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L ug/L	1		09/08/20 21:34
Chlorobenzene	0.300 U	0.500	0.310	ug/L ug/L	1		09/08/20 21:34
Chloroethane	0.500 U	1.00	0.130	-	1		09/08/20 21:34
Chiloroethane	0.300 0	1.00	0.310	ug/L	ı		09/00/20 21.34

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821003 Lab Project ID: 1204821 Collection Date: 09/02/20 14:09 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	DL	Units	<u>DF</u>	<u>Allowable</u> Limits	Date Analyze
<u>-arameter</u> Chloroform	0.500 U	1.00	<u>DL</u> 0.310	ug/L	<u>DF</u> 1	LIMILS	09/08/20 21:3
Chloromethane	0.500 U	1.00	0.310	ug/L ug/L	1		09/08/20 21:3
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ŭ	1		09/08/20 21:3
,	0.300 U 0.250 U	0.500	0.310	ug/L ug/L	1		09/08/20 21:3
sis-1,3-Dichloropropene				_			
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 21:
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:
lexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
sopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/08/20 21:
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Styrene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
ert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Toluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
rans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
rans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Frichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
Frichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 21:
/inyl acetate	5.00 U	10.0	3.10	ug/L	1		09/08/20 21:
/inyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/08/20 21:
Kylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/08/20 21:
ırrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/08/20 21:
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/08/20 21:
Foluene-d8 (surr)	99.7	89-112		%	1		09/08/20 21:

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821003 Lab Project ID: 1204821 Collection Date: 09/02/20 14:09 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20292 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/08/20 21:34 Container ID: 1204821003-E Prep Batch: VXX36303 Prep Method: SW5030B Prep Date/Time: 09/08/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: EB-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821004 Lab Project ID: 1204821

Collection Date: 09/02/20 12:40 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
2-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Acenaphthene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		09/11/20 00:30
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		09/11/20 00:30
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Fluorene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Naphthalene	0.0463 U	0.0926	0.0287	ug/L	1		09/11/20 00:30
Phenanthrene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		09/11/20 00:30
Surrogates							
2-Methylnaphthalene-d10 (surr)	62.6	37-78		%	1		09/11/20 00:30
Fluoranthene-d10 (surr)	71.3	24-116		%	1		09/11/20 00:30

Batch Information

Analytical Batch: XMS12258

Analytical Method: 8270D SIM LV (PAH)

Analyst: DSD

Analytical Date/Time: 09/11/20 00:30 Container ID: 1204821004-C

Prep Batch: XXX43817 Prep Method: SW3535A Prep Date/Time: 09/08/20 17:00 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: EB-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821004 Lab Project ID: 1204821 Collection Date: 09/02/20 12:40 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Diesel Range Organics	0.313 U	0.625	0.188	mg/L	1		09/15/20 23:43
Surrogates							
5a Androstane (surr)	97	50-150		%	1		09/15/20 23:43

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK102

Analyst: CDM

Analytical Date/Time: 09/15/20 23:43 Container ID: 1204821004-A Prep Batch: XXX43852 Prep Method: SW3520C Prep Date/Time: 09/14/20 16:11 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.319 J	0.521	0.156	mg/L	1		09/15/20 23:43
Surrogates							
n-Triacontane-d62 (surr)	103	50-150		%	1		09/15/20 23:43

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK103

Analyst: CDM

Analytical Date/Time: 09/15/20 23:43 Container ID: 1204821004-A Prep Batch: XXX43852 Prep Method: SW3520C Prep Date/Time: 09/14/20 16:11 Prep Initial Wt./Vol.: 240 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: EB-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821004 Lab Project ID: 1204821 Collection Date: 09/02/20 12:40 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0500 U	0.100	0.0310	mg/L	1	Limits	09/11/20 19:25
Surrogates 4-Bromofluorobenzene (surr)	95.5	50-150		%	1		09/11/20 19:25

Batch Information

Analytical Batch: VFC15340 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 09/11/20 19:25 Container ID: 1204821004-H Prep Batch: VXX36331
Prep Method: SW5030B
Prep Date/Time: 09/11/20 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: EB-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821004 Lab Project ID: 1204821 Collection Date: 09/02/20 12:40 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/08/20 22:18
1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/08/20 22:18
1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
Benzene	0.200 U	0.400	0.120	ug/L	1		09/08/20 22:18
Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
Bromoform	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/08/20 22:18
Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
				_			

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: EB-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821004 Lab Project ID: 1204821 Collection Date: 09/02/20 12:40 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Parameter	Result Qual	LOQ/CL	<u>DL</u>	Units	<u>DF</u>	Allowable Limits	Date Analyzed
Chloroform	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Chloromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
cis-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
cis-1,3-Dichloropropene	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 22:18
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/08/20 22:18
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Styrene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Toluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 22:18
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/08/20 22:18
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/08/20 22:18
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/08/20 22:18
Surrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/08/20 22:18
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/08/20 22:18
Toluene-d8 (surr)	101	89-112		%	1		09/08/20 22:18

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: EB-11-15

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821004 Lab Project ID: 1204821 Collection Date: 09/02/20 12:40 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20292 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/08/20 22:18 Container ID: 1204821004-E Prep Batch: VXX36303 Prep Method: SW5030B Prep Date/Time: 09/08/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821005 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		09/11/20 15:31
Surrogates							
4-Bromofluorobenzene (surr)	92.3	50-150		%	1		09/11/20 15:31

Batch Information

Analytical Batch: VFC15340 Analytical Method: AK101

Analyst: ALJ

Analytical Date/Time: 09/11/20 15:31 Container ID: 1204821005-D

Prep Batch: VXX36331
Prep Method: SW5030B
Prep Date/Time: 09/11/20 00:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Client Sample ID: Trip Blank

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821005 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

1.1,1-Trichloroethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.1,2-Trichloroethane 0.250 U 0.500 U 0.150 ug/L 1 09/08/20 1.1,2-Trichloroethane 0.200 U 0.400 U 0.310 ug/L 1 09/08/20 1.1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.1-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.1-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.2,4-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.2,2-Dichromo-3-chloropropane 5.00 U 1.00 0.310 ug/L 1 09/08/20 1.2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1.2-Dichloropropane	<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> <u>Limits</u>	Date Analyzed
1,1,2,2-Tetrachloroethane 0.250 U 0.500 0.150 ug/L 1 0.9/08/20 1,1,2-Trichloroethane 0.200 U 0.400 0.120 ug/L 1 0.9/08/20 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 0.9/08/20 1,1-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 0.9/08/20 1,1-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 0.9/08/20 1,2-3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 0.9/08/20 1,2-4-Trinchlorobenzene 0.500 U 1.00 0.310 ug/L 1 0.9/08/20 1,2-4-Trinchlorobenzene 0.500 U 1.00 0.310 ug/L 1 0.9/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 0.9/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 0.9/08/20 1,3-Dichlorobenzene 0.500 U 1	1,1,1,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 20:50
1,1,2-Trichloroethane 0.200 U 0.400 0.120 ug/L 1 09/08/20 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trinchlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dibromo-3-chloropropane 5.00 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropropane 0.500 U 1.00	1,1,1-Trichloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,1-Dichloroethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,1-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,1-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dibromo-3-chloropropane 5.00 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00	1,1,2,2-Tetrachloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 20:50
1,1-Dichloroethene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,1-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dibriomo-3-chloropropane 5.00 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,4-Dichlorobenzene	1,1,2-Trichloroethane	0.200 U	0.400	0.120	ug/L	1		09/08/20 20:50
1,1-Dichloropropene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,3-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trinchlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.0375 U 0.0750 0.0180 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloroptopane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloroptopane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloroptopane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2,2-Dichloroptopane 0.500 U 1.00	1,1-Dichloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,2,3-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,3-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dibromo-3-chloropropane 5.00 U 1.00 3.10 ug/L 1 09/08/20 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloroptopane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00	1,1-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,2,3-Trichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dibromo-3-chloropropane 5.00 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dibromoethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00	1,1-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,2,4-Trichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2,4-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/08/20 1,2-Dichlorobetnane 0.0375 U 0.0750 0.0180 ug/L 1 09/08/20 1,2-Dichlorobetnzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloroptropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloroptropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloroptropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloroptropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobrezene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 <td>1,2,3-Trichlorobenzene</td> <td>0.500 U</td> <td>1.00</td> <td>0.310</td> <td>ug/L</td> <td>1</td> <td></td> <td>09/08/20 20:50</td>	1,2,3-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,2,4-Trimethylbenzene 0,500 U 1,00 0,310 ug/L 1 09/08/20 1,2-Dibromo-3-chloropropane 5,00 U 10,0 3,10 ug/L 1 09/08/20 1,2-Dibromoethane 0,0375 U 0,0750 0,0180 ug/L 1 09/08/20 1,2-Dichlorobenzene 0,500 U 1,00 0,310 ug/L 1 09/08/20 1,2-Dichlorobenzene 0,500 U 1,00 0,310 ug/L 1 09/08/20 1,2-Dichloropenpane 0,500 U 1,00 0,310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0,500 U 1,00 0,310 ug/L 1 09/08/20 1,3-Dichloropropane 0,500 U 1,00 0,310 ug/L 1 09/08/20 1,4-Dichlorobenzene 0,500 U 1,00 0,310 ug/L 1 09/08/20 2,2-Dichloropopane 0,500 U 1,00 0,310 ug/L 1 09/08/20 2,-Dichloropopane 0,500 U 1,00 0	1,2,3-Trichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,2-Dibromo-3-chloropropane 5.00 U 10.0 3.10 ug/L 1 09/08/20 1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloroptane 0.500 U 0.500 0.150 ug/L 1 09/08/20 1,2-Dichloroptopane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 1.00 0.3	1,2,4-Trichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,2-Dibromoethane 0.0375 U 0.0750 0.0180 ug/L 1 09/08/20 1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 1.00 0.310 <td>1,2,4-Trimethylbenzene</td> <td>0.500 U</td> <td>1.00</td> <td>0.310</td> <td>ug/L</td> <td>1</td> <td></td> <td>09/08/20 20:50</td>	1,2,4-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,2-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2,2-Dichloroboropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 5.00 U	1,2-Dibromo-3-chloropropane	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
1,2-Dichloroethane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2,-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2,-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 0.500 U	1,2-Dibromoethane	0.0375 U	0.0750	0.0180	ug/L	1		09/08/20 20:50
1,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3,5-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 1.00 0.310 ug/L 1 09/08/20 2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Hoktyl-2-pentanone (MIBK) 5.00 U 1.00 0.310 ug/L 1 09/08/20 Benzene 0.200 U	1,2-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,3,5-Trimethylbenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 5.00 U 1.00 0.310 ug/L 1 09/08/20 4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 0.400 0.120 <	1,2-Dichloroethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 20:50
1,3-Dichlorobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 1,3-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 1.00 0.310 ug/L 1 09/08/20 2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 5.00 U 1.00 0.310 ug/L 1 09/08/20 4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 1.00 0.310 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L <td>1,2-Dichloropropane</td> <td>0.500 U</td> <td>1.00</td> <td>0.310</td> <td>ug/L</td> <td>1</td> <td></td> <td>09/08/20 20:50</td>	1,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,3-Dichloropropane 0.250 U 0.500 0.150 ug/L 1 09/08/20 1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 5.00 U 10.0 3.10 ug/L 1 09/08/20 2-Hexanone 5.00 U 1.00 0.310 ug/L 1 09/08/20 4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 1.00 0.310 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L <	1,3,5-Trimethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
1,4-Dichlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20 2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 5.00 U 10.0 3.10 ug/L 1 09/08/20 4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 5.00 0.0	1,3-Dichlorobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
2,2-Dichloropropane 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Butanone (MEK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 5.00 U 10.0 3.10 ug/L 1 09/08/20 4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 5.00 0.500 ug/L<	1,3-Dichloropropane	0.250 U	0.500	0.150	ug/L	1		09/08/20 20:50
2-Butanone (MEK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 5.00 U 10.0 3.10 ug/L 1 09/08/20 4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon tetrachloride 5.00 U 1.00 0.310 ug/L	1,4-Dichlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/08/20 20:50
2-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 2-Hexanone 5.00 U 10.0 3.10 ug/L 1 09/08/20 4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/	2,2-Dichloropropane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
2-Hexanone 5.00 U 10.0 3.10 ug/L 1 09/08/20 4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromodichloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 U 0.500	2-Butanone (MEK)	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
4-Chlorotoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromodichloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	2-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
4-Isopropyltoluene 0.500 U 1.00 0.310 ug/L 1 09/08/20 4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	2-Hexanone	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
4-Methyl-2-pentanone (MIBK) 5.00 U 10.0 3.10 ug/L 1 09/08/20 Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromodichloromethane 0.250 U 0.500 0.150 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 0.310 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20	4-Chlorotoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Benzene 0.200 U 0.400 0.120 ug/L 1 09/08/20 Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromodichloromethane 0.250 U 0.500 0.150 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	4-Isopropyltoluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Bromobenzene 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromodichloromethane 0.250 U 0.500 0.150 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	4-Methyl-2-pentanone (MIBK)	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
Bromochloromethane 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromodichloromethane 0.250 U 0.500 0.150 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	Benzene	0.200 U	0.400	0.120	ug/L	1		09/08/20 20:50
Bromodichloromethane 0.250 U 0.500 0.150 ug/L 1 09/08/20 Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	Bromobenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Bromoform 0.500 U 1.00 0.310 ug/L 1 09/08/20 Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	Bromochloromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Bromomethane 2.50 U 5.00 2.00 ug/L 1 09/08/20 Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	Bromodichloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 20:50
Carbon disulfide 5.00 U 10.0 3.10 ug/L 1 09/08/20 Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	Bromoform	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Carbon tetrachloride 0.500 U 1.00 0.310 ug/L 1 09/08/20 Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	Bromomethane	2.50 U	5.00	2.00	ug/L	1		09/08/20 20:50
Chlorobenzene 0.250 U 0.500 0.150 ug/L 1 09/08/20	Carbon disulfide	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
· · · · · · · · · · · · · · · · · · ·	Carbon tetrachloride	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Oblamathan	Chlorobenzene	0.250 U	0.500	0.150	ug/L	1		09/08/20 20:50
Chioroetnane 0.500 U 1.00 0.310 ug/L 1 09/08/20	Chloroethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: Trip Blank

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821005 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Doromotor	Decult Ouel	1.00/01	DI	Linita	DE	Allowable	Data Analyzad
<u>Parameter</u> Chloroform	<u>Result Qual</u> 0.500 U	<u>LOQ/CL</u> 1.00	<u>DL</u> 0.310	<u>Units</u> ug/L	<u>DF</u> 1	<u>Limits</u>	Date Analyzed 09/08/20 20:50
Chloromethane	0.500 U	1.00	0.310	ug/L ug/L	1		09/08/20 20:50
	0.500 U	1.00	0.310	-			
cis-1,2-Dichloroethene	0.300 U 0.250 U	0.500	0.310	ug/L	1 1		09/08/20 20:50 09/08/20 20:50
cis-1,3-Dichloropropene				ug/L			
Dibromochloromethane	0.250 U	0.500	0.150	ug/L	1		09/08/20 20:50
Dibromomethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Dichlorodifluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Freon-113	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
Hexachlorobutadiene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Isopropylbenzene (Cumene)	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Methylene chloride	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
Methyl-t-butyl ether	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
Naphthalene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
n-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
n-Propylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
o-Xylene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		09/08/20 20:50
sec-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Styrene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
tert-Butylbenzene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Tetrachloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Toluene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
trans-1,2-Dichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
trans-1,3-Dichloropropene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Trichloroethene	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Trichlorofluoromethane	0.500 U	1.00	0.310	ug/L	1		09/08/20 20:50
Vinyl acetate	5.00 U	10.0	3.10	ug/L	1		09/08/20 20:50
Vinyl chloride	0.0750 U	0.150	0.0500	ug/L	1		09/08/20 20:50
Xylenes (total)	1.50 U	3.00	1.00	ug/L	1		09/08/20 20:50
urrogates							
1,2-Dichloroethane-D4 (surr)	102	81-118		%	1		09/08/20 20:5
4-Bromofluorobenzene (surr)	101	85-114		%	1		09/08/20 20:5
Toluene-d8 (surr)	99.7	89-112		%	1		09/08/20 20:5

Print Date: 09/16/2020 4:45:39PM

Client Sample ID: Trip Blank

Client Project ID: 102599-012 Gustavus MWS

Lab Sample ID: 1204821005 Lab Project ID: 1204821 Collection Date: 09/02/20 11:54 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile GC/MS

Batch Information

Analytical Batch: VMS20292 Analytical Method: SW8260D

Analyst: NRB

Analytical Date/Time: 09/08/20 20:50 Container ID: 1204821005-A

Prep Batch: VXX36303 Prep Method: SW5030B Prep Date/Time: 09/08/20 18:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Blank ID: MB for HBN 1811438 [VXX/36303]

Blank Lab ID: 1580035

QC for Samples:

 $1204821001,\, 1204821002,\, 1204821003,\, 1204821004,\, 1204821005$

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

·				
<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
1,1,1,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,1-Trichloroethane	0.500U	1.00	0.310	ug/L
1,1,2,2-Tetrachloroethane	0.250U	0.500	0.150	ug/L
1,1,2-Trichloroethane	0.200U	0.400	0.120	ug/L
1,1-Dichloroethane	0.500U	1.00	0.310	ug/L
1,1-Dichloroethene	0.500U	1.00	0.310	ug/L
1,1-Dichloropropene	0.500U	1.00	0.310	ug/L
1,2,3-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,3-Trichloropropane	0.500U	1.00	0.310	ug/L
1,2,4-Trichlorobenzene	0.500U	1.00	0.310	ug/L
1,2,4-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,2-Dibromo-3-chloropropane	5.00U	10.0	3.10	ug/L
1,2-Dibromoethane	0.0375U	0.0750	0.0180	ug/L
1,2-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,2-Dichloroethane	0.250U	0.500	0.150	ug/L
1,2-Dichloropropane	0.500U	1.00	0.310	ug/L
1,3,5-Trimethylbenzene	0.500U	1.00	0.310	ug/L
1,3-Dichlorobenzene	0.500U	1.00	0.310	ug/L
1,3-Dichloropropane	0.250U	0.500	0.150	ug/L
1,4-Dichlorobenzene	0.250U	0.500	0.150	ug/L
2,2-Dichloropropane	0.500U	1.00	0.310	ug/L
2-Butanone (MEK)	5.00U	10.0	3.10	ug/L
2-Chlorotoluene	0.500U	1.00	0.310	ug/L
2-Hexanone	5.00U	10.0	3.10	ug/L
4-Chlorotoluene	0.500U	1.00	0.310	ug/L
4-Isopropyltoluene	0.500U	1.00	0.310	ug/L
4-Methyl-2-pentanone (MIBK)	5.00U	10.0	3.10	ug/L
Benzene	0.200U	0.400	0.120	ug/L
Bromobenzene	0.500U	1.00	0.310	ug/L
Bromochloromethane	0.500U	1.00	0.310	ug/L
Bromodichloromethane	0.250U	0.500	0.150	ug/L
Bromoform	0.500U	1.00	0.310	ug/L
Bromomethane	2.50U	5.00	2.00	ug/L
Carbon disulfide	5.00U	10.0	3.10	ug/L
Carbon tetrachloride	0.500U	1.00	0.310	ug/L
Chlorobenzene	0.250U	0.500	0.150	ug/L
Chloroethane	0.500U	1.00	0.310	ug/L
Chloroform	0.500U	1.00	0.310	ug/L

Print Date: 09/16/2020 4:45:42PM

Blank ID: MB for HBN 1811438 [VXX/36303]

Blank Lab ID: 1580035

QC for Samples:

 $1204821001,\, 1204821002,\, 1204821003,\, 1204821004,\, 1204821005$

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Parameter	Results	LOQ/CL	<u>DL</u>	Units
Chloromethane	0.500U	1.00	0.310	ug/L
cis-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
cis-1,3-Dichloropropene	0.250U	0.500	0.150	ug/L
Dibromochloromethane	0.250U	0.500	0.150	ug/L
Dibromomethane	0.500U	1.00	0.310	ug/L
Dichlorodifluoromethane	0.500U	1.00	0.310	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
Freon-113	5.00U	10.0	3.10	ug/L
Hexachlorobutadiene	0.500U	1.00	0.310	ug/L
Isopropylbenzene (Cumene)	0.500U	1.00	0.310	ug/L
Methylene chloride	5.00U	10.0	3.10	ug/L
Methyl-t-butyl ether	5.00U	10.0	3.10	ug/L
Naphthalene	0.500U	1.00	0.310	ug/L
n-Butylbenzene	0.500U	1.00	0.310	ug/L
n-Propylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
sec-Butylbenzene	0.500U	1.00	0.310	ug/L
Styrene	0.500U	1.00	0.310	ug/L
tert-Butylbenzene	0.500U	1.00	0.310	ug/L
Tetrachloroethene	0.500U	1.00	0.310	ug/L
Toluene	0.500U	1.00	0.310	ug/L
trans-1,2-Dichloroethene	0.500U	1.00	0.310	ug/L
trans-1,3-Dichloropropene	0.500U	1.00	0.310	ug/L
Trichloroethene	0.500U	1.00	0.310	ug/L
Trichlorofluoromethane	0.500U	1.00	0.310	ug/L
Vinyl acetate	5.00U	10.0	3.10	ug/L
Vinyl chloride	0.0750U	0.150	0.0500	ug/L
Xylenes (total)	1.50U	3.00	1.00	ug/L
Surrogates				
1,2-Dichloroethane-D4 (surr)	102	81-118		%
4-Bromofluorobenzene (surr)	102	85-114		%
Toluene-d8 (surr)	99.9	89-112		%

Print Date: 09/16/2020 4:45:42PM

Blank ID: MB for HBN 1811438 [VXX/36303]

Blank Lab ID: 1580035

QC for Samples:

 $1204821001,\, 1204821002,\, 1204821003,\, 1204821004,\, 1204821005$

Matrix: Water (Surface, Eff., Ground)

Results by SW8260D

Parameter Results LOQ/CL DL Units

Batch Information

Analytical Batch: VMS20292 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Analytical Date/Time: 9/8/2020 6:08:00PM

Prep Batch: VXX36303 Prep Method: SW5030B

Prep Date/Time: 9/8/2020 6:00:00PM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 09/16/2020 4:45:42PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Blank Spike ID: LCS for HBN 1204821 [VXX36303]

Blank Spike Lab ID: 1580036 Date Analyzed: 09/08/2020 18:23 Spike Duplicate ID: LCSD for HBN 1204821

[VXX36303]

Spike Duplicate Lab ID: 1580037 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1204821001, 1204821002, 1204821003, 1204821004, 1204821005

Results by SW8260D

Blank Spike (ug/L) Spike Duplicate (ug/L)									
<u>Parameter</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1,1,1,2-Tetrachloroethane	30	29.5	98	30	29.3	98	(78-124)	0.65	(< 20)
1,1,1-Trichloroethane	30	29.2	97	30	30.3	101	(74-131)	3.80	(< 20)
1,1,2,2-Tetrachloroethane	30	31.8	106	30	32.2	107	(71-121)	1.30	(< 20)
1,1,2-Trichloroethane	30	30.5	102	30	30.5	102	(80-119)	0.00	(< 20)
1,1-Dichloroethane	30	31.9	106	30	33.1	110	(77-125)	3.90	(< 20)
1,1-Dichloroethene	30	35.0	117	30	35.6	119	(71-131)	1.70	(< 20)
1,1-Dichloropropene	30	30.5	102	30	31.4	105	(79-125)	2.80	(< 20)
1,2,3-Trichlorobenzene	30	29.0	97	30	32.0	107	(69-129)	9.80	(< 20)
1,2,3-Trichloropropane	30	29.8	99	30	30.5	102	(73-122)	2.30	(< 20)
1,2,4-Trichlorobenzene	30	28.8	96	30	31.2	104	(69-130)	7.80	(< 20)
1,2,4-Trimethylbenzene	30	31.1	104	30	31.6	105	(79-124)	1.50	(< 20)
1,2-Dibromo-3-chloropropane	30	29.8	99	30	30.9	103	(62-128)	3.80	(< 20)
1,2-Dibromoethane	30	30.0	100	30	30.1	100	(77-121)	0.47	(< 20)
1,2-Dichlorobenzene	30	29.6	99	30	30.3	101	(80-119)	2.30	(< 20)
1,2-Dichloroethane	30	29.1	97	30	30.4	101	(73-128)	4.50	(< 20)
1,2-Dichloropropane	30	32.5	108	30	33.5	112	(78-122)	3.00	(< 20)
1,3,5-Trimethylbenzene	30	30.3	101	30	30.9	103	(75-124)	1.90	(< 20)
1,3-Dichlorobenzene	30	30.5	102	30	30.5	102	(80-119)	0.09	(< 20)
1,3-Dichloropropane	30	30.8	103	30	30.9	103	(80-119)	0.55	(< 20)
1,4-Dichlorobenzene	30	29.9	100	30	30.3	101	(79-118)	1.10	(< 20)
2,2-Dichloropropane	30	31.6	105	30	32.6	109	(60-139)	2.90	(< 20)
2-Butanone (MEK)	90	99.0	110	90	106	118	(56-143)	7.20	(< 20)
2-Chlorotoluene	30	31.8	106	30	31.7	106	(79-122)	0.25	(< 20)
2-Hexanone	90	91.2	101	90	95.3	106	(57-139)	4.40	(< 20)
4-Chlorotoluene	30	31.4	105	30	31.4	105	(78-122)	0.26	(< 20)
4-Isopropyltoluene	30	31.0	103	30	31.7	106	(77-127)	2.30	(< 20)
4-Methyl-2-pentanone (MIBK)	90	91.6	102	90	99.0	110	(67-130)	7.80	(< 20)
Benzene	30	31.5	105	30	32.1	107	(79-120)	1.90	(< 20)
Bromobenzene	30	30.0	100	30	29.8	99	(80-120)	0.59	(< 20)
Bromochloromethane	30	29.2	97	30	30.7	102	(78-123)	5.20	(< 20)
Bromodichloromethane	30	30.9	103	30	32.1	107	(79-125)	3.90	(< 20)
Bromoform	30	28.8	96	30	29.4	98	(66-130)	2.10	(< 20)
Bromomethane	30	27.4	92	30	27.3	91	(53-141)	0.59	(< 20)
Carbon disulfide	45	46.6	103	45	46.7	104	(64-133)	0.31	(< 20)

Print Date: 09/16/2020 4:45:45PM

Blank Spike ID: LCS for HBN 1204821 [VXX36303]

Blank Spike Lab ID: 1580036 Date Analyzed: 09/08/2020 18:23 Spike Duplicate ID: LCSD for HBN 1204821

[VXX36303]

Spike Duplicate Lab ID: 1580037 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1204821001, 1204821002, 1204821003, 1204821004, 1204821005

Results by SW8260D

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Carbon tetrachloride	30	30.6	102	30	31.3	104	(72-136)	2.30	(< 20)
Chlorobenzene	30	29.2	98	30	29.3	98	(82-118)	0.20	(< 20)
Chloroethane	30	30.6	102	30	27.2	91	(60-138)	11.60	(< 20)
Chloroform	30	28.8	96	30	30.0	100	(79-124)	3.80	(< 20)
Chloromethane	30	28.1	94	30	28.5	95	(50-139)	1.50	(< 20)
cis-1,2-Dichloroethene	30	31.2	104	30	32.6	109	(78-123)	4.20	(< 20)
cis-1,3-Dichloropropene	30	31.4	105	30	32.4	108	(75-124)	3.20	(< 20)
Dibromochloromethane	30	29.8	100	30	30.1	100	(74-126)	0.75	(< 20)
Dibromomethane	30	30.8	103	30	32.2	107	(79-123)	4.70	(< 20)
Dichlorodifluoromethane	30	26.7	89	30	26.9	90	(32-152)	0.54	(< 20)
Ethylbenzene	30	32.2	107	30	32.3	108	(79-121)	0.20	(< 20)
Freon-113	45	45.7	102	45	46.5	103	(70-136)	1.80	(< 20)
Hexachlorobutadiene	30	32.0	107	30	33.3	111	(66-134)	4.00	(< 20)
Isopropylbenzene (Cumene)	30	32.3	108	30	32.5	108	(72-131)	0.53	(< 20)
Methylene chloride	30	32.4	108	30	34.3	114	(74-124)	5.50	(< 20)
Methyl-t-butyl ether	45	45.9	102	45	48.5	108	(71-124)	5.60	(< 20)
Naphthalene	30	27.5	92	30	29.8	99	(61-128)	7.90	(< 20)
n-Butylbenzene	30	34.3	114	30	35.3	118	(75-128)	3.10	(< 20)
n-Propylbenzene	30	33.3	111	30	33.4	111	(76-126)	0.27	(< 20)
o-Xylene	30	33.1	110	30	33.6	112	(78-122)	1.60	(< 20)
P & M -Xylene	60	67.1	112	60	67.1	112	(80-121)	0.03	(< 20)
sec-Butylbenzene	30	32.6	109	30	33.6	112	(77-126)	3.00	(< 20)
Styrene	30	31.4	105	30	31.9	106	(78-123)	1.30	(< 20)
tert-Butylbenzene	30	31.4	105	30	31.5	105	(78-124)	0.42	(< 20)
Tetrachloroethene	30	29.6	99	30	29.4	98	(74-129)	0.73	(< 20)
Toluene	30	29.7	99	30	29.6	99	(80-121)	0.61	(< 20)
trans-1,2-Dichloroethene	30	32.1	107	30	33.2	111	(75-124)	3.40	(< 20)
trans-1,3-Dichloropropene	30	31.5	105	30	31.6	105	(73-127)	0.22	(< 20)
Trichloroethene	30	30.9	103	30	31.4	105	(79-123)	1.60	(< 20)
Trichlorofluoromethane	30	29.4	98	30	29.4	98	(65-141)	0.02	(< 20)
Vinyl acetate	30	33.4	111	30	35.8	119	(54-146)	7.00	(< 20)
Vinyl chloride	30	28.3	95	30	28.6	95	(58-137)	0.73	(< 20)
Xylenes (total)	90	100	111	90	101	112	(79-121)	0.52	(< 20)

Print Date: 09/16/2020 4:45:45PM

Blank Spike ID: LCS for HBN 1204821 [VXX36303]

Blank Spike Lab ID: 1580036 Date Analyzed: 09/08/2020 18:23 Spike Duplicate ID: LCSD for HBN 1204821

[VXX36303]

Spike Duplicate Lab ID: 1580037

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1204821001, 1204821002, 1204821003, 1204821004, 1204821005

Results by SW8260D

	Blank Spike (%)				Spike Dup	licate (%)				
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL	
Surrogates										
1,2-Dichloroethane-D4 (surr)	30	96.9	97	30	100	100	(81-118)	3.60		
4-Bromofluorobenzene (surr)	30	101	101	30	99.1	99	(85-114)	2.20		
Toluene-d8 (surr)	30	98.4	98	30	98.3	98	(89-112)	0.15		

Batch Information

Analytical Batch: VMS20292 Analytical Method: SW8260D Instrument: Agilent 7890-75MS

Analyst: NRB

Prep Batch: VXX36303
Prep Method: SW5030B

Prep Date/Time: 09/08/2020 18:00

Spike Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 30 ug/L Extract Vol: 5 mL

Print Date: 09/16/2020 4:45:45PM

Blank ID: MB for HBN 1811626 [VXX/36331]

Blank Lab ID: 1580882

QC for Samples:

 $1204821001,\, 1204821002,\, 1204821003,\, 1204821004,\, 1204821005$

Matrix: Water (Surface, Eff., Ground)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0310mg/L

Surrogates

4-Bromofluorobenzene (surr) 98.2 50-150 %

Batch Information

Analytical Batch: VFC15340
Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ALJ

Analytical Date/Time: 9/11/2020 11:24:00AM

Prep Batch: VXX36331

Prep Method: SW5030B Prep Date/Time: 9/11/2020 12:00:00AM

Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Print Date: 09/16/2020 4:45:48PM

Blank Spike ID: LCS for HBN 1204821 [VXX36331]

Blank Spike Lab ID: 1580885

Date Analyzed: 09/11/2020 12:18

Spike Duplicate ID: LCSD for HBN 1204821

[VXX36331]

Spike Duplicate Lab ID: 1580886

Matrix: Water (Surface, Eff., Ground)

1204821001, 1204821002, 1204821003, 1204821004, 1204821005 QC for Samples:

Results by AK101

	E	Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.01	101	1.00	0.977	98	(60-120)	3.60	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	103	103	0.0500	101	101	(50-150)	1.40	

Batch Information

Analytical Batch: VFC15340 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: ALJ

Prep Batch: VXX36331 Prep Method: SW5030B

Prep Date/Time: 09/11/2020 00:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 09/16/2020 4:45:50PM

Blank ID: MB for HBN 1811390 [XXX/43817]

Blank Lab ID: 1579793

QC for Samples:

1204821001, 1204821002, 1204821003, 1204821004

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	50.7	37-78		%
Fluoranthene-d10 (surr)	72.8	24-116		%

Batch Information

Analytical Batch: XMS12258

Analytical Method: 8270D SIM LV (PAH)

Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Analytical Date/Time: 9/10/2020 10:26:00PM

Prep Batch: XXX43817 Prep Method: SW3535A

Prep Date/Time: 9/8/2020 5:00:54PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:52PM

Blank Spike ID: LCS for HBN 1204821 [XXX43817]

Blank Spike Lab ID: 1579794 Date Analyzed: 09/10/2020 22:47 Spike Duplicate ID: LCSD for HBN 1204821

[XXX43817]

Spike Duplicate Lab ID: 1579795 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1204821001, 1204821002, 1204821003, 1204821004

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.22	61	2	1.28	64	(41-115)	4.60	(< 20)
2-Methylnaphthalene	2	1.23	62	2	1.28	64	(39-114)	4.20	(< 20)
Acenaphthene	2	1.39	70	2	1.39	70	(48-114)	0.02	(< 20)
Acenaphthylene	2	1.49	75	2	1.49	75	(35-121)	0.04	(< 20)
Anthracene	2	1.53	76	2	1.49	74	(53-119)	2.70	(< 20)
Benzo(a)Anthracene	2	1.44	72	2	1.35	67	(59-120)	6.40	(< 20)
Benzo[a]pyrene	2	1.89	94	2	1.76	88	(53-120)	7.10	(< 20)
Benzo[b]Fluoranthene	2	1.72	86	2	1.62	81	(53-126)	6.30	(< 20)
Benzo[g,h,i]perylene	2	1.77	88	2	1.54	77	(44-128)	13.40	(< 20)
Benzo[k]fluoranthene	2	1.75	88	2	1.63	82	(54-125)	7.40	(< 20)
Chrysene	2	1.71	85	2	1.61	81	(57-120)	5.60	(< 20)
Dibenzo[a,h]anthracene	2	1.86	93	2	1.62	81	(44-131)	14.10	(< 20)
Fluoranthene	2	1.60	80	2	1.46	73	(58-120)	8.90	(< 20)
Fluorene	2	1.48	74	2	1.45	72	(50-118)	2.30	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.96	98	2	1.73	87	(48-130)	12.50	(< 20)
Naphthalene	2	1.18	59	2	1.31	65	(43-114)	9.70	(< 20)
Phenanthrene	2	1.51	76	2	1.50	75	(53-115)	1.00	(< 20)
Pyrene	2	1.61	81	2	1.45	73	(53-121)	10.50	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	59.6	60	2	62.1	62	(37-78)	4.10	
Fluoranthene-d10 (surr)	2	81	81	2	74.9	75	(24-116)	7.80	

Batch Information

Analytical Batch: XMS12258

Analytical Method: 8270D SIM LV (PAH)
Instrument: Agilent GC 7890B/5977A SWA

Analyst: DSD

Prep Batch: XXX43817
Prep Method: SW3535A

Prep Date/Time: 09/08/2020 17:00

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 09/16/2020 4:45:55PM

Blank ID: MB for HBN 1811635 [XXX/43852]

Blank Lab ID: 1580965

QC for Samples:

1204821001, 1204821002, 1204821003, 1204821004

Matrix: Water (Surface, Eff., Ground)

Results by AK102

LOQ/CL <u>Units</u> <u>Parameter</u> Results DL Diesel Range Organics 0.300U 0.600 0.180 mg/L

Surrogates

5a Androstane (surr) 94.3 60-120 %

Batch Information

Analytical Batch: XFC15741 Prep Batch: XXX43852 Analytical Method: AK102 Prep Method: SW3520C Instrument: Agilent 7890B F

Prep Date/Time: 9/14/2020 4:11:56PM

Analyst: CDM Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL Analytical Date/Time: 9/15/2020 8:18:00PM

Print Date: 09/16/2020 4:45:58PM

Blank Spike ID: LCS for HBN 1204821 [XXX43852]

Blank Spike Lab ID: 1580966 Date Analyzed: 09/15/2020 20:27 Spike Duplicate ID: LCSD for HBN 1204821

[XXX43852]

Spike Duplicate Lab ID: 1580967

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1204821001, 1204821002, 1204821003, 1204821004

Results by AK102

		Blank Spike	e (mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	21.7	109	20	20.5	103	(75-125)	5.60	(< 20)
Surrogates									
5a Androstane (surr)	0.4	112	112	0.4	108	108	(60-120)	3.60	

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: CDM

Prep Batch: XXX43852
Prep Method: SW3520C

Prep Date/Time: 09/14/2020 16:11

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 09/16/2020 4:46:00PM

Blank ID: MB for HBN 1811635 [XXX/43852]

Blank Lab ID: 1580965

QC for Samples:

1204821001, 1204821002, 1204821003, 1204821004

Matrix: Water (Surface, Eff., Ground)

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.250U
 0.500
 0.150
 mg/L

Surrogates

n-Triacontane-d62 (surr) 102 60-120 %

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: CDM

Analytical Date/Time: 9/15/2020 8:18:00PM

Prep Batch: XXX43852 Prep Method: SW3520C

Prep Date/Time: 9/14/2020 4:11:56PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 09/16/2020 4:46:03PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1204821 [XXX43852]

Blank Spike Lab ID: 1580966 Date Analyzed: 09/15/2020 20:27 Spike Duplicate ID: LCSD for HBN 1204821

[XXX43852]

Spike Duplicate Lab ID: 1580967

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1204821001, 1204821002, 1204821003, 1204821004

Results by AK103

		Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	21.8	109	20	20.3	102	(60-120)	6.80	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	108	108	0.4	113	113	(60-120)	4.90	

Batch Information

Analytical Batch: XFC15741 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: CDM

Prep Batch: XXX43852
Prep Method: SW3520C

Prep Date/Time: 09/14/2020 16:11

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 09/16/2020 4:46:06PM

		-120400.	
SHANNON & WILSON, INC. 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 www.shannonwilson.com	CHAIN-OF-CUSTODY	Allon	Page 1 of 1 Doratory SGS n: Jen Daw kins ative if used)
Turn Around Time: Quote No: J-Flags:			Remarks/Matrix Composition/Grab? Sample Containers
MW-11-15 MW-11-15 MW-12-10 EB-11-15 SAF)	11:54912120 X X X X	X	0
Project Information Number: 102539-0/2 Name: Gustavus MWs Contact: KRF Ongoing Project? Yes No Sampler: VTY / ALF Sampler: VTY / ALF Sampler: VTY / ALF	Signature: Time: 9:49 N/NA District Name: 14	Reliquished By: 2. Signature: Time: Printed Name: Date: Company:	Reliquished By: 3. Signature: Time: Printed Name: Date: Company:
Notes: Distribution: White - w/shipment - returned to Shannon & Wilson v Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - job file	Received By: 1, Signature: Time: Printed Name: Output Company:	Received By: 2. Signature: Time Printed Name: Date: Company:	Received By: 3. Signature: Time: 0821 Michelle Albarran Company: 1) 4.6 AS9 SGS

027 JNU 2357 26	95			Frid	ge			02	7-2357 2695
Shipper's Name and Address		Shipper's Ac	count Number	No	t Negotiable				
Shannon and Wilson Ir	nc L		200733 s ID Number	—— A	ir Wayb	ill	41		
2355 Hill Rd Fairbanks, AK 99712 USA		10	926	Iss	ued By		Ala:	SKA. CARGO	
	Tel: 907-							58900 SEATTLE, WA 98166 2752 ALASKACARGO.COM	
Consignee's Name and Address		Consignee's A	Account Numb	er Als	so notify				
SGS North America Hfpu			***********						
Anchorage, AK X		4							
USA		+	*		•				
	Tel: 907	562 2242		1			,	Tel:	
Issuing Carrier's Agent and City	161. 301	002 2040		-	counting Info			1 CI.	40000
losuing Carrier's Agent and Oity	•				hannon a		n Inc	•	10926
					355 Hill R		.,		
,				- 1	airbanks,		2		
Agent's IATA Code		Account No.		—— J	SA				
	•								•
Airport of Departure (Addr. of First Ca	rrier) and Reques	sted Routing						• .	
Juneau		-		9	SoldStreak				
To By First Carrier		То / Ву	To / By	Cu	rrency	WT/VAL	Other	Declared Value For Carriage	Declared Value For Customs
ANC Alaska Airlines	•	ŀ		Ιlυ	SD PX	х	X	NVD	NCV
Airport of Destination	Flight/Dat	e	Flight/Date		nount of Insur				
Anchorage	AS	073/05			XXX			. '	
Handling Information					*		······		
NOA 907 562 234	3		:						
DIMS 14X16X28									SCI
No of Gross kg Pieces Weight lb	Commodity Item No.	Charge Weig		Rate / Charge		Total			Quantity of Goods nsions or Volume)
2 108.0 L Q		108	.0			AS AG	REED	WATER SAMI	PLES
			. []		t han ta				
								Dims: 13 x 24 x	16 x 2
								1	
 								GSX	
2 108.0					1 /	S AG	REED	Volume: 5.778	
Prepaid Weight	Charge	Collect	Other Charge	es.					
AS AGREED		-511000	XBC	10.00					
Valuation	Charge		VPC	10.00					
		•							
Ta	ax	· · · · · · · · · · · · · · · · · · ·	1		•				
	,								
Total Other Cha	rges Due Agent		Shipper cert	ifies that the pa	articulars on t	he face her	eof are corre	ct and that insofar as any par	t of the consignment
		•	i contains da	ingerous good	is, such nari	is nronerl	v described	by name and is in proper col ations. I consent to the inspe	adition for a surface.
Total Other Char	ges Due Carrier			nannon a			regula	Sig <u>nature</u> of Shipper or his	
·			Inc	iai ii iUII d	iiu vviist	ווע		Signature of Shipper of the	. MORIL
				0.0111017	noe2 ::==			$\mathcal{V} \sim \mathcal{V}$	
	<u></u>		A BA	S SHIPMENT ! NGEROUS GO	<u>DOES NOT</u> (ODS	ONTAIN		THIS SHIPMENT DOES CO DANGEROUS GOODS	DNTAIN
Total Prepaid	Total C	Collect							· · · · · · · · · · · · · · · · · · ·
AS AGREED									
			1	2020 1	1:41	٠	Juneau	Alas	ska Airlines
			Executed (On (Date)			at (Place)	Signature of Issuir	ng Carrier or its Agent
								Pag	16 49 of 53 7-2357 2695

#406011

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Date	onnem-	4	The state of the s	5 3	
110111		2.7		* .,,,,,	
То	de la france	1	ý 1		
The same of the sa	्ये _र के क्रिके के	- 1 A	Company 1	···	
Collect □	Prepay □		Advanc	e Charg	jes 🗆
Job#)// //	PO# 🗐 💪	331	, ,	AG	7)
See all and a see all a se					
	17/ 5				
The state of the s			.		
2004	10863	g je ko			
4.7°					
	and the second second		l.		
Const.					
Shipped Signature	A STATE OF THE PARTY OF THE PAR	,	·		
		Total Ch	narge		
Received By:	A CONTRACTOR				

e-Sample Receipt Form

SGS Workorder #:

1204821

Review Criteria Condi	tion (Yes,	No, N/A		Exceptions Noted below
Chain of Custody / Temperature Requirement			N/A	Exemption permitted if sampler hand carries/delivers.
Were Custody Seals intact? Note # & location		1F	IVA	Exemplion permitted in complet hand conflet, delivere.
·				
COC accompanied samples				
DOD: Were samples received in COC corresponding coolers		L		
<u></u>				ago, or for samples where chilling is not required
Temperature blank compliant* (i.e., 0-6 °C after CF)?	? Yes		_	1 @ 4.6 °C Therm. ID: D59
		Cooler I	D:	@ °C Therm. ID:
If samples received without a temperature blank, the "cooler temperature" will be documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" will be noted to the right.		Cooler I	D:	@ °C Therm. ID:
be noted if neither is available.		Cooler I	D:	@ °C Therm. ID:
		Cooler I	D:	@ °O Therm. ID:
*If >6°C, were samples collected <8 hours ago?	N/A			
		ľ		
If <0°C, were sample containers ice free?	N/A			
· ·				
Note: Identify containers received at non-compliant temperature				
Use form FS-0029 if more space is needed				
Holding Time / Documentation / Sample Condition Require	ments	Note: Refe	er to fo	form F-083 "Sample Guide" for specific holding times.
Were samples received within holding time?	_			
		!		
Do samples match COC** (i.e.,sample IDs,dates/times collected)?	Yes			
**Note: If times differ <1hr, record details & login per COC.				
***Note: If sample information on containers differs from COC, SGS will default to COC info	ormation			
	_			
Were analytical requests clear? (i.e., method is specified for analyses with multiple option for analysis (Ex: BTEX, Metals				
With maniple option for analysis (EX. B12X, Mistale	,			
			NI/A	****
Were proper containers (type/mass/volume/preservative***)used?		Sample		***Exemption permitted for metals (e.g.,200.8/6020A).
vvere proper containers (type/mass/volume/preservative****)used	NO	Proceed	ed b	by changing lids.
Voletile / I I He Danning	aonts.			
Volatile / LL-Hg Requirem				
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with samples?				
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6mm)?				
Were all soil VOAs field extracted with MeOH+BFB?				
Note to Client: Any "No", answer above indicates non-comp	oliance	with stand	dard	procedures and may impact data quality.
Additional note	s (if a	pplicab	e).	
/ Maniorial Hote	3 (11 d	PPHOUD	~ <i>j</i> ·	

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
	1101				
1204821001-A	HCL to pH < 2	OK			
1204821001-B	HCL to pH < 2	OK			
1204821001-C	No Preservative Required	OK			
1204821001-D	No Preservative Required	OK			
1204821001-E	HCL to pH < 2	OK			
1204821001-F	HCL to pH < 2	OK			
1204821001-G	HCL to pH < 2	OK			
1204821001-H	HCL to pH < 2	OK			
1204821001-I	HCL to pH < 2	OK			
1204821001-J	HCL to pH < 2	OK			
1204821002-A	HCL to pH < 2	OK			
1204821002-B	HCL to pH < 2	OK			
1204821002-C	No Preservative Required	OK			
1204821002-D	No Preservative Required	OK			
1204821002-E	HCL to pH < 2	OK			
1204821002-F	HCL to pH < 2	OK			
1204821002-G	HCL to pH < 2	OK			
1204821002-H	HCL to pH < 2	OK			
1204821002-I	HCL to pH < 2	OK			
1204821002-J	HCL to pH < 2	OK			
1204821003-A	HCL to pH < 2	OK			
1204821003-B	HCL to $pH < 2$	OK			
1204821003-C	No Preservative Required	OK			
1204821003-D	No Preservative Required	OK			
1204821003-E	HCL to $pH < 2$	OK			
1204821003-F	HCL to pH < 2	OK			
1204821003-G	HCL to pH < 2	OK			
1204821003-H	HCL to $pH < 2$	OK			
1204821003-I	HCL to pH < 2	OK			
1204821003-J	HCL to $pH < 2$	OK			
1204821004-A	HCL to $pH < 2$	OK			
1204821004-B	HCL to $pH < 2$	OK			
1204821004-C	No Preservative Required	OK			
1204821004-D	No Preservative Required	OK			
1204821004-E	HCL to pH < 2	OK			
1204821004-F	HCL to pH < 2	OK			
1204821004-G	HCL to $pH < 2$	OK			
1204821004-H	HCL to $pH < 2$	OK			
1204821004-I	HCL to pH < 2	OK			
1204821004-J	HCL to $pH < 2$	OK			
1204821005-A	HCL to pH < 2	OK			
1204821005-B	HCL to pH < 2	OK			
1204821005-C	HCL to pH < 2	OK			
1204821005-D	HCL to pH < 2	OK			
1204821005-E	HCL to pH < 2	OK			
1204821005-F	HCL to pH < 2	OK			

Container IdPreservativeContainerContainer IdPreservativeContainerConditionCondition

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- QN Insufficient sample quantity provided.

Laboratory Data Review Checklist

Com	pleted By:
A	Amber Masters
Title	::
I	Environmental Scientist
Date	::
S	September 24, 2020
Cons	sultant Firm:
5	Shannon & Wilson, Inc.
Labo	oratory Name:
I	Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Labo	pratory Report Number:
1	1204821
Labo	oratory Report Date:
5	September 16, 2020
CS S	Site Name:
I	OOT&PF Gustavus Airport Statewide PFAS
ADE	EC File Number:
2	2569.38.033
Haza	ard Identification Number:
2	26981

Laborato	ory Report Date:
Note	e: Any N/A or No box checked must have an explanation in the comments box.
l. <u>Labo</u>	<u>oratory</u>
a.	. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes⊠ No□ N/A□ Comments:
b.	. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes \Boxtim No \Boxtim N/A \Boxtim Comments:
T	The requested analyses were conducted by SGS, North America, Inc. in Anchorage, AK.
	in of Custody (CoC)
a.	. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments:
b.	. Correct analyses requested?
<u></u>	Yes \boxtimes No \square N/A \square Comments:
3. <u>Labo</u>	oratory Sample Receipt Documentation
a. 	Sample/cooler temperature documented and within range at receipt (0° to 6° C)? Yes⊠ No□ N/A□ Comments:
I	the temperature blanks were measured within the acceptable temperature range of 0° C to 6° C upon eccept at the laboratory.
	. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	Yes⊠ No□ N/A□ Comments:
c.	. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments:
T	he sample receipt form notes that the lids on samples 4D, 3B, and 3D were cracked.

1204821

1204821	
aboratory Report Date:	
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?	
$Yes \boxtimes No \square N/A \square$ Comments:	
See 3.c. above.	
e. Data quality or usability affected?	
Comments:	
The data quality and/or usability was not affected. The sample containers with cracked lids noted in 3.c. above were not used for analysis.	
4. <u>Case Narrative</u>	
a. Present and understandable?	
Yes⊠ No□ N/A□ Comments:	
Comments.	
b. Discrepancies, errors, or QC failures identified by the lab?	
Yes \boxtimes No \square N/A \square Comments:	
The case narrative does not identify any QC failures, discrepancies, or errors.	
c. Were all corrective actions documented?	
Yes \square No \square N/A \boxtimes Comments:	
d. What is the effect on data quality/usability according to the case narrative?	
Comments:	
The data quality and/or usability was not affected; see above.	
5. Samples Results	
a. Correct analyses performed/reported as requested on COC?	
$Yes \boxtimes No \square N/A \square$ Comments:	
h All amiliachta halding times mat?	
b. All applicable holding times met?	
$Yes \boxtimes No \square N/A \square$ Comments:	

	1204821
La	poratory Report Date:
	c. All soils reported on a dry weight basis?
	$Yes \square No \square N/A \boxtimes Comments:$
	Soil samples were not submitted with this work order.
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	Yes□ No⊠ N/A□ Comments:
	The reporting limit (RL) is less than the applicable DEC regulatory limits for the project, except for 1,2,3-trichloropropane. These results have been bolded on the associated data tables.
	e. Data quality or usability affected?
	The data quality and/or usability was affected; see above.
6.	QC Samples
	a. Method Blank
	i. One method blank reported per matrix, analysis and 20 samples?
	Yes⊠ No□ N/A□ Comments:
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
	Yes⊠ No□ N/A□ Comments:
	There were no method blank detections associated with this work order.
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	$Yes \square No \square N/A \boxtimes Comments:$
	v. Data quality or usability affected?
	No: saa abaya
	No; see above.

	1204821
Labo	oratory Report Date:
	b. Laboratory Control Sample/Duplicate (LCS/LCSD)
	 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
	Yes⊠ No□ N/A□ Comments:
	LCS/LCSD samples were analyzed for VOC, PAH, GRO, DRO and RRO analyses.
	ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
	Yes \square No \boxtimes N/A \boxtimes Comments:
	Metals and/or inorganics were not analyzed as part of this work order.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
	Yes⊠ No□ N/A□ Comments:
	iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
	Yes⊠ No□ N/A□ Comments:
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
	NA; analytical accuracy and precision were demonstrated to be within acceptable limits.
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	Yes□ No□ N/A⊠ Comments:
	Qualification of the data was not required; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

The data quality and/or usability was not affected; see above.

Comments:

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes No N/A Comments: MS/MSD samples were not performed for the requested analyses. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and precision. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes No N/A Comments: Metals and/or inorganics were not analyzed as part of this work order. iii. Accuracy – All percent recoverics (%R) reported and within method or laboratory limits an project specified objectives, if applicable? Yes No N/A Comments: MS and MSD samples were not analyzed for this work order. iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes No N/A Comments: MS and MSD samples were not analyzed for this work order. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA; MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality or usability was not affected; see above. d. Surrogates — Organics Only or Isotope Dilution Analytes (IDA) — Isotope Dilution Methods Onl i. Are surrogate/IDA recoveries reported for organic analyses — field, QC and laboratory samples? Yes No N/A Comments:	204821	
Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No⊠ N/A□ Comments: MS/MSD samples were not performed for the requested analyses. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and precision. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A☒ Comments: Metals and/or inorganics were not analyzed as part of this work order. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits an project specified objectives, if applicable? Yes□ No□ N/A☒ Comments: MS and MSD samples were not analyzed for this work order. iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes□ No□ N/A☒ Comments: MS and MSD samples were not analyzed for this work order. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA; MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onli i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	ratory Report Date:	
Metals and/or inorganics were not analyzed as part of this work order. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits an project specified objectives, if applicable? Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA; MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onli. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	Note: Leave blank if not i. Organics – One MS/N Yes□ No⊠ N/A□ MS/MSD samples were not per an LCS and LCSD to assess land.	required for project MSD reported per matrix, analysis and 20 samples? Comments: erformed for the requested analyses. However, the laboratory analyzed aboratory accuracy and precision.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits an project specified objectives, if applicable? Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA; MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onl i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		
project specified objectives, if applicable? Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA; MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onl i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	Metals and/or inorganics were	e not analyzed as part of this work order.
iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA; MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onli i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	project specified object	ctives, if applicable?
 iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.		
MS and MSD samples were not analyzed for this work order. v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA; MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates − Organics Only or Isotope Dilution Analytes (IDA) − Isotope Dilution Methods Onli i. Are surrogate/IDA recoveries reported for organic analyses − field, QC and laboratory samples?	limits and project spec sample/sample duplication	cified objectives, if applicable? RPD reported from MS/MSD, and or ate.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: NA; MS and MSD samples were not analyzed for this work order. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No N/A Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onli i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A☒ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onl i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		ide of acceptable limits, what samples are affected?
Yes No N/A Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onl i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	NA; MS and MSD samples w	ere not analyzed for this work order.
MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onli i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	-	
vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onli i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		
The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Onli i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?		lity affected? (Use comment box to explain.)
i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?	The data quality and/or usabil	
Yes \boxtimes No \square N/A \square Comments:	i. Are surrogate/IDA red	
	Yes⊠ No□ N/A□	Comments:

atory Rep	port Date:
ii.	Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
,	$Yes \boxtimes No \square N/A \square$ Comments:
iii.	Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
	Yes \square No \square N/A \boxtimes Comments:
There w	vere no surrogate recovery failures associated with this work order.
iv.	Data quality or usability affected? Comments:
The data	a quality and/or usability was not affected; see above.
e. Trip i.	Blanks One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
•	Yes \boxtimes No \square N/A \square Comments:
	Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
	Yes □ No □ N/A □ Comments: The cooler was used to transport the samples in this work order.
	<u> </u>
	All results less than LOQ and project specified objectives?
	Yes⊠ No□ N/A□ Comments:
I here w	vere no trip blank detections associated with this work order.
iv.	If above LOQ or project specified objectives, what samples are affected? Comments:
N/A; se	e above
v.	Data quality or usability affected? Comments:
The data	a quality and/or usability was not affected; see above.

1204821

1204821	
poratory Report Date:	
f. Field Duplicate	
i. One field duplicate submitted per matrix, analysis and 10 project samples?	
$Yes \boxtimes No \square N/A \square$ Comments:	
ii. Submitted blind to lab?	
Yes⊠ No□ N/A□ Comments:	
The field duplicate pair MW-11-15/MW-11-115 was submitted with this work order	
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$	
Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration	
Yes⊠ No□ N/A□ Comments:	
RPDs could not be calculated since the analytes were not detected.	
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:	
The data quality and/or usability was not affected; see above.	
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?	
$Yes \boxtimes No \square N/A \square$ Comments:	
i. All results less than LOQ and project specified objectives?	
Yes \boxtimes No \square N/A \square Comments: Results are less than the LOQ, however, RRO were detected in the equipment blank below the	
reporting limit.	
ii. If above LOQ or project specified objectives, what samples are affected? Comments:	
RRO results in the following samples are considered not detected due to sample contamination identified in the equipment blank and have been flagged 'UB' at the LOQ in the analytical tables: <i>MW-11-15</i> , <i>MW-11-115</i> , and <i>MW-12-10</i> .	

	1204821			
La	aboratory Report Date:			
	iii. Data quality or u	ability	y affected? Comments:	
	Yes; see above.			
7.	Other Data Flags/Qualifiers (ACOE,	, AFCEE, Lab Specific, etc.)	
	a. Defined and appropria	te?		
	Yes□ No□ N/.	$\overline{\boxtimes}$	Comments:	

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks

2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: 1204822

Client Project: 101543-001 Gust. PFAS POE

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 09/28/2020 2:17:35PM Results via Engage

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks

SGS Project: 1204822

Project Name/Site: 101543-001 Gust. PFAS POE

Refer to sample receipt form for information on sample condition.

^{*} QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to the associated field samples.

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

В Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit) Ε The analyte result is above the calibrated range.

GT **Greater Than** Instrument Blank IB

Initial Calibration Verification **ICV** The quantitation is an estimation. LCS(D) Laboratory Control Spike (Duplicate) LLQC/LLIQC Low Level Quantitation Check

Limit of Detection (i.e., 1/2 of the LOQ) LOD

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

Matrix Spike (Duplicate) MS(D)

Indicates the analyte is not detected. ND

RPD Relative Percent Difference **TNTC** Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 09/28/2020 2:17:39PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
PW-200	1204822001	08/31/2020	09/08/2020	Water (Surface, Eff., Ground)
PW-200-FPort Cancelled	1204822002	08/31/2020	09/08/2020	Water (Surface, Eff., Ground)
PW-200-Sink	1204822003	08/31/2020	09/08/2020	Water (Surface, Eff., Ground)

Method Description

EP200.8 Metals in Water by 200.8 ICP-MS

Print Date: 09/28/2020 2:17:41PM

Detectable Results Summary

Client Sample ID: **PW-200** Lab Sample ID: 1204822001

Metals by ICP/MS

Parameter Arsenic Result 11.8 <u>Units</u> ug/L

Print Date: 09/28/2020 2:17:43PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of PW-200

Client Sample ID: PW-200

Client Project ID: 101543-001 Gust. PFAS POE

Lab Sample ID: 1204822001 Lab Project ID: 1204822 Collection Date: 08/31/20 11:06 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	11.8	5.00	1.50	ug/L	1		09/24/20 15:32

Batch Information

Analytical Batch: MMS10895 Analytical Method: EP200.8

Analyst: DMM

Analytical Date/Time: 09/24/20 15:32 Container ID: 1204822001-A Prep Batch: MXX33622 Prep Method: E200.2

Prep Date/Time: 09/15/20 11:15 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 09/28/2020 2:17:45PM J flagging is activated

Results of PW-200-Sink

Client Sample ID: PW-200-Sink

Client Project ID: 101543-001 Gust. PFAS POE

Lab Sample ID: 1204822003 Lab Project ID: 1204822

Collection Date: 08/31/20 10:35 Received Date: 09/08/20 08:21 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	2.50 U	5.00	1.50	ug/L	1		09/18/20 17:33

Batch Information

Analytical Batch: MMS10887 Analytical Method: EP200.8

Analyst: DMM

Analytical Date/Time: 09/18/20 17:33 Container ID: 1204822003-A

Prep Batch: MXX33622 Prep Method: E200.2

Prep Date/Time: 09/15/20 11:15 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 09/28/2020 2:17:45PM J flagging is activated

Method Blank

Blank ID: MB for HBN 1811706 [MXX/33622]

Blank Lab ID: 1581279

QC for Samples:

1204822001, 1204822003

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Results <u>Parameter</u> Arsenic 2.50U

LOQ/CL DL 5.00 1.50

<u>Units</u> ug/L

Batch Information

Analytical Batch: MMS10887 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 9/18/2020 5:18:09PM

Prep Batch: MXX33622 Prep Method: E200.2

Prep Date/Time: 9/15/2020 11:15:57AM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 09/28/2020 2:18:17PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1204822 [MXX33622]

Blank Spike Lab ID: 1581280 Date Analyzed: 09/18/2020 17:21

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1204822001, 1204822003

Results by EP200.8

Blank Spike (ug/L)

Parameter Spike Result Rec (%) CL

Arsenic 1000 1030 103 (85-115)

Batch Information

Analytical Batch: MMS10887 Prep Batch: MXX33622
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 09/15/2020 11:15

Analyst: DMM Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 09/28/2020 2:18:19PM

Matrix Spike Summary

Original Sample ID: 1581282 MS Sample ID: 1581283 MS

MSD Sample ID:

QC for Samples:

1204822001, 1204822003

Analysis Date: 09/18/2020 17:24 Analysis Date: 09/18/2020 17:27

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Matrix Spike (ug/L)

Spike Duplicate (ug/L)

<u>Parameter</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Arsenic 5.96 1000 1030 103 70-130

Batch Information

Analytical Batch: MMS10887 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 9/18/2020 5:27:06PM

Prep Batch: MXX33622

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 9/15/2020 11:15:57AM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 09/28/2020 2:18:20PM

Matrix Spike Summary

Original Sample ID: 1581284 MS Sample ID: 1581285 MS

MSD Sample ID:

QC for Samples:

1204822001, 1204822003

Analysis Date: 09/18/2020 17:33 Analysis Date: 09/18/2020 17:36

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Matrix Spike (ug/L)

Spike Duplicate (ug/L)

Arsenic 2.50U 1000 1050 105 70-130

Batch Information

Analytical Batch: MMS10887 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 9/18/2020 5:36:04PM

Prep Batch: MXX33622

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 9/15/2020 11:15:57AM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 09/28/2020 2:18:20PM

Dawkins, Jennifer A (Fairbanks)

From: Dawkins, Jennifer A (Fairbanks)

Sent: Monday, September 28, 2020 1:19 PM

To: Dawkins, Jennifer A (Fairbanks)

Subject: 1204822 Change Order

Please cancel PW-200-FPort, per client.

Jennifer A-B Dawkins

Environment, Health & Safety

Fairbanks Client Services Project Manager - Alaska SGS 3180 Peger Rd. Ste. 190 Fairbanks, AK 99709 907-474-8656 907-322-8444 jennifer.dawkins@sgs.com

				!	120482	22	
SHANNON & WILSON, INC. 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600	CHAIN	N-OF-C	USTO				page of the property of street of st
www.shannonwilson.com							
Turn Around Time: Quote No:			/				/ kidite's
Normal Rush J-Flags:	Yes No]	of Keganic				Remarks/Matrix Composition/Grab? Sample Containers
*** 31213.6	- 240	' /					Remarks/Matrix
Please Specify ## 3471/28	D	ate /S					Composition/Grab? Sample Containers
Sample Identity Lab No.			(D)	$\overline{}$		<u> </u>	
PW-200		31/20 ×					2 groundwater 2 #Hold*
* PW-200-FPOIT * Hold * PW-200-Sink*	1	3/2/~	(IA)				2 710107
100 - 200 - 3.1 K	1035 \$13	1/20 ×	(3A)				<u> </u>
Project Information Sample	GAZZIA PARA	Paliani	shed By: 1		Reliquished E	3y; 2,	Reliquished By: 3.
		Signature:	Time: <u>/</u>			Time:	Signature: Time:
Number: 101543-001 Total No. of Contained Name: Gost. PAS PE COC Seals/Intact? Y		oignature.		J.g.		· · · · · · · · · · · · · · · · · · ·	
Contact: LRF Received Good Cond		Printed Name:	Date: 9	/3/20 Printed	I Name:	Date:	Printed Name: Date.
Ongoing Project? Yes █ No Temp:		A. Mas	ters		·	- 1.000 · · · · · · · · · · · · · · · · · ·	
Sampler: ACM Delivery Method:		II Company:	-3	Compa	any:		Company:
Notes:		Shanag	ved By: 1.		Received By	/: 2.	Received By: 3.
	r Dichester (million to bioterm in the later of Library section (e.g. 96) 1964.	Signature:	Time:	Signatu	STATE OF THE PARTY	Time:	Signature: Time: 6824
						-	hundle les nur
0 1		Printed Name:	Date:	Printed	l Name:	Date:	Printed Name: Date: 18/2
					2101		Medielle Albarian / 1 4 6 DSC1
Distribution: White - w/shipment - returned to Shannon & Wilson Yellow - w/shipment - for consignee files	w/ laboratory report	Company:		Compa	any:		Company: 1) 4. 6 DSS
Pink - Shannon & Wilson - job file				I			

007	INIL ODEZ OC	0.5			Fride	xe			00	7 0057 0005
	JNU 2357 26 Name and Address	95	Shipper's Ac	count Number	Not t	Vegotiable			02	7-2357 2695
Shannon and Wilson Inc 27400200733					· Wayb	ill	11			
2355 Hill Rd Customer's ID Numb Fairbanks, AK 99712				926.	Issue	ed By		Ala:	SKA. CARGO	
USA		Tel: 907-4	79-0600			,			58900 SEATTLE, WA 9816 2752 ALASKACARGO.CON	
	e's Name and Address		Consignee's A	ccount Number	Also	notify				
Hfpu	North America			* :						
	orage, AK X								·	
		Tel: 907 5	62 2343						Tel:	
issuing Ca	arrier's Agent and City	•			Sh 23	Accounting Information 10926 Shannon and Wilson Inc 2355 Hill Rd Fairbanks, AK 99712				
Agent's IA	TA Code		Account No.		us	SA .				
Airport of Junea	Departure (Addr. of First Ca	arrier) and Requeste	ed Routing		Go	oldStreak		,	•	
То	By First Carrier		To / By	To / By	Curr	ency	WT/VAL	Other	Declared Value For Carriage	Declared Value For Customs
	Alaska Airlines	· · · · · · · · · · · · · · · · · · ·				SD PX		Х	NVD	NCV
Ancho	Destination Drage	Flight/Date	073/05	Flight/Date	Amo	ount of Insur				
	Information			<u> </u>						
	NOA 907 562 234	13		:	-					
	DIMS 14X16X28						-			SCI .
No of Pieces	Gross kg Weight lb	Commodity Item No.	Charge Weig		Rate / Charge		Total		Nature and (Incl. Dime	Quantity of Goods nsions or Volume)
2	108.0		108	.0			AS AC	REED	WATER SAM	PLES
			, ,							
	·									
	.								Dims: 13 x 24 x	16 v 2
						,			DIMS: 13 X 24 X	10 X Z ,
		-		.						•
									gsx	
2	108.0				,		AS AG	REED	Volume: 5.778	
Prepaid	•	Charge	Collect			<u> </u>				
<u></u>	AS AGREED Valuation	n Charge		XBC	10.00					
							*			
	T	ax				•				
	Total Other Ch	arges Due Agent		Shipper certific	es that the par	ticulars on t	he face her	eof are corre	ect and that insofar as any par	t of the consignment
	contains dangerous goods, such part is properly described by name and is in proper condition for carriage by air according to the applicable Dangerous Goods Regulations. I consent to the inspection of this cargo.									
For: Shannon and Wilson Signature of Shipper or his Agent Inc						s Agent				
THIS SHIPMENT DOES NOT C					ONTAIN		THIS SHIPMENT DOES CO	ONTAIN		
	Total Prepaid	Total Co	llect	DANC	SEROUS GOO	DDS			DANGEROUS GOODS	
	AS AGREED		···	04 Sep :	2020 44	·//1		lunos	A1	ako Ainlin
				Executed On		·- 1		Juneau at (Place)		ska Airlines
					·····			/	;	27-2357 2695

Alert Expeditors Inc.

#406011

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Date	annen-h.	/ 1	5.)	
	· ·			
то	5 P S P		grafe.	
Collect □	Prepay □	-	ce Charg	jes 🗇
Job # 3/4 //	PO# // 5 3 3	7	-78 Ç	7)
and the same of th				
	3			
and the second	105603			

<u> </u>	, constant			
Programme and the second secon	The second			
	***,			
Shipped Signature	The second secon			
Received By:	Total (Charge		

e-Sample Receipt Form

SGS Workorder #:

1204822

Review Criteria	Condition (Yes	No, N/A	Exceptions	Noted below
Chain of Custody / Temperature Requ	<u>irements</u>	N	Exemption permitted if	sampler hand carries/delivers.
Were Custody Seals intact? Note # 8	& location Yes	1F		
COC accompanied s	samples? Yes			
DOD: Were samples received in COC corresponding	coolers? N/A			
N/A **Exemption permitted i	if chilled & colle	cted <8 hou	ırs ago, or for samples whe	ere chilling is not required
Temperature blank compliant* (i.e., 0-6 °C aft	ter CF)? Yes	Cooler ID:	1 @	4.6 °C Therm. ID: D59
		Cooler ID:	@	°C Therm. ID:
If samples received without a temperature blank, the "cooler temperature" w		Cooler ID:	@	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "obe noted if neither is available.	chilled" will	Cooler ID:	@	
		Cooler ID:	@	
*If >6°C, were samples collected <8 hour	rs ago? N/A			
		Ï		
If <0°C, were sample containers in	ce free? N/A			
		Ï		
Note: Identify containers received at non-compliant temper	erature .			
Use form FS-0029 if more space is				
Holding Time / Documentation / Sample Condition F		Note: Refer t	o form F-083 "Sample Guide" f	or specific holding times.
Were samples received within holding	ng time? Yes			
Do samples match COC** (i.e.,sample IDs,dates/times coll			there were two container	s per sample. Only one
**Note: If times differ <1hr, record details & login per 0	COC.	container	for each was received.	
***Note: If sample information on containers differs from COC, SGS will default to	COC information			
Were analytical requests clear? (i.e., method is specified for a		<u> </u>		
with multiple option for analysis (Ex: BTEX,	Metals)			
			es ***Exemption permitted	d for metals (e.g,200.8/6020A).
Were proper containers (type/mass/volume/preservative**	(*)used?	Į.		
V-1-01-711-11-B		ł		
Volatile / LL-Hg Re				
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sa				
Were all water VOA vials free of headspace (i.e., bubbles ≤	·			
Were all soil VOAs field extracted with MeOh	U.			
Note to Client: Any "No", answer above indicates no	on-compliance	with standa	rd procedures and may imp	pact data quality.
Addition	al notes (if a	pplicable):	

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u>	Container Id	<u>Preservative</u>	<u>Container</u>
		Condition			<u>Condition</u>
1204822001-A	HNO3 to pH < 2	OK			
1204822002-A	HNO3 to pH < 2	OK			
1204822003-A	HNO3 to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added.

Laboratory Data Review Checklist

Completed By:	
Veselina Yakimova	
Title:	
Geologist	
Date:	
10/05/2020	
Consultant Firm:	
Shannon & Wilson, Inc.	
Laboratory Name:	
SGS	
Laboratory Report Number:	
1204822	
Laboratory Report Date:	
9/28/2020	
CS Site Name:	
DOT&PF Gustavus Airport Statev	vide PFAS
ADEC File Number:	
2569.38.033	
Hazard Identification Number:	
26981	

	No	te:	Any N/A	or No k	ox checked	must have an explanation in the comments box.
1.	La	boı	ratory			
		a.	Did an AD	EC CS	approved lab	oratory receive and <u>perform</u> all of the submitted sample analyses?
	_		Yes⊠	No□	N/A□	Comments:
	_	b.				to another "network" laboratory or sub-contracted to an alternate performing the analyses ADEC CS approved?
	_		Yes□	No□	$N/A \boxtimes$	Comments:
		An	alyses were	e perfori	med by SGS	North America Inc. in Anchorage, AK.
2.	Ch	air	of Custody	y (CoC)		
		a.	CoC inform	nation o	completed, sig	gned, and dated (including released/received by)?
	_		Yes⊠	No□	N/A□	Comments:
		b.	Correct and	alyses r	equested?	
			Yes⊠	No□	N/A□	Comments:
3.	La	boı	ratory Samp	ole Rece	eipt Documen	tation_
		a.	Sample/co	oler ten	perature doc	umented and within range at receipt (0° to 6° C)?
			Yes⊠	No□	N/A□	Comments:
		Ch	ain of custo	dy forn	n indicates the	e temperature of the sample cooler was 4.6° C upon receipt.
		b.			on acceptable ed Solvents, o	e – acidified waters, Methanol preserved VOC soil (GRO, BTEX, etc.)?
	_		Yes⊠	No□	N/A□	Comments:
	_	c.	Sample con	ndition	documented -	- broken, leaking (Methanol), zero headspace (VOC vials)?

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes \boxtimes No \square N/A \square Comments:

The sample receipt notes that the COC said there were two containers per sample. Only one container for each was received.

Comments:

The sample receipt form notes the samples arrived in good condition.

May 2020 Page 2

 $Yes \boxtimes No \square N/A \square$

	e.	Data quality or usability affected?		
		Comments:		
	No	effect on data quality/usability.		
4.	Ca	se Narrative		
	a.	Present and understandable?		
		Yes \boxtimes No \square N/A \square Comments:		
	b.	Discrepancies, errors, or QC failures identified by the lab?		
		Yes \boxtimes No \square N/A \square Comments:		
	Tl	ne case narrative refers to the sample receipt form for information on sample condition.		
	c.	Were all corrective actions documented?		
		Yes \square No \square N/A \boxtimes Comments:		
	No	corrective actions required. Arsenic requires only one container per sample.		
	d.	What is the effect on data quality/usability according to the case narrative?		
		Comments:		
	Th	e data quality/usability are unaffected.		
Sa	ımpl	es Results		
	0	Correct analyses performed/reported as requested on COC?		
	a.	Yes No N/A Comments:		
		1 CS A TVO L TV/AL COMMICHES.		
b. All applicable holding times met?				
		$Yes \boxtimes No \square N/A \square$ Comments:		
	c.	All soils reported on a dry weight basis?		
		Yes \square No \square N/A \boxtimes Comments:		
	So	il samples were not submitted with this work order.		
	d.	Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?		
		Yes⊠ No□ N/A□ Comments:		
	Re	porting limits are below the EPA drinking water standard of 10 ppb.		

5.

e. Data quality or usability affected?	
The data quality/usability are not affected.	
6. QC Samples	
a. Method Blank	
i. One method blank reported per matrix, analysis and 20 samples?	
$Yes \boxtimes No \square N/A \square$ Comments:	
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives	?
$Yes \boxtimes No \square N/A \square$ Comments:	
iii. If above LOQ or project specified objectives, what samples are affected? Comments:	
None; arsenic was not detected in the method blank sample.	
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?	
$Yes \square No \square N/A \boxtimes Comments:$	
Qualification of the data was not required.	
v. Data quality or usability affected? Comments:	
The data quality/usability are not affected; see above.	
b. Laboratory Control Sample/Duplicate (LCS/LCSD)	
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) 	
$Yes \square No \square N/A \boxtimes Comments:$	
Arsenic was the only analysis requested for this work order.	
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?	
$Yes \square No \boxtimes N/A \square$ Comments:	
An LCS was reported for arsenic analysis via EPA method 200.8. No sample duplicate was reported.	
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)	L
$Yes \boxtimes No \square N/A \square$ Comments:	

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
$Yes \square No \square N/A \boxtimes Comments:$
An LCSD was not reported.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
None; analytical accuracy was demonstrated to be within acceptable limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments:
No samples are affected. Qualification of the data is not required.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality/usability are not affected.
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
Yes \square No \square N/A \boxtimes Comments:
Yes□ No□ N/A⊠ Comments: Arsenic was the only analysis requested for this work order.
Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes⊠ No□ N/A□ Comments:
Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes No N/A Comments: Two MS samples were reported for arsenic analysis via EPA method 200.8. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and
Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes ⋈ No ⋈ N/A ⋈ Comments: Two MS samples were reported for arsenic analysis via EPA method 200.8. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes ⋈ No ⋈ N/A ⋈ Comments: Two MS samples were reported for arsenic analysis via EPA method 200.8. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes ⋈ No ⋈ N/A ⋈ Comments: Two MS samples were reported for arsenic analysis via EPA method 200.8. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes ⋈ No ⋈ N/A ⋈ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or

Comments: None; analytical accuracy was demonstrated to be within acceptable limits. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? $Yes \square No \square N/A \boxtimes$ Comments: No samples are affected. Qualification of the data is not required. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality/usability are not affected. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes \square No \square N/A \boxtimes Comments: Arsenic was the only analysis requested for this work order. ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \square No \square N/A \boxtimes$ Comments: See above. iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: See above. iv. Data quality or usability affected? Comments: The data quality/usability is not affected. See above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes \square No \square N/A \boxtimes Comments: Volatile analyses were not requested with this work order. A trip blank was not required. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: A trip blank was not submitted with this work order.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

111. All results less than LOQ and project specified objectives?
Yes□ No□ N/A⊠ Comments:
Trip blanks are not required for this project.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
None; volatile analyses were not requested.
v. Data quality or usability affected? Comments:
The data quality/usability are not affected; see above.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
Yes \square No \square N/A \boxtimes Comments:
A field duplicate pair was not submitted as a part of the work order; however, the appropriate number of field duplicate pairs were submitted for the overall project.
ii. Submitted blind to lab?
Yes \square No \square N/A \boxtimes Comments:
See above.
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration
Yes \square No \square N/A \boxtimes Comments:
See above.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
No effect on data quality or usability.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
Yes \square No \square N/A \boxtimes Comments:
Project samples are not collected with reusable equipment, so the prospect of foreign contaminants being introduced through equipment contamination is not plausible.

1.	All results less than LOQ and project specified objectives?							
	Yes \square No \square N/A \boxtimes Comments:							
An eq	uipment blank was not submitted with this work order.							
ii	I. If above LOQ or project specified objectives, what samples are affected? Comments:							
None;	; an equipment blank was not required for this project.							
ii	ii. Data quality or usability affected? Comments:							
The da	The data quality/usability are not affected; see above.							
7. Other Dat	ta Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)							
a. De	efined and appropriate?							
	Yes \square No \square N/A \boxtimes Comments:							
There	were no other flags/qualifiers required.							

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks

2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: 1210031

Client Project: 102599-011 ADOT+PF Gustavus

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 01/20/2021 2:31:34PM Results via Engage

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks
SGS Project: 1210031

Project Name/Site: 102599-011 ADOT+PF Gustavus Project Contact: Kristen Freiburger

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 01/20/2021 2:31:36PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry & Microbiology (Provisionally Certified as of 12/03/2020 for Turbidity by SM2130B, Copper & Mercury by EPA200.8 and Trihalomethanes by EPA 524.2) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 01/20/2021 2:31:38PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-11-15	1210031001	12/31/2020	01/04/2021	Water (Surface, Eff., Ground)
MW-12-10	1210031002	12/31/2020	01/04/2021	Water (Surface, Eff., Ground)
MW-112-10	1210031003	12/31/2020	01/04/2021	Water (Surface, Eff., Ground)
Trip Blank	1210031004	12/31/2020	01/04/2021	Water (Surface, Eff., Ground)

 Method
 Method Description

 8270D SIM LV (PAH)
 8270 PAH SIM GC/MS LV

 AK101
 AK101/8021 Combo.

 SW8021B
 AK101/8021 Combo.

 AK102
 DRO/RRO Low Volume Water

 AK103
 DRO/RRO Low Volume Water

Print Date: 01/20/2021 2:31:40PM

Detectable Results Summary

Client Comple ID: MIN 44 4E			
Client Sample ID: MW-11-15 Lab Sample ID: 1210031001 Semivolatile Organic Fuels	<u>Parameter</u> Diesel Range Organics	<u>Result</u> 0.308J	<u>Units</u> mg/L
	Residual Range Organics	0.408J	mg/L
Client Sample ID: MW-12-10			
Lab Sample ID: 1210031002	<u>Parameter</u>	Result	<u>Units</u>
Semivolatile Organic Fuels	Diesel Range Organics	0.374J	mg/L
-	Residual Range Organics	0.512J	mg/L
Client Sample ID: MW-112-10			
Lab Sample ID: 1210031003	<u>Parameter</u>	Result	Units
Semivolatile Organic Fuels	Diesel Range Organics	0.233J	mg/L
-	Residual Range Organics	0.323J	mg/L

Print Date: 01/20/2021 2:31:41PM

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031001 Lab Project ID: 1210031 Collection Date: 12/31/20 11:06 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		01/11/21 17:30
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		01/11/21 17:30
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		01/11/21 17:30
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 17:30
Surrogates							
2-Methylnaphthalene-d10 (surr)	65	37-78		%	1		01/11/21 17:30
Fluoranthene-d10 (surr)	70.8	24-116		%	1		01/11/21 17:30

Batch Information

Analytical Batch: XMS12462

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 01/11/21 17:30

Container ID: 1210031001-I

Prep Batch: XXX44348
Prep Method: SW3535A
Prep Date/Time: 01/05/21 14:44
Prep Initial Wt./Vol.: 260 mL
Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:31:43PM J flagging is activated

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031001 Lab Project ID: 1210031 Collection Date: 12/31/20 11:06 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter Diesel Range Organics	Result Qual 0.308 J	LOQ/CL 0.612	<u>DL</u> 0.184	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 01/08/21 11:36
Surrogates							
5a Androstane (surr)	92.9	50-150		%	1		01/08/21 11:36

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 01/08/21 11:36 Container ID: 1210031001-G Prep Batch: XXX44359
Prep Method: SW3520C
Prep Date/Time: 01/07/21 16:00
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.408 J	0.510	0.153	mg/L	1		01/08/21 11:36
Surrogates							
n-Triacontane-d62 (surr)	101	50-150		%	1		01/08/21 11:36

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 01/08/21 11:36 Container ID: 1210031001-G Prep Batch: XXX44359
Prep Method: SW3520C
Prep Date/Time: 01/07/21 16:00
Prep Initial Wt./Vol.: 245 mL
Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:31:43PM

t 907.562.2343 f 907.561.5301 www.us.sgs.com

J flagging is activated

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031001 Lab Project ID: 1210031 Collection Date: 12/31/20 11:06 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		01/05/21 15:57
Surrogates							
4-Bromofluorobenzene (surr)	81.3	50-150		%	1		01/05/21 15:57

Batch Information

Analytical Batch: VFC15480 Analytical Method: AK101

Analyst: S.S

Analytical Date/Time: 01/05/21 15:57 Container ID: 1210031001-A Prep Batch: VXX36772
Prep Method: SW5030B
Prep Date/Time: 01/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		01/05/21 15:57
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		01/05/21 15:57
o-Xylene	0.500 U	1.00	0.310	ug/L	1		01/05/21 15:57
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		01/05/21 15:57
Toluene	0.500 U	1.00	0.310	ug/L	1		01/05/21 15:57
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		01/05/21 15:57
Surrogates							
1,4-Difluorobenzene (surr)	82.6	77-115		%	1		01/05/21 15:57

Batch Information

Analytical Batch: VFC15480 Analytical Method: SW8021B

Analyst: S.S

Analytical Date/Time: 01/05/21 15:57 Container ID: 1210031001-A Prep Batch: VXX36772 Prep Method: SW5030B Prep Date/Time: 01/05/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/20/2021 2:31:43PM

J flagging is activated

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031002 Lab Project ID: 1210031 Collection Date: 12/31/20 09:33 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

Deremeter	Pacult Ougl	1.00/01	DI	Lleita	DE	Allowable
Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits Date Analyzed
1-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1	01/11/21 17:50
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1	01/11/21 17:50
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Naphthalene	0.0500 U	0.100	0.0310	ug/L	1	01/11/21 17:50
Phenanthrene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1	01/11/21 17:50
Surrogates						
2-Methylnaphthalene-d10 (surr)	57.7	37-78		%	1	01/11/21 17:50
Fluoranthene-d10 (surr)	63.9	24-116		%	1	01/11/21 17:50

Batch Information

Analytical Batch: XMS12462

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 01/11/21 17:50

Container ID: 1210031002-I

Prep Batch: XXX44348 Prep Method: SW3535A

Prep Date/Time: 01/05/21 14:44 Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:31:43PM J flagging is activated

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031002 Lab Project ID: 1210031 Collection Date: 12/31/20 09:33 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.374 J	0.625	0.188	mg/L	1	Limits	01/08/21 11:46
Surrogates 5a Androstane (surr)	91.3	50-150		%	1		01/08/21 11:46

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 01/08/21 11:46 Container ID: 1210031002-G Prep Batch: XXX44359
Prep Method: SW3520C
Prep Date/Time: 01/07/21 16:00
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.512 J	0.521	0.156	mg/L	1		01/08/21 11:46
Surrogates							
n-Triacontane-d62 (surr)	100	50-150		%	1		01/08/21 11:46

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 01/08/21 11:46 Container ID: 1210031002-G Prep Batch: XXX44359
Prep Method: SW3520C
Prep Date/Time: 01/07/21 16:00
Prep Initial Wt./Vol.: 240 mL
Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:31:43PM

J flagging is activated

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031002 Lab Project ID: 1210031 Collection Date: 12/31/20 09:33 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 0.0500 U	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 01/05/21 16:15
Surrogates							
4-Bromofluorobenzene (surr)	82.5	50-150		%	1		01/05/21 16:15

Batch Information

Analytical Batch: VFC15480 Analytical Method: AK101

Analyst: S.S

Analytical Date/Time: 01/05/21 16:15 Container ID: 1210031002-A Prep Batch: VXX36772
Prep Method: SW5030B
Prep Date/Time: 01/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		01/05/21 16:15
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		01/05/21 16:15
o-Xylene	0.500 U	1.00	0.310	ug/L	1		01/05/21 16:15
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		01/05/21 16:15
Toluene	0.500 U	1.00	0.310	ug/L	1		01/05/21 16:15
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		01/05/21 16:15
Surrogates							
1,4-Difluorobenzene (surr)	81	77-115		%	1		01/05/21 16:15

Batch Information

Analytical Batch: VFC15480 Analytical Method: SW8021B

Analyst: S.S

Analytical Date/Time: 01/05/21 16:15 Container ID: 1210031002-A Prep Batch: VXX36772
Prep Method: SW5030B
Prep Date/Time: 01/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 01/20/2021 2:31:43PM

J flagging is activated

Results of MW-112-10

Client Sample ID: MW-112-10

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031003 Lab Project ID: 1210031

Collection Date: 12/31/20 09:23 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		01/11/21 18:11
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		01/11/21 18:11
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		01/11/21 18:11
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		01/11/21 18:11
Surrogates							
2-Methylnaphthalene-d10 (surr)	55.9	37-78		%	1		01/11/21 18:11
Fluoranthene-d10 (surr)	62.2	24-116		%	1		01/11/21 18:11

Batch Information

Analytical Batch: XMS12462

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 01/11/21 18:11

Container ID: 1210031003-I

Prep Batch: XXX44348 Prep Method: SW3535A Prep Date/Time: 01/05/21 14:44 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:31:43PM J flagging is activated

Results of MW-112-10

Client Sample ID: MW-112-10

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031003 Lab Project ID: 1210031 Collection Date: 12/31/20 09:23 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter	Result Qual 0.233 J	LOQ/CL 0.600	<u>DL</u> 0.180	<u>Units</u>	<u>DF</u>	Allowable Limits	<u>Date Analyzed</u> 01/08/21 11:56
Diesel Range Organics Surrogates	0.233 J	0.600	0.160	mg/L	ı		01/06/21 11:50
5a Androstane (surr)	89.4	50-150		%	1		01/08/21 11:56

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 01/08/21 11:56 Container ID: 1210031003-G Prep Batch: XXX44359
Prep Method: SW3520C
Prep Date/Time: 01/07/21 16:00
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.323 J	0.500	0.150	mg/L	1		01/08/21 11:56
Surrogates							
n-Triacontane-d62 (surr)	100	50-150		%	1		01/08/21 11:56

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 01/08/21 11:56 Container ID: 1210031003-G Prep Batch: XXX44359
Prep Method: SW3520C
Prep Date/Time: 01/07/21 16:00
Prep Initial Wt./Vol.: 250 mL
Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:31:43PM J flagging is activated

Results of MW-112-10

Client Sample ID: MW-112-10

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031003 Lab Project ID: 1210031 Collection Date: 12/31/20 09:23 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u> Gasoline Range Organics	Result Qual 0.0500 U	LOQ/CL 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 01/05/21 16:33
Surrogates							
4-Bromofluorobenzene (surr)	87.4	50-150		%	1		01/05/21 16:33

Batch Information

Analytical Batch: VFC15480 Analytical Method: AK101

Analyst: S.S

Analytical Date/Time: 01/05/21 16:33 Container ID: 1210031003-A Prep Batch: VXX36772
Prep Method: SW5030B
Prep Date/Time: 01/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		01/05/21 16:33
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		01/05/21 16:33
o-Xylene	0.500 U	1.00	0.310	ug/L	1		01/05/21 16:33
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		01/05/21 16:33
Toluene	0.500 U	1.00	0.310	ug/L	1		01/05/21 16:33
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		01/05/21 16:33
Surrogates							
1,4-Difluorobenzene (surr)	80.9	77-115		%	1		01/05/21 16:33

Batch Information

Analytical Batch: VFC15480 Analytical Method: SW8021B

Analyst: S.S

Analytical Date/Time: 01/05/21 16:33 Container ID: 1210031003-A Prep Batch: VXX36772
Prep Method: SW5030B
Prep Date/Time: 01/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 01/20/2021 2:31:43PM

J flagging is activated

Results of Trip Blank

Client Sample ID: Trip Blank

Client Project ID: 102599-011 ADOT+PF Gustavus

Lab Sample ID: 1210031004 Lab Project ID: 1210031 Collection Date: 12/31/20 09:23 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		01/05/21 15:21
Surrogates							
4-Bromofluorobenzene (surr)	89.3	50-150		%	1		01/05/21 15:21

Batch Information

Analytical Batch: VFC15480 Analytical Method: AK101

Analyst: S.S

Analytical Date/Time: 01/05/21 15:21 Container ID: 1210031004-A

Prep Batch: VXX36772
Prep Method: SW5030B
Prep Date/Time: 01/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		01/05/21 15:21
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		01/05/21 15:21
o-Xylene	0.500 U	1.00	0.310	ug/L	1		01/05/21 15:21
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		01/05/21 15:21
Toluene	0.500 U	1.00	0.310	ug/L	1		01/05/21 15:21
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		01/05/21 15:21
Surrogates							
1,4-Difluorobenzene (surr)	81.2	77-115		%	1		01/05/21 15:21

Batch Information

Analytical Batch: VFC15480 Analytical Method: SW8021B

Analyst: S.S

Analytical Date/Time: 01/05/21 15:21 Container ID: 1210031004-A

Prep Batch: VXX36772
Prep Method: SW5030B
Prep Date/Time: 01/05/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 01/20/2021 2:31:43PM J flagging is activated

Method Blank

Blank ID: MB for HBN 1815219 [VXX/36772]

Blank Lab ID: 1597063

QC for Samples:

1210031001, 1210031002, 1210031003, 1210031004

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0310
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 87.9 50-150 %

Batch Information

Analytical Batch: VFC15480 Analytical Method: AK101

Instrument: Agilent 7890 PID/FID

Analyst: S.S

Analytical Date/Time: 1/5/2021 10:44:00AM

Prep Batch: VXX36772 Prep Method: SW5030B

Prep Date/Time: 1/5/2021 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/20/2021 2:31:45PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1210031 [VXX36772]

Blank Spike Lab ID: 1597066 Date Analyzed: 01/05/2021 11:37 Spike Duplicate ID: LCSD for HBN 1210031

[VXX36772]

Spike Duplicate Lab ID: 1597067 Matrix: Water (Surface, Eff., Ground)

1210031001, 1210031002, 1210031003, 1210031004 QC for Samples:

Results by AK101

	[Blank Spike	e (mg/L)	S	pike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.02	102	1.00	0.999	100	(60-120)	2.20	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500	87.9	88	0.0500	92.3	92	(50-150)	4.80	

Batch Information

Analytical Batch: VFC15480 Analytical Method: AK101 Instrument: Agilent 7890 PID/FID

Analyst: S.S

Prep Batch: VXX36772 Prep Method: SW5030B

Prep Date/Time: 01/05/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 01/20/2021 2:31:48PM

Method Blank

Blank ID: MB for HBN 1815219 [VXX/36772]

Blank Lab ID: 1597063

QC for Samples:

1210031001, 1210031002, 1210031003, 1210031004

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	0.930	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	83.8	77-115		%

Batch Information

Analytical Batch: VFC15480 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: S.S

Analytical Date/Time: 1/5/2021 10:44:00AM

Prep Batch: VXX36772 Prep Method: SW5030B

Prep Date/Time: 1/5/2021 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 01/20/2021 2:31:51PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1210031 [VXX36772]

Blank Spike Lab ID: 1597064 Date Analyzed: 01/05/2021 11:19 Spike Duplicate ID: LCSD for HBN 1210031

[VXX36772]

Spike Duplicate Lab ID: 1597065 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1210031001, 1210031002, 1210031003, 1210031004

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	100	114	114	100	109	109	(80-120)	5.10	(< 20)
Ethylbenzene	100	112	112	100	106	106	(75-125)	5.30	(< 20)
o-Xylene	100	109	109	100	103	103	(80-120)	5.80	(< 20)
P & M -Xylene	200	219	110	200	207	104	(75-130)	5.60	(< 20)
Toluene	100	116	116	100	111	111	(75-120)	4.60	(< 20)
Xylenes (total)	300	328	109	300	310	103	(79-121)	5.60	(< 20)
urrogates									
1,4-Difluorobenzene (surr)	50	94.8	95	50	97.7	98	(77-115)	3.00	

Batch Information

Analytical Batch: VFC15480 Analytical Method: SW8021B Instrument: Agilent 7890 PID/FID

Analyst: S.S

Prep Batch: VXX36772
Prep Method: SW5030B

Prep Date/Time: 01/05/2021 06:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 01/20/2021 2:31:53PM

Method Blank

Blank ID: MB for HBN 1815194 [XXX/44348]

Blank Lab ID: 1597020

QC for Samples:

1210031001, 1210031002, 1210031003

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	57.9	37-78		%
Fluoranthene-d10 (surr)	67	24-116		%

Batch Information

Analytical Batch: XMS12462

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Analytical Date/Time: 1/11/2021 4:28:00PM

Prep Batch: XXX44348 Prep Method: SW3535A

Prep Date/Time: 1/5/2021 2:44:25PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:31:56PM

QC for Samples:

Blank Spike Summary

Blank Spike ID: LCS for HBN 1210031 [XXX44348]

Blank Spike Lab ID: 1597021 Date Analyzed: 01/11/2021 16:49

1210031001, 1210031002, 1210031003

Spike Duplicate ID: LCSD for HBN 1210031

[XXX44348]

Spike Duplicate Lab ID: 1597022 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.24	62	2	1.19	59	(41-115)	4.40	(< 20)
2-Methylnaphthalene	2	1.24	62	2	1.18	59	(39-114)	4.90	(< 20)
Acenaphthene	2	1.34	67	2	1.27	64	(48-114)	5.30	(< 20)
Acenaphthylene	2	1.30	65	2	1.29	65	(35-121)	0.35	(< 20)
Anthracene	2	1.45	73	2	1.42	71	(53-119)	2.10	(< 20)
Benzo(a)Anthracene	2	1.32	66	2	1.28	64	(59-120)	3.30	(< 20)
Benzo[a]pyrene	2	1.52	76	2	1.49	75	(53-120)	1.90	(< 20)
Benzo[b]Fluoranthene	2	1.58	79	2	1.51	76	(53-126)	4.30	(< 20)
Benzo[g,h,i]perylene	2	1.66	83	2	1.59	80	(44-128)	4.40	(< 20)
Benzo[k]fluoranthene	2	1.55	78	2	1.48	74	(54-125)	4.70	(< 20)
Chrysene	2	1.45	72	2	1.37	69	(57-120)	5.30	(< 20)
Dibenzo[a,h]anthracene	2	1.67	84	2	1.59	80	(44-131)	4.90	(< 20)
Fluoranthene	2	1.37	69	2	1.31	66	(58-120)	4.60	(< 20)
Fluorene	2	1.45	72	2	1.38	69	(50-118)	4.30	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.77	88	2	1.67	84	(48-130)	5.30	(< 20)
Naphthalene	2	1.19	60	2	1.14	57	(43-114)	4.10	(< 20)
Phenanthrene	2	1.60	80	2	1.53	76	(53-115)	5.00	(< 20)
Pyrene	2	1.34	67	2	1.28	64	(53-121)	4.40	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2	62.4	62	2	59.9	60	(37-78)	4.10	
Fluoranthene-d10 (surr)	2	68.1	68	2	65.2	65	(24-116)	4.40	

Batch Information

Analytical Batch: XMS12462

Analytical Method: 8270D SIM LV (PAH)
Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Prep Batch: XXX44348
Prep Method: SW3535A

Prep Date/Time: 01/05/2021 14:44

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 01/20/2021 2:31:57PM

Method Blank

Blank ID: MB for HBN 1815263 [XXX/44359]

Blank Lab ID: 1597256

QC for Samples:

1210031001, 1210031002, 1210031003

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.220J
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 89.5 60-120 %

Batch Information

Analytical Batch: XFC15841 Prep Batch: XXX44359
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 1/7/2021 4:00:47PM

Analyst: IVM Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 1/8/2021 10:56:00AM Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:32:00PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1210031 [XXX44359]

Blank Spike Lab ID: 1597257 Date Analyzed: 01/08/2021 11:06 Spike Duplicate ID: LCSD for HBN 1210031

[XXX44359]

Spike Duplicate Lab ID: 1597258 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1210031001, 1210031002, 1210031003

Results by AK102

	E	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Diesel Range Organics	20	18.4	92	20	18.8	94	(75-125)	2.10	(< 20)
Surrogates									
5a Androstane (surr)	0.4	105	105	0.4	103	103	(60-120)	1.30	

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK102 Instrument: Agilent 7890B F

Analyst: IVM

Prep Batch: XXX44359
Prep Method: SW3520C

Prep Date/Time: 01/07/2021 16:00

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 01/20/2021 2:32:02PM

Method Blank

Blank ID: MB for HBN 1815263 [XXX/44359]

Blank Lab ID: 1597256

QC for Samples:

1210031001, 1210031002, 1210031003

Matrix: Water (Surface, Eff., Ground)

Results by AK103

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Residual Range Organics
 0.246J
 0.500
 0.150
 mg/L

Surrogates

n-Triacontane-d62 (surr) 102 60-120 %

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: IVM

Analytical Date/Time: 1/8/2021 10:56:00AM

Prep Batch: XXX44359 Prep Method: SW3520C

Prep Date/Time: 1/7/2021 4:00:47PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 01/20/2021 2:32:05PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1210031 [XXX44359]

Blank Spike Lab ID: 1597257 Date Analyzed: 01/08/2021 11:06 Spike Duplicate ID: LCSD for HBN 1210031

[XXX44359]

Spike Duplicate Lab ID: 1597258 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1210031001, 1210031002, 1210031003

Results by AK103

		Blank Spike	(mg/L)	9	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	19.3	96	20	19.8	99	(60-120)	2.90	(< 20)
Surrogates									
n-Triacontane-d62 (surr)	0.4	103	103	0.4	102	102	(60-120)	0.46	

Batch Information

Analytical Batch: XFC15841 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: IVM

Prep Batch: XXX44359 Prep Method: SW3520C

Prep Date/Time: 01/07/2021 16:00

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 01/20/2021 2:32:07PM

1210031

	Page _	of	1
Laboratory .	2012		

	, INC. BULTANTS	CHAI	N-OF	F-CUS	TODY	RECC)RD	Labo	ratory SGS ^{ag}	
(907) 479-0600				X X		Analytical Me	thods (include	, , , , ,	<u> </u>	okins
www.shannonwilson.com	n					Lm/	Toda (inicial)	·		7
Turn Around Time:	Quote No:		1		, sol		24.		ingto	
Normal Rush				\sim	RILL			/ /	Conto	
	J-Flags:	Yes No	_	LIO	(O) (C					
Please Specify				(20)	Muxiti			/ /	Rem.	arks/Matrix
Sample Identity	Lab No.		Date Impled	(%, %, &,	1/8 x/	QT /				osition/Grab? e Containers
MW-11-15	(IA)	1106 12	3120	XX	X	x		10	Groundwa	
MW-12-10	(2A)	1	31/20		1)		1	1	
MW-112-10	(3A)	1 -	31/20			l				
Trip Blank	HAF			K	X				Laboratory	Provided
,										
Project Information	Sample	Receipt	R	eliquished B	y: 1.	Reliqu	ished By:	2.	Reliquishe	d By: 3.
Number: 102599-011	Total No. of Containe	1	Signature		Time: <u>0960</u>	Signature:	Tin	ne:	Signature:	Time:
Name: ADOT+PF Gustavu			In	ul hos		Printed Name:				
Contact: KRF Ongoing Project? Yes K No ☐	Received Good Con-		Printed Na	ame: hel willis	Date: 1/4/21	Printed Name:	Da	te:	Printed Name:	Date:
Sampler: R	Delivery Method:		Company			Company:			Company:	
		011	of Sha	nnen +	Wilson					
	tes:	- 10	1	Received By:	1.	Rece	ived By:	2.	Received	Ву: 3.
Trip Blank w/ sar af all times	mpies in c	ooler	Signature	•	Time:	Signature:	Tin	ne:	Signature:	7 Time: 16-20
at an inves			Printed Na		Date:	Dainted Name	n-			Date: [4/2]
	Profil. 34	17128 gm		ains.	Balc	Printed Name:	Da	re	Castilleto l	1175 Date: 1/2/12
Distribution: White - w/shipment - returned	d to Shannon & Wilson		rt Company	:		Company:			Company:	
Yellow - w/shipment - for con Pink - Shannon & Wilson - jol	nsignee tiles b file								<u>500</u>	

			100	1.	
a de la companya de l	Ale	rt E.	xped	litors	Inc.
			. I.		

#409663

* Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Collect □ Prepay □	Advance Charges
Inh II	
Job # PO# 153	4 2350
17/2/2	
Y	
San	
	,
and the second s	

e-Sample Receipt Form

SGS Workorder #:

1210031

1210031

			_				
Review Criteria	Condition (eptions Note	
Chain of Custody / Temperature Requir	<u>rements</u>			N/A	Exemption per	mitted if sample	er hand carries/delivers.
Were Custody Seals intact? Note # & I	ocation	es 1F1	LS				
COC accompanied sal	mples?	'es					
DOD: Were samples received in COC corresponding or	_						
<u> </u>			40 h			mlaa coleana alailli	in a in a sk as accional
N/A **Exemption permitted if o							<u> </u>
Temperature blank compliant* (i.e., 0-6 °C after	r CF)?	Vo Co	oler II	D:	1	@	7.6 °C Therm. ID: D58
		Co	oler II	D:		@	°C Therm. ID:
If samples received without a temperature blank, the "cooler temperature" will		Co	oler II	D:		@	°C Therm. ID:
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chi be noted if neither is available.	illed" will	Со	oler II	D:		@	°C Therm. ID:
20 1000 H 100101 10 0 10100		Co	oler II)·		@	°C Therm. ID:
*If >6°C, were samples collected <8 hours	ago2		0.0			•	9
in to e, word dampied democied to rioure	ago.						
1 200							
If <0°C, were sample containers ice	free?	I/A					
Note: Identify containers received at non-compliant temperature.							
Use form FS-0029 if more space is no	eeded.						
Holding Time / Documentation / Sample Condition Re	auireme	nts Note	e: Refe	er to fo	orm F-083 "Sampl	e Guide" for specit	fic holding times
Were samples received within holding			, , , , ,			- Calab 101 0p001	no norum g um oo.
Word dampied received maint heranig							
Do samples match COC ** (i.e.,sample IDs,dates/times colle	· ·	es					
**Note: If times differ <1hr, record details & login per CC	OC.						
***Note: If sample information on containers differs from COC, SGS will default to C	OC informa	<mark>ition</mark>					
Were analytical requests clear? (i.e., method is specified for an	alyses Y	'es					
with multiple option for analysis (Ex: BTEX, N	/letals)						
			П	N/A	***Evemption	nermitted for me	etals (e.g,200.8/6020A).
More prepar containers (type/mass/yelyme/preservative***)	usad2	/o.o.		IV/A	Exchiption	permitted for fine	tais (c.g,200.0/0020A).
Were proper containers (type/mass/volume/preservative***)	usea?	es					
V 1 (1) (1) 1: 5		4.5					
Volatile / LL-Hg Requ							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with san	·						
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6	6mm)?	'es					
Were all soil VOAs field extracted with MeOH+	+BFB?	I/A					
Note to Client: Any "No", answer above indicates nor	n-compliar	nce with	stanc	lard r	procedures and	mav impact dat	ta quality.
							. ,
Additional	I notes (i <mark>f appl</mark> i	cabl	e):			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1210031001-A	HCL to pH < 2	ОК			
1210031001-B	HCL to pH < 2	OK			
1210031001-C	HCL to pH < 2	OK			
1210031001-D	HCL to pH < 2	ОК			
1210031001-E	HCL to pH < 2	ОК			
1210031001-F	HCL to pH < 2	ОК			
1210031001-G	HCL to pH < 2	OK			
1210031001-H	HCL to pH < 2	OK			
1210031001-I	No Preservative Required	OK			
1210031001-J	No Preservative Required	OK			
1210031002-A	HCL to pH < 2	OK			
1210031002-B	HCL to pH < 2	OK			
1210031002-C	HCL to pH < 2	OK			
1210031002-D	HCL to pH < 2	OK			
1210031002-E	HCL to pH < 2	OK			
1210031002-F	HCL to pH < 2	OK			
1210031002-G	HCL to pH < 2	OK			
1210031002-H	HCL to pH < 2	OK			
1210031002-I	No Preservative Required	OK			
1210031002-J	No Preservative Required	OK			
1210031003-A	HCL to pH < 2	OK			
1210031003-B	HCL to pH < 2	OK			
1210031003-C	HCL to pH < 2	OK			
1210031003-D	HCL to pH < 2	OK			
1210031003-E	HCL to pH < 2	OK			
1210031003-F	HCL to pH < 2	OK			
1210031003-G	HCL to pH < 2	OK			
1210031003-H	HCL to pH < 2	OK			
1210031003-I	No Preservative Required	OK			
1210031003-J	No Preservative Required	OK			
1210031004-A	HCL to pH < 2	OK			
1210031004-B	HCL to pH < 2	OK			
1210031004-C	HCL to pH < 2	OK			
1210031004-D	HCL to pH < 2	OK			
1210031004-E	HCL to pH < 2	OK			
1210031004-F	HCL to pH < 2	OK			

<u>Container Id Preservative Container Id Preservative Container Id Cont</u>

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- $\ensuremath{\mathsf{OK}}$ The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed	By:
Amber 1	Masters
Title:	
Environ	mental Scientist
Date:	
January	21, 2021
Consultant 1	Firm:
Shannoi	n & Wilson, Inc.
Laboratory	Name:
Eurofins	s / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory	Report Number:
120003	
Laboratory	Report Date:
1/20/202	21
CS Site Nar	me:
DOT&F	PF Gustavus Airport Statewide PFAS
ADEC File	Number:
2569.38	.033
Hazard Ider	atification Number:
26981	

Laboratory Report Date:	
Note: Any N/A or No box checked must have an explanation in the comments box.	
1. <u>Laboratory</u>	
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all the submitted sample analyses? Yes⊠ No□ N/A□ Comments:	
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?	
$Yes \square$ No \square N/A \boxtimes Comments:	
The requested analyses were conducted by SGS, North America, Inc. in Anchorage, AK.	
2. Chain of Custody (CoC)	
a. CoC information completed, signed, and dated (including released/received by)?	
Yes⊠ No□ N/A□ Comments:	
b. Correct analyses requested?	
Yes⊠ No□ N/A□ Comments:	
3. <u>Laboratory Sample Receipt Documentation</u>	
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?	
Yes⊠ No⊠ N/A□ Comments:	
Sample receipt form indicates the temperature of the sample cooler was above range measured at 7.6° C upon arrival at the laboratory.	
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	
Yes⊠ No□ N/A□ Comments:	
	_
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?	_
Yes⊠ No□ N/A□ Comments:	
The sample receipt form noted the samples arrived in good condition.	

1200031

	12	00031
La	bora	atory Report Date:
		d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
	_	Yes \boxtimes No \square N/A \square Comments:
		See item 3.a. above.
		e. Data quality or usability affected?
		Comments:
		Yes, results are considered estimated, biased low due to the above-range cooler temperature. Detected results are flagged "JL" and non-detect results are flagged "UJ" in the analytical tables unless flagged for additional QC failures. See Section 6 below.
	4.	Case Narrative
		a. Present and understandable?
		$Yes \boxtimes No \square N/A \square$ Comments:
		b. Discrepancies, errors, or QC failures identified by the lab?
	1	$Yes \boxtimes No \square N/A \square$ Comments:
		The case narrative does not identify any QC failures, discrepancies, or errors.
		c. Were all corrective actions documented?
	i	$Yes \square No \square N/A \boxtimes Comments:$
		d. What is the effect on data quality/usability according to the case narrative?
		Comments:
		The data quality and/or usability was not affected; see above.
5.	Sa	mples Results
		a. Correct analyses performed/reported as requested on COC?
		$Yes \boxtimes No \square N/A \square$ Comments:
	•	b. All applicable holding times met?
	1	Yes⊠ No□ N/A□ Comments:

120	00031						
Labora	tory Report Date:						
	c. All soils reported on a dry weight basis?						
Е	$Yes \square No \square N/A \boxtimes Comments:$						
	Soil samples were not submitted with this work order.						
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?						
F	Yes \square No \boxtimes N/A \square Comments:						
	e. Data quality or usability affected?						
	The data quality and/or usability was affected; see above.						
6. <u>QC</u>	Samples						
	a. Method Blank						
	i. One method blank reported per matrix, analysis and 20 samples?						
Г	Yes \boxtimes No \square N/A \square Comments:						
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives? Yes ⊠ No□ N/A□ Comments:						
	There were no method blank detections above LOQ; however, diesel range and residual range organics were detected below LOQ in the MBs associated with this work order.						
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:						
	DRO and RRO results in the following samples are affected: MW-11-15, MW-12-10, and MW-112-10.						
_	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?						
Г	$Yes \boxtimes No \square N/A \boxtimes Comments:$						
	DRO and RRO results in the following samples are considered not detected and are flagged "UB" at the LOQ in the analytical table: <i>MW-11-15</i> , <i>MW-12-10</i> , and <i>MW-112-10</i> .						
_	v. Data quality or usability affected? Comments:						
	Yes; see above.						

1200031	
Laboratory Report Date:	
b. Laboratory Control Samp	le/Duplicate (LCS/LCSD)
	LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD nods, LCS required per SW846)
Yes⊠ No□ N/A□	Comments:
LCS/LCSD samples were ana	llyzed for BTEX, PAH, GRO, DRO and RRO analyses.
ii. Metals/Inorganics – c samples?	one LCS and one sample duplicate reported per matrix, analysis and 20
Yes□ No⊠ N/A⊠	Comments:
Metals and/or inorganics were	e not analyzed as part of this work order.
project specified obje AK102 75%-125%, A	nt recoveries (%R) reported and within method or laboratory limits and ectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□	Comments:
limits and project spe	we percent differences (RPD) reported and less than method or laboratory cified objectives, if applicable? RPD reported from LCS/LCSD, and or cate. (AK Petroleum methods 20%; all other analyses see the laboratory
Yes⊠ No□ N/A□	Comments:
v. If %R or RPD is outs	ide of acceptable limits, what samples are affected? Comments:
NA; analytical accuracy and p	precision were demonstrated to be within acceptable limits.
vi. Do the affected samp	le(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠	Comments:
Qualification of the data was	not required; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

The data quality and/or usability was not affected; see above.

Comments:

1200031	
oratory Report Date:	
Yes□ No⊠ N/A□	-
	boratory accuracy and precision.
ii. Metals/Inorganics – on Yes□ No□ N/A⊠	ne MS and one MSD reported per matrix, analysis and 20 samples? Comments:
Metals and/or inorganics were	not analyzed as part of this work order.
iii. Accuracy – All percen project specified object	• • • • • • • • • • • • • • • • • • • •
$Yes \square No \square N/A \boxtimes$	Comments:
MS and MSD samples were no	ot analyzed for this work order.
	e percent differences (RPD) reported and less than method or laboratory effied objectives, if applicable? RPD reported from MS/MSD, and or nte.
Yes□ No□ N/A⊠	Comments:
MS and MSD samples were no	ot analyzed for this work order.
v. If %R or RPD is outside	de of acceptable limits, what samples are affected? Comments:
NA; MS and MSD samples we	ere not analyzed for this work order.
•	e(s) have data flags? If so, are the data flags clearly defined?
Yes No N/A	Comments:
MS and MSD samples were no	ot analyzed for this work order.
vii. Data quality or usabil	ity affected? (Use comment box to explain.) Comments:
The data quality and/or usabili	ty was not affected; see above.
	y or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only overies reported for organic analyses – field, QC and laboratory
Yes⊠ No□ N/A□	Comments:

 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes⊠ No□ N/A□ Comments:
105 IVAL Comments.
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
There were no surrogate recovery failures associated with this work order.
iv. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes⊠ No□ N/A□ Comments:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
Yes□ No□ N/A□ Comments:
Only one cooler was used to transport the samples in this work order.
iii. All results less than LOQ and project specified objectives?
Yes \boxtimes No \square N/A \square Comments:
There were no trip blank detections associated with this work order.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
N/A; see above
1071, 500 40070
v. Data quality or usability affected? Comments:

1200031

Laboratory Report Date:

200031	
ratory Re	port Date:
f. Fie	ld Duplicate
i.	One field duplicate submitted per matrix, analysis and 10 project samples?
	Yes \boxtimes No \square N/A \square Comments:
ii.	Submitted blind to lab?
	Yes \boxtimes No \square N/A \square Comments:
The fie	eld duplicate pair MW-12-10/MW-112-10 was submitted with this work order
iii.	Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration
	$R_2 = Field Duplicate Concentration$
	Yes□ No⊠ N/A□ Comments: for DRO and RRO were greater than project specified objectives. Data quality or usability affected? (Use the comment box to explain why or why not.)
DDO a	Comments:
	and RRO results are considered not detected and flagged due to method blank detection. No flagging has been applied due to the field duplicate RPD failures.
g. Dec	contamination or Equipment Blank (If not applicable, a comment stating why must be enterow)?
	$Yes \square No \square N/A \boxtimes Comments:$
	samples were not collected with reusable equipment, so the prospect of foreign contaminar ntroduced through equipment contamination is not plausible.
i.	All results less than LOQ and project specified objectives?
	Yes \square No \square N/A \boxtimes Comments:
1	
ii.	If above LOQ or project specified objectives, what samples are affected? Comments:

1200031

Laboratory Report Date:

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

Yes□	No□	$N/A \boxtimes$	Comments:		

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks

2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: 1210032

Client Project: 101543-001 RISK-GUS

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 01/18/2021 2:02:34PM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson-Fairbanks**SGS Project: **1210032**Project Name/Site: **101543-001 RISK-GUS**

oject Name/Site: 101543-001 RISK-GU Project Contact: Kristen Freiburger

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 01/18/2021 2:02:36PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry & Microbiology (Provisionally Certified as of 12/03/2020 for Turbidity by SM2130B, Copper & Mercury by EPA200.8 and Trihalomethanes by EPA 524.2) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 01/18/2021 2:02:38PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	<u>Collected</u>	Received	<u>Matrix</u>
PW-200	1210032001	12/30/2020	01/04/2021	Water (Surface, Eff., Ground)
PW-200-F Port CANCELLED	1210032002	12/30/2020	01/04/2021	Water (Surface, Eff., Ground)
PW-200-Sink	1210032003	12/30/2020	01/04/2021	Water (Surface, Eff., Ground)

Method Description

EP200.8 Metals in Water by 200.8 ICP-MS

Print Date: 01/18/2021 2:02:40PM

Detectable Results Summary

Client Sample ID: **PW-200** Lab Sample ID: 1210032001

Metals by ICP/MS

Parameter Arsenic Result 19.5 <u>Units</u> ug/L

Print Date: 01/18/2021 2:02:41PM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of PW-200

Client Sample ID: PW-200

Client Project ID: 101543-001 RISK-GUS

Lab Sample ID: 1210032001 Lab Project ID: 1210032

Collection Date: 12/30/20 11:39 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed Arsenic 19.5 5.00 1.50 ug/L 1 01/11/21 18:37

Batch Information

Analytical Batch: MMS10985 Analytical Method: EP200.8

Analyst: DMM

Analytical Date/Time: 01/11/21 18:37 Container ID: 1210032001-A

Prep Batch: MXX33926 Prep Method: E200.2

Prep Date/Time: 01/06/21 14:46 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 01/18/2021 2:02:43PM J flagging is activated

Results of PW-200-Sink

Client Sample ID: PW-200-Sink

Client Project ID: 101543-001 RISK-GUS

Lab Sample ID: 1210032003 Lab Project ID: 1210032

Collection Date: 12/30/20 11:09 Received Date: 01/04/21 16:20 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed 2.50 U Arsenic 5.00 1.50 ug/L 1 01/11/21 18:40

Batch Information

Analytical Batch: MMS10985 Analytical Method: EP200.8

Analyst: DMM

Analytical Date/Time: 01/11/21 18:40 Container ID: 1210032003-A

Prep Batch: MXX33926 Prep Method: E200.2

Prep Date/Time: 01/06/21 14:46 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 01/18/2021 2:02:43PM J flagging is activated

Method Blank

Blank ID: MB for HBN 1815243 [MXX/33926]

Blank Lab ID: 1597170

QC for Samples:

1210032001, 1210032003

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Arsenic
 2.50U
 5.00
 1.50
 ug/L

Batch Information

Analytical Batch: MMS10985 Analytical Method: EP200.8

Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 1/11/2021 6:16:48PM

Prep Batch: MXX33926 Prep Method: E200.2

Prep Date/Time: 1/6/2021 2:46:37PM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 01/18/2021 2:02:45PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1210032 [MXX33926]

Blank Spike Lab ID: 1597171 Date Analyzed: 01/11/2021 18:19

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1210032001, 1210032003

Results by EP200.8

Blank Spike (ug/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Arsenic
 1000
 952
 95
 (85-115)

Batch Information

Analytical Batch: MMS10985 Prep Batch: MXX33926
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 01/06/2021 14:46

Analyst: DMM Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 01/18/2021 2:02:47PM

Matrix Spike Summary

Original Sample ID: 1597173 MS Sample ID: 1597174 MS

MSD Sample ID:

QC for Samples:

1210032001, 1210032003

Analysis Date: 01/14/2021 12:56 Analysis Date: 01/14/2021 12:59

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Matrix Spike (ug/L)

Spike Duplicate (ug/L)

Arsenic 25.0U 1000 1010 101 70-130

Batch Information

Analytical Batch: MMS10986 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5

Analyst: DMM

Analytical Date/Time: 1/14/2021 12:59:49PM

Prep Batch: MXX33926

Prep Method: DW Digest for Metals on ICP-MS

Prep Date/Time: 1/6/2021 2:46:37PM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 01/18/2021 2:02:49PM

Dawkins, Jennifer A (Fairbanks)

From: Dawkins, Jennifer A (Fairbanks)

Sent: Tuesday, January 5, 2021 4:11 PM

To: Dawkins, Jennifer A (Fairbanks)

Subject: 1210032 Change Order

Sample "PW-200-F Port" should be put on HOLD pending results of the other samples, per client. Thanks, Jen

Jennifer A-B Dawkins

Environment, Health & Safety
Fairbanks Client Services
Project Manager - Alaska
SGS
3180 Peger Rd. Ste. 190
Fairbanks, AK 99709
907-474-8656
907-322-8444
jennifer.dawkins@sgs.com

Dawkins, Jennifer A (Fairbanks)

From: Dawkins, Jennifer A (Fairbanks)
Sent: Monday, January 18, 2021 11:13 AM

To: Dawkins, Jennifer A (Fairbanks)

Subject: 1210032 Change Order

Please cancel sample PW-200-F Port, per client.

Jennifer A-B Dawkins

Environment, Health & Safety

Fairbanks Client Services
Project Manager - Alaska
SGS
3180 Peger Rd. Ste. 190
Fairbanks, AK 99709
907-474-8656
907-322-8444
jennifer.dawkins@sgs.com

1210032

INC.

CHAIN-OF-CUSTODY RECORD

21 C	Page	<u>t</u>	of _	<u>l</u>
Laboratory <u>SGS</u>				
A44				

		O 1 12 1	••••			. • •					Attn:	alory <u>JOJ J</u>	
							Ana	lytical Me	thods (ir	clude pres	_	e if used)	
Turn Around Time: Normal Rush	Quote No:	Yes	No		oran	HEED						dal Kurbe of Containers Rer Comp	7
Please Specify	1			\angle s	> /							A ^{KUIT} . Rer	marks/Matrix
Sample Identity	Lab No.	Time	Date Sampled	100							/^	Comp Samp	oosition/Grab? ole Containers
PW-200	(IÀ)	1139	12/30/2				<u> </u>				1	Drinking	water
PN-200-FPORT	ÉA)	1111	1	X							ĺ	1	
PW-200-SINK	(3A)	1109	V	1							t	l	
										-			
								,					
						:						<u></u>	
Project Information	Sample	Receipt		Reliqu	ished B	y: 1.		Reliqu	uished l	By: 2.		Reliquish	ed By: 3.
Number: 101543-001	Total No. of Contain		Signa	ature:	2 11/2	Time: 09	. 00 Sig	nature:		Time:		Signature:	Time:
Name: RISK - GUS	COC Seals/Intact?		5 /	run	Wr	7- 1/11	10. 5.	nted Name:		-			
Contact: RRF	Received Good Cor	1		ed Name:	0.816		Pri	nted Name:		Date:		Printed Name:	Date:
Ongoing Project? Yes No	Temp: 7.6 To Delivery Method:			achel pany:	Willi	>	Co	mpany:				Company:	
	-	len	- s	hanno	n+ W	11500	<u>۱</u>						
No.	ites:			Rece	ived By:	1.		Rece	eived B	y: 2.		Receive	d By: 3.
			Signa	ature:		Time:	Sig	nature:		Time:		Signature	Time: 16-20
	Profile 347	7128 gu	Printe	ed Name:		Date:	Pri	nted Name:		Date:		Printed Name: Cashilledon	Date: 1/4/71
Distribution: White - w/shipment - returne Yellow - w/shipment - for cor Pink - Shannon & Wilson - jo	ed to Shannon & Wilsonsignee files			pany:			Co	mpany:				Company:	

11 4	$\boldsymbol{\Lambda}$	
## /I		663
***	117	
• • • •	·	~~

2			
	41	Expeditors	T
Sec. 18	<i>_1011</i>	HVnoamore	INC
bulk.	111011	LAPCHIUIS	IIIV

* Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

то		
Collect □	Prepay □	Advance Charges
Job # Job #	PO# 15	7 2257
17/VK		
	Same	
Shipped Signature		

e-Sample Receipt Form

SGS Workorder #:

1210032

1210032

			_				
Review Criteria	Condition (eptions Note	
Chain of Custody / Temperature Requir	<u>rements</u>			N/A	Exemption per	mitted if sample	er hand carries/delivers.
Were Custody Seals intact? Note # & I	ocation	es 1F1	LS				
COC accompanied sal	mples?	'es					
DOD: Were samples received in COC corresponding or	_						
<u> </u>			40 h			mlaa coleana alailli	in a in a sk as accional
N/A **Exemption permitted if o							<u> </u>
Temperature blank compliant* (i.e., 0-6 °C after	r CF)?	Vo Co	oler II	D:	1	@	7.6 °C Therm. ID: D58
		Co	oler II	D:		@	°C Therm. ID:
If samples received without a temperature blank, the "cooler temperature" will		Co	oler II	D:		@	°C Therm. ID:
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chi be noted if neither is available.	illed" will	Со	oler II	D:		@	°C Therm. ID:
20 1000 H 100101 10 0 10100		Co	oler II)·		@	°C Therm. ID:
*If >6°C, were samples collected <8 hours	ago2		0.0			•	9
in to e, word dampied democied to rioure	ago.						
1 200							
If <0°C, were sample containers ice	free?	I/A					
Note: Identify containers received at non-compliant temperature.							
Use form FS-0029 if more space is no	eeded.						
Holding Time / Documentation / Sample Condition Re	auireme	nts Note	e: Refe	er to fo	orm F-083 "Sampl	e Guide" for specit	fic holding times
Were samples received within holding			, , , , ,			- Calab 101 0p001	no norum g um oo.
Word dampied received maint heranig							
Do samples match COC ** (i.e.,sample IDs,dates/times colle	· ·	es					
**Note: If times differ <1hr, record details & login per CC	OC.						
***Note: If sample information on containers differs from COC, SGS will default to C	OC informa	<mark>ition</mark>					
Were analytical requests clear? (i.e., method is specified for an	alyses Y	'es					
with multiple option for analysis (Ex: BTEX, N	/letals)						
			П	N/A	***Evemption	nermitted for me	etals (e.g,200.8/6020A).
More prepar containers (type/mass/yelyme/preservative***)	usad2	/o.o.	Ш	IV/A	Exchiption	permitted for fine	tais (c.g,200.0/0020A).
Were proper containers (type/mass/volume/preservative***)	usea?	es					
V 1 (9) (11 11 5		4.5					
Volatile / LL-Hg Requ							
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with san	·						
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6	6mm)?	'es					
Were all soil VOAs field extracted with MeOH+	+BFB?	I/A					
Note to Client: Any "No", answer above indicates nor	n-compliar	nce with	stanc	lard r	procedures and	mav impact dat	ta quality.
							. ,
Additional	I notes (i <mark>f appl</mark> i	cabl	e):			

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1210032001-A	HNO3 to pH < 2	ОК			
1210032002-A	HNO3 to pH < 2	OK			
1210032003-A	HNO3 to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

1/6/2021 Page 17 of 17

Laboratory Data Review Checklist

Completed By:	
Amber Masters	
Title:	
Environmental Scientist	
Date:	
January 20, 2021	
Consultant Firm:	
Shannon & Wilson, Inc.	
Laboratory Name:	
SGS	
Laboratory Report Number:	
1210032	
Laboratory Report Date:	
January 18, 2021	
CS Site Name:	
DOT&PF Gustavus Airport Statew	ide PFAS
ADEC File Number:	
2569.38.033	
Hazard Identification Number:	
26981	

Note: Any N/A or No box checked must have an explanation in the comments box.

1.	<u>Laboratory</u>
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments:
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	$Yes \square No \square N/A \boxtimes Comments:$
	Analyses were performed by SGS North America Inc. in Anchorage, AK.
2.	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	b. Correct analyses requested?
	Yes \boxtimes No \square N/A \square Comments:
3.	Laboratory Sample Receipt Documentation
٥.	Eastratory Sumple Receipt Bocumentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes \square No \boxtimes N/A \square Comments:
	Chain of custody form indicates the temperature of the sample cooler was 7.6° upon receipt at the laboratory.
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	Yes \boxtimes No \square N/A \square Comments:
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
	Yes \boxtimes No \square N/A \square Comments:
	The sample receipt form notes the samples arrived in good condition, except for the temperature discrepancy noted above.
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
	Yes \boxtimes No \square N/A \square Comments:

The sample receipt notes the temperature of the cooler was outside of the acceptable temperature

May 2020 Page 2

range.

e. Data quality or usability affected? Comments: No, we do not consider the arsenic result to be affected by the slightly elevated cooler temperature. Samples were received by the laboratory on the same day they were shipped. 4. Case Narrative a. Present and understandable? $Yes \boxtimes No \square N/A \square$ Comments: b. Discrepancies, errors, or QC failures identified by the lab? Yes \square No \square N/A \boxtimes Comments: The case narrative refers to the sample receipt form for information on sample condition. c. Were all corrective actions documented? $Yes \square No \square N/A \boxtimes$ Comments: No corrective actions required. d. What is the effect on data quality/usability according to the case narrative? Comments: The data quality/usability are unaffected. 5. Samples Results a. Correct analyses performed/reported as requested on COC? $Yes \boxtimes No \square N/A \square$ Comments: b. All applicable holding times met? Yes \boxtimes No \square N/A \square Comments: c. All soils reported on a dry weight basis? Yes \square No \square N/A \boxtimes Comments: Soil samples were not submitted with this work order. d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?

Comments:

May 2020 Page 3

Yes \boxtimes No \square N/A \square

	e. Data quality or usability affected?
	The data quality/usability are not affected.
6. <u>Q</u>	<u>C Samples</u>
	a. Method Blank
	i. One method blank reported per matrix, analysis and 20 samples?
	$Yes \boxtimes No \square N/A \square$ Comments:
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
	$Yes \boxtimes No \square N/A \square$ Comments:
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:
	None; arsenic was not detected in the method blank sample.
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	Yes□ No□ N/A⊠ Comments:
	Qualification of the data was not required.
	v. Data quality or usability affected? Comments:
	The data quality/usability are not affected; see above.
	b. Laboratory Control Sample/Duplicate (LCS/LCSD)
	 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
	Yes□ No□ N/A⊠ Comments:
	Arsenic was the only analysis requested for this work order.
	ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
	Yes□ No⊠ N/A□ Comments:
	An LCS was reported for arsenic analysis via EPA method 200.8. No sample duplicate was reported.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
	$Yes \boxtimes No \square N/A \square$ Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
$Yes \square No \square N/A \boxtimes Comments:$
An LCSD was not reported.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
None; analytical accuracy was demonstrated to be within acceptable limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments:
Samples are not affected. Qualification of the data is not required.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality/usability are not affected.
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments:
Arsenic was the only analysis requested for this work order.
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?Yes□ No⊠ N/A□ Comments:
An MSD was not reported for the work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
Yes \boxtimes No \square N/A \square Comments:
Comments.
Tese Not NAT Comments.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or

Comments: None; analytical accuracy was demonstrated to be within acceptable limits. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? $Yes \square No \square N/A \boxtimes$ Comments: No samples are affected. Qualification of the data is not required. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality/usability are not affected. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes \square No \square N/A \boxtimes Comments: Arsenic was the only analysis requested for this work order. ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \square No \square N/A \boxtimes$ Comments: See above. iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: See above. iv. Data quality or usability affected? Comments: The data quality/usability is not affected. See above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) Yes \square No \square N/A \boxtimes Comments: Volatile analyses were not requested with this work order. A trip blank was not required. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: A trip blank was not submitted with this work order.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

iii. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
Trip blanks are not required for this project.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
None; volatile analyses were not requested.
v. Data quality or usability affected? Comments:
The data quality/usability are not affected; see above.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
$Yes \square No \square N/A \boxtimes Comments:$
A field duplicate pair was not submitted as a part of the work order.
ii. Submitted blind to lab?
Yes \square No \square N/A \boxtimes Comments:
See above.
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration
Yes \square No \square N/A \boxtimes Comments:
See above.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
No affect on data quality or usability.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
Yes□ No□ N/A⊠ Comments:
Project samples are not collected with reusable equipment, so the prospect of foreign contaminants being introduced through equipment contamination is not plausible.
i. All results less than LOQ and project specified objectives?
Yes□ No□ N/A⊠ Comments:
An equipment blank was not submitted with this work order.

	ii. If above LOQ or project specified objectives, what samples are affected? Comments:
	None; an equipment blank was not required for this project.
	iii. Data quality or usability affected? Comments:
	The data quality/usability are not affected; see above.
7.	Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	Yes \square No \square N/A \boxtimes Comments:
	There were no other flags/qualifiers required.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks

2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: 1211330

Client Project: 101543-001 Gus PFAS-DRM

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 04/13/2021 9:42:45AM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson-Fairbanks**SGS Project: **1211330**Project Name/Site: **101543-001 Gus PFAS-DRM**

ect Name/Site: 101543-001 Gus PFAS-DR Project Contact: Kristen Freiburger

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 04/13/2021 9:42:46AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 04/13/2021 9:42:49AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
PW-200-Sink	1211330001	03/23/2021	03/29/2021	Drinking Water
Canceled PW-200-F Port	1211330002	03/23/2021	03/29/2021	Drinking Water
PW-200	1211330003	03/23/2021	03/29/2021	Drinking Water

Method Description

EP200.8 Metals in Water by ICP-MS

Print Date: 04/13/2021 9:42:51AM

Detectable Results Summary

Client Sample ID: **PW-200** Lab Sample ID: 1211330003

Metals by ICP/MS

Parameter Arsenic Result 20.7 <u>Units</u> ug/L

Print Date: 04/13/2021 9:42:52AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of PW-200-Sink

Client Sample ID: PW-200-Sink

Client Project ID: 101543-001 Gus PFAS-DRM

Lab Sample ID: 1211330001 Lab Project ID: 1211330 Collection Date: 03/23/21 14:38 Received Date: 03/29/21 08:04

Matrix: Drinking Water

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> <u>DF</u> Date Analyzed <u>Limits</u> 2.50 U Arsenic 5.00 1.50 ug/L 1 (<10) 04/01/21 15:30

Batch Information

Analytical Batch: MMS11056 Analytical Method: EP200.8

Analyst: ACF

Analytical Date/Time: 04/01/21 15:30 Container ID: 1211330001-A

Prep Batch: MXX34059 Prep Method: E200.2

Prep Date/Time: 03/30/21 10:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 04/13/2021 9:42:54AM J flagging is activated

Results of PW-200

Client Sample ID: PW-200

Client Project ID: 101543-001 Gus PFAS-DRM

Lab Sample ID: 1211330003 Lab Project ID: 1211330

Collection Date: 03/23/21 15:16 Received Date: 03/29/21 08:04

Matrix: Drinking Water

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	20.7 *	5.00	1.50	ug/L	1	(<10)	04/01/21 15:33

Batch Information

Analytical Batch: MMS11056 Analytical Method: EP200.8

Analyst: ACF

Analytical Date/Time: 04/01/21 15:33 Container ID: 1211330003-A

Prep Batch: MXX34059 Prep Method: E200.2

Prep Date/Time: 03/30/21 10:00 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 04/13/2021 9:42:54AM J flagging is activated

Method Blank

Blank ID: MB for HBN 1817274 [MXX/34059]

Blank Lab ID: 1604394

QC for Samples:

1211330001, 1211330003

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Arsenic
 2.50U
 5.00
 1.50
 ug/L

Batch Information

Analytical Batch: MMS11056 Analytical Method: EP200.8

Instrument: Perkin Elmer Nexlon P5

Analyst: ACF

Analytical Date/Time: 4/1/2021 3:09:01PM

Prep Batch: MXX34059 Prep Method: E200.2

Prep Date/Time: 3/30/2021 10:00:00AM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 04/13/2021 9:42:56AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1211330 [MXX34059]

Blank Spike Lab ID: 1604395 Date Analyzed: 04/01/2021 15:12

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1211330001, 1211330003

Results by EP200.8

Blank Spike (ug/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Arsenic
 1000
 1010
 101
 (85-115)

Batch Information

Analytical Batch: MMS11056 Prep Batch: MXX34059
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: Perkin Elmer Nexlon P5 Prep Date/Time: 03/30/2021 10:00

Analyst: ACF Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 04/13/2021 9:42:59AM

Matrix Spike Summary

Original Sample ID: 1604393 MS Sample ID: 1604397 MS

MSD Sample ID:

QC for Samples: 1211330001, 1211330003

Analysis Date: 04/01/2021 15:15 Analysis Date: 04/01/2021 15:18

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Matrix Spike (ug/L)

Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Arsenic 2.50U 1000 1010 101 70-130

Batch Information

Analytical Batch: MMS11056 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5

Analyst: ACF

Analytical Date/Time: 4/1/2021 3:18:05PM

Prep Batch: MXX34059

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 3/30/2021 10:00:00AM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 04/13/2021 9:43:00AM

Matrix Spike Summary

Original Sample ID: 1604398 MS Sample ID: 1604399 MS

MSD Sample ID:

QC for Samples:

1211330001, 1211330003

Analysis Date: 04/01/2021 15:21 Analysis Date: 04/01/2021 15:24

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

Matrix Spike (ug/L)

Spike Duplicate (ug/L)

<u>Parameter</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Arsenic 2.18J 1000 1050 104 70-130

Batch Information

Analytical Batch: MMS11056 Analytical Method: EP200.8 Instrument: Perkin Elmer Nexlon P5

Analyst: ACF

Analytical Date/Time: 4/1/2021 3:24:08PM

Prep Batch: MXX34059

Prep Method: DW Digest for Metals on ICP-MS Prep Date/Time: 3/30/2021 10:00:00AM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 04/13/2021 9:43:00AM

Dawkins, Jennifer A (Fairbanks)

From: Dawkins, Jennifer A (Fairbanks)

Sent: Tuesday, April 6, 2021 11:28 AM

To: Dawkins, Jennifer A (Fairbanks)

Subject: 1211330 Change Order

Cancel sample PW-200-FPort, per client.

Jennifer A-B Dawkins

Environment, Health & Safety Fairbanks Client Services Project Manager - Alaska sgs 3180 Peger Rd. Ste. 190

SGS 3180 Peger Rd. Ste. 190 Fairbanks, AK 99709 907-474-8656 907-322-8444

jennifer.dawkins@sgs.com

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600		СНА	IN-C	OF-C	US	TODY			ORD		Attn: _	atory <u>56-5</u>	ge of
Turn Around Time: Normal Rush	Quote No:	Yes N	lo	,			/	INDIAL HAVE HERE	113;			da hunte do do da Rem Compo Samol	
Please Specify Sample Identity	Lab No.		Date Sampled	f	Harry /						/\		arks/Matrix osition/Grab? e Containers
PW-200-Sink PW-200-FPOX+ * PW-200	HOLD	1447 3	3/23/2 3/23/2 3/23/2	У У Х							1	matr	
	* .												
Project Information Number: /6/543-001	Sample Total No. of Containe		Signa	Reliqui	shed B	y: 1.	Sign	Reliq	uished E	By: 2.		Reliquishe	ed By: 3.
Name: Gus PFAs - DRM Contact: X PF Ongoing Project? Yes No	COC Seals/Intact? N Received Good Cond Temp:	//N/NA	$\exists \bot A$		- itus	Date:3/26/2		ξ		Date:		Printed Name:	Date:
Sampler: A-Rum Not	Delivery Method:		Comp	lannon	→ W.	bon, Inc.		npany:	elved By	r: 2.		Received	l By: 3.
			Signa	ture:		Time:	8tgn	ature:	-	Time:		Signature: Micle Olun	/W- Time: 2804
Distribution: White - w/shipment - returned	t to Shannon & Wilson	w/ laboratory re		d Name:		Date:		ted Name:		Date:		Printed Name: Michelle Albærrau Company:	Date: 3/29/2/ 1F/75 RS MA 3:24:21
Yellow - w/shipment - for con Pink - Shannon & Wilson - jol	signee files	w laboratory re	port John P	y-	_							<u>865</u>	2.5 DS9

027			72	232	2 Me	XX			Ce	0	\e/	-			13/28	027-81	148 7232
Shanr 2355 I	Name and Address non and Wil Hill Rd anks, AK 99	so		inc	l l	Shipper's Ac 274002 Customer's 10	200	733	- 1		egotiable Wayb d By	ill	P.0	D. BOX 6	CARGO 8900 SEATTLE, WAS		!
				Т	el: 907-47	'9-0600				\			80	0-225-2	2752 ALASKACARGO.	СОМ	,
	e's Name and Addr				С	onsignee's A 27400				Also n	otify						
200 W	North Ameri / Potter Drivorage, AK 99	/e		3	<u></u>	21400	210.	<u> </u>									
				T	el: 907-56	2-2343								-	Tel:	40	000
Issuing Ca	arrier's Agent and C	City								Sha 235	inting Info innon ai 5 Hill R banks,	nd Wilso d		nc	121	10: 133 L	926
Agent's IA	TA Code				Ac	count No.				USA							
Airport of Junea	Departure (Addr. of	f Fir	st C	arrie	er) and Requested	Routing					N/10259 dStreak		-				
То	By First Carrier					То / Ву		To / By	T	Curre	1	WT/VAL			Declared Value For Carria	ige Declare	ed Value For Custom
	Alaska Airl	ine	es		Flight/Date		Flight/	Date			D PX		- X		NVD		NCV
Ancho					1 -	65/26	ľ				XXX	, 					
	Information STORE IN C	co	ΟL	_EI	R WHEN PC	SSIBLE										<u> </u>	SCI
· · · · · · · · · · · · · · · · · · ·		_		_	Т	Ι	-1-1-		Deta /	T					Natura	and Quantity	of Goods
No of Pieces	Gross Weight	kg lb			Commodity Item No.	Charge Weig			Rate / Charge			Tota	al			Dimensions of	
1	38.0	L	Ì	1		38	.0	The second of th				AS A	GR	EED	WATER SA		5
														·). Dims: 13 x 1	4 x24 x	1 1
											÷\$				GSX COL		
1	38.0	T	H	1								AS AC		EED	Volume: 2.52	28	
Prepaid	00.0	T W	eigh	ht Cl	narge	Collect	Othe	r Charges							143		
	AS AGREE	D					i	BC	10.0	0							
		Val	uati	ion (Charge									-			
			-	Tax			1										
	·			1	· · · · · · · · · · · · · · · · · · ·												
	Total C	othe	r Cl	narg	es Due Agent		con	taine dan	gerous o	2hoor	such nar	t is prope	eriv c	lescribed	ct and that insofar as ar by name and is in prop ations. I consent to the	er condition	for carriage
	Total O	the	Ch	arge	es Due Carrier		1	r: Sha							Signature of Shippe		
- 01				+	Ţ.		Ind								Trulis supportur so	ES CONTAIN	
							<i>F</i>	THIS DANG	SHIPME GEROUS	NT <u>DC</u> GOOI	DES NOT	ONTAIN	·		THIS SHIPMENT <u>DO</u> DANGEROUS GOOD		
	Total Prepaid AS AGREE	D		Ţ	Total Coll	ect	26	3 Mar	2021	11	.50		h	ıneau		Alaska <i>A</i>	Airlines
							1	ecuted On		i I.			<u> </u>	Place)			ier or its Agent
				T			 -^		\- =-01								148 7232

#411556

Alert Expeditors Inc.

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Date	The state of the s	of 1
From	SHEMMAN	<u> </u>
то	d d man	720
Collect 🗇	Prepay □	Advance Charges □
Job # 3/1/1/1	PO#// 5//	Comments I have
56.7	01 D/15	
	/	
		·
The second section of the sect	and the paper of the second se	
Shipped Signature		
	Total	Charge
Received By:		

e-Sample Receipt Form

SGS Workorder #:

1211330

Design Office	L ₋				_	1 1	<u> </u>			<u> </u>	U
Review Criteria		on (Yes,	No, N/A			eption				, , .:	
Chain of Custody / Temperature Requi			45.450		Exemption po	ermitted i	ıt sampl	ler hand	carries/	delive	rs.
Were Custody Seals intact? Note # &		-	1F, 1RS								
COC accompanied sa											
DOD: Were samples received in COC corresponding of											
N/A **Exemption permitted if								-			
Temperature blank compliant* (i.e., 0-6 °C after	er CF)?	Yes	Cooler		1		0		Therm		059
			Cooler			@			Therm		
If samples received without a temperature blank, the "cooler temperature" will documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "ch		Ш	Cooler	ID:		@	0		Therm		
be noted if neither is available.			Cooler	ID:		@	0	°C	Therm	. ID:	
			Cooler	ID:		@	0	°C	Therm	. ID:	
*If >6°C, were samples collected <8 hours	s ago?	N/A					<u> </u>		-		
If <0°C, were sample containers ice	e free?	N/A									
Note: Identify containers received at non-compliant temper											
Use form FS-0029 if more space is n	needed.										
Holding Time / Documentation / Sample Condition Re			Note: Ref	er to fo	orm F-083 "Sam	ple Guide"	for spec	ific holdin	g times.		
Were samples received within holding	g time?	Yes									
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)?	Yes									
**Note: If times differ <1hr, record details & login per C	OC.										
***Note: If sample information on containers differs from COC, SGS will default to 0	COC inform	mation									
Were analytical requests clear? (i.e., method is specified for ar	nalyses	Yes									
with multiple option for analysis (Ex: BTEX, I	Metals)										
	_			N/A	***Exemption	n permitte	ed for m	<u>etals (e.</u>	g,200.8	<u>/6020</u> [<u>B).</u>
Were proper containers (type/mass/volume/preservative***)used?	Yes									
Volatile / LL-Hg Reg	uireme	<u>ents</u>									
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sai	mples?	N/A									
Were all water VOA vials free of headspace (i.e., bubbles ≤	6mm)?	N/A									
Were all soil VOAs field extracted with MeOH	I+BFB?	N/A									
Note to Client: Any "No", answer above indicates no	n-compli	ance	with stan	dard p	orocedures an	ıd may im	npact da	ata qualit	ly.		
Additiona	al notes	(It a	pplicab	ie):							

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u>	Container Id	<u>Preservative</u>	<u>Container</u>
		Condition			<u>Condition</u>
1211330001-A	HNO3 to pH < 2	OK			
1211330001-A	111103 to pi1 < 2	UK			
1211330002-A	HNO3 to pH < 2	OK			
1211330003-A	HNO3 to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed By:	
Amber Masters	
Title:	
Environmental Scientist	
Date:	
April 14, 2021	
Consultant Firm:	
Shannon & Wilson, Inc.	
Laboratory Name:	
SGS	
Laboratory Report Number:	
1211330	
Laboratory Report Date:	
April 13, 2021	
CS Site Name:	
DRM Gustavus Airport Statewide	PFAS
ADEC File Number:	
2569.38.033	
Hazard Identification Number:	
26981	

Note: Any N/A or No box checked must have an explanation in the comments box.

1. <u>Laboratory</u>

a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
Yes \boxtimes No \square N/A \square Comments:
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
Analyses were performed by SGS North America Inc. in Anchorage, AK.
2. Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Correct analyses requested?
$Yes \boxtimes No \square N/A \square$ Comments:
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
$Yes \boxtimes No \square N/A \square$ Comments:
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
Yes \boxtimes No \square N/A \square Comments:
The sample receipt form notes the samples arrived in good condition, at a temperature of 2.5° C.
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
$Yes \square No \square N/A \boxtimes Comments:$
The sample receipt forms did not note any discrepancies.

			Comments:
	N/A	A; see above.	
4.	Ca	se Narrative	
	a.	Present and understandable?	
		Yes⊠ No□ N/A□	Comments:
	b.	Discrepancies, errors, or QC f	failures identified by the lab?
		Yes□ No□ N/A⊠	Comments:
	T1	he case narrative refers to the sa	ample receipt form for information on sample condition.
	c.	Were all corrective actions do	cumented?
		Yes□ No□ N/A⊠	Comments:
	No	o corrective actions required.	
	d.	What is the effect on data qua	lity/usability according to the case narrative?
			Comments:
	Th	e data quality/usability are una	ffected.
Sa	mpl	es Results	
	a.	Correct analyses performed/re	eported as requested on COC?
		Yes⊠ No□ N/A□	Comments:
	b.	All applicable holding times n	met?
		Yes⊠ No□ N/A□	Comments:
	c.	All soils reported on a dry we	ight basis?
		Yes□ No□ N/A⊠	Comments:
	So	il samples were not submitted	with this work order.
	d.	Are the reported LOQs less the project?	an the Cleanup Level or the minimum required detection level for
		Yes⊠ No□ N/A□	Comments:

e. Data quality or usability affected?

5.

	e. Data quality or usability affected?
	The data quality/usability are not affected.
6. <u>Q</u>	<u>C Samples</u>
	a. Method Blank
	i. One method blank reported per matrix, analysis and 20 samples?
	Yes⊠ No□ N/A□ Comments:
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
	Yes⊠ No□ N/A□ Comments:
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:
	None; arsenic was not detected in the method blank sample.
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	Yes□ No□ N/A⊠ Comments:
	Qualification of the data was not required.
	v. Data quality or usability affected? Comments:
	The data quality/usability are not affected; see above.
	b. Laboratory Control Sample/Duplicate (LCS/LCSD)
	 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
	Yes□ No□ N/A⊠ Comments:
	Arsenic was the only analysis requested for this work order.
	ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
	Yes□ No⊠ N/A□ Comments:
	An LCS was reported for arsenic analysis via EPA method 200.8. No sample duplicate was reported.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
	Yes⊠ No□ N/A□ Comments:

iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
$Yes \square No \square N/A \boxtimes Comments:$
An LCSD or laboratory duplicate was not reported.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
None; analytical accuracy was demonstrated to be within acceptable limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
Samples are not affected. Qualification of the data is not required.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality/usability are not affected.
c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments:
i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
 i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments:
 i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A⊠ Comments: Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
 i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A☒ Comments: Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes□ No☒ N/A□ Comments: An MSD was not reported for the work order. Two MS samples were reported. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
 i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A☒ Comments: Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes□ No☒ N/A□ Comments: An MSD was not reported for the work order. Two MS samples were reported. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and
 i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A☒ Comments: Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes□ No☒ N/A□ Comments: An MSD was not reported for the work order. Two MS samples were reported. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
 i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No□ N/A☒ Comments: Arsenic was the only analysis requested for this work order. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? Yes□ No☒ N/A□ Comments: An MSD was not reported for the work order. Two MS samples were reported. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes☒ No□ N/A□ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or

Comments: None; analytical accuracy was demonstrated to be within acceptable limits. vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? $Yes \square No \square N/A \boxtimes$ Comments: No samples are affected. Qualification of the data is not required. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality/usability are not affected. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? $Yes \square No \square N/A \boxtimes$ Comments: Arsenic was the only analysis requested for this work order. Surrogates are not reported for metals analysis. ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \square No \square N/A \boxtimes$ Comments: See above. iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: See above. iv. Data quality or usability affected? Comments: The data quality/usability is not affected. See above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) $Yes \square No \square N/A \boxtimes$ Comments: Volatile analyses were not requested with this work order. A trip blank was not required. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: A trip blank was not submitted with this work order.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

iii. All results less than LOQ and project specified objectives?
Yes□ No□ N/A⊠ Comments:
Trip blanks are not required for this project.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
None; volatile analyses were not requested.
v. Data quality or usability affected? Comments:
The data quality/usability are not affected; see above.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
Yes□ No□ N/A⊠ Comments:
A field duplicate pair was not submitted as a part of the work order.
ii. Submitted blind to lab?
Yes \square No \square N/A \boxtimes Comments:
See above.
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration
R_2 = Field Duplicate Concentration
Yes \square No \square N/A \boxtimes Comments:
See above.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
No affect on data quality or usability.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
Yes□ No□ N/A⊠ Comments:
Project samples are not collected with reusable equipment, so the prospect of foreign contaminants being introduced through equipment contamination is not plausible.
i. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
An equipment blank was not submitted with this work order.

ii. If above LOQ or project specified objectives, what samples are affected? Comments:								
None; an equipment blank was not required for this project.								
iii. Data quality or usability affected? Comments:								
The data quality/usability are not affected; see above.								
other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)								
a. Defined and appropriate?								
Yes \square No \square N/A \boxtimes Comments:								
There were no other flags/qualifiers required.								
•								

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks

2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: 1211331

Client Project: 102599-012 Gus PFAS DOT-MW

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 04/07/2021 1:17:02PM Results via Engage

Case Narrative

SGS Client: **Shannon & Wilson-Fairbanks**SGS Project: **1211331**Project Name/Site: **102599-012 Gus PFAS DOT-MW**

Project Contact: Kristen Freiburger

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 04/07/2021 1:17:04PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 (DW Chemistry & Microbiology) & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP and, when applicable, other regulatory authorities.

The following descriptors or qualifiers may be found in your report:

The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

В Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit) Ε The analyte result is above the calibrated range.

GT **Greater Than** Instrument Blank IB

Initial Calibration Verification **ICV** The quantitation is an estimation. LCS(D) Laboratory Control Spike (Duplicate) LLQC/LLIQC Low Level Quantitation Check

Limit of Detection (i.e., 1/2 of the LOQ) LOD

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

Matrix Spike (Duplicate) MS(D)

Indicates the analyte is not detected. ND

RPD Relative Percent Difference **TNTC** Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 04/07/2021 1:17:07PM

200 West Potter Drive, Anchorage, AK 99518 SGS North America Inc.

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-111-15	1211331001	03/25/2021	03/29/2021	Water (Surface, Eff., Ground)
MW-11-15	1211331002	03/25/2021	03/29/2021	Water (Surface, Eff., Ground)
MW-12-10	1211331003	03/25/2021	03/29/2021	Water (Surface, Eff., Ground)
Trip Blank	1211331004	03/25/2021	03/29/2021	Water (Surface, Eff., Ground)

 Method
 Method Description

 8270D SIM LV (PAH)
 8270 PAH SIM GC/MS LV

 AK101
 AK101/8021 Combo.

 SW8021B
 AK101/8021 Combo.

 AK102
 DRO/RRO Low Volume Water

 AK103
 DRO/RRO Low Volume Water

Print Date: 04/07/2021 1:17:08PM

Detectable	Results	Summary
------------	---------	---------

Client Sample ID: MW-111-15			
Lab Sample ID: 1211331001	<u>Parameter</u>	<u>Result</u>	<u>Units</u>
Volatile Fuels	Ethylbenzene	0.440J	ug/L
	o-Xylene	0.390J	ug/L
	P & M -Xylene	0.850J	ug/L
	Toluene	0.390J	ug/L
	Xylenes (total)	1.24J	ug/L
Client Sample ID: MW-11-15			
Lab Sample ID: 1211331002	Parameter	Result	Units
Polynuclear Aromatics GC/MS	<u>Parameter</u> Phenanthrene	0.0151J	ug/L
Volatile Fuels	Ethylbenzene	0.430J	ug/L ug/L
Volatile Fuels	o-Xylene	0.490J	ug/L ug/L
	P & M -Xylene	0.830J	ug/L ug/L
	Toluene	0.380J	ug/L ug/L
	Xylenes (total)	1.22J	ug/L ug/L
	Ayleries (total)	1.220	ug/L
Client Sample ID: MW-12-10			
Lab Sample ID: 1211331003	<u>Parameter</u>	Result	<u>Units</u>
Volatile Fuels	Ethylbenzene	0.420J	ug/L
	Gasoline Range Organics	0.0721J	mg/L
	o-Xylene	0.380J	ug/L
	P & M -Xylene	0.830J	ug/L
	Toluene	0.380J	ug/L
	Xylenes (total)	1.21J	ug/L
Client Sample ID: Trip Blank			
Lab Sample ID: 1211331004	<u>Parameter</u>	Result	Units
Volatile Fuels	Ethylbenzene	0.430J	ug/L
Totalio Facio	Gasoline Range Organics	0.0339J	mg/L
	o-Xylene	0.410J	ug/L
	P & M -Xylene	0.850J	ug/L
	Toluene	0.400J	ug/L
	Xylenes (total)	1.26J	ug/L
	, ,		J

Print Date: 04/07/2021 1:17:10PM

Results of MW-111-15

Client Sample ID: MW-111-15

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331001 Lab Project ID: 1211331

Collection Date: 03/25/21 10:25 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		04/02/21 13:40
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		04/02/21 13:40
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		04/02/21 13:40
Phenanthrene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 13:40
Surrogates							
2-Methylnaphthalene-d10 (surr)	58.8	42-86		%	1		04/02/21 13:40
Fluoranthene-d10 (surr)	61.8	50-97		%	1		04/02/21 13:40

Batch Information

Analytical Batch: XMS12550

Analytical Method: 8270D SIM LV (PAH)

Analyst: CDM

Analytical Date/Time: 04/02/21 13:40 Container ID: 1211331001-A

Prep Batch: XXX44570 Prep Method: SW3535A Prep Date/Time: 03/31/21 14:00 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:11PM

Results of MW-111-15

Client Sample ID: MW-111-15

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331001 Lab Project ID: 1211331 Collection Date: 03/25/21 10:25 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

Parameter	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Allowable</u> Limits	Date Analyzed
Diesel Range Organics	0.288 U	0.577	0.173	mg/L	1		04/02/21 11:56
Surrogates							
5a Androstane (surr)	80.3	50-150		%	1		04/02/21 11:56

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK102

Analyst: A.A

Analytical Date/Time: 04/02/21 11:56 Container ID: 1211331001-C Prep Batch: XXX44572 Prep Method: SW3520C Prep Date/Time: 03/31/21 16:37 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.240 U	0.481	0.144	mg/L	1		04/02/21 11:56
Surrogates							
n-Triacontane-d62 (surr)	86.6	50-150		%	1		04/02/21 11:56

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK103

Analyst: A.A

Analytical Date/Time: 04/02/21 11:56 Container ID: 1211331001-C Prep Batch: XXX44572 Prep Method: SW3520C Prep Date/Time: 03/31/21 16:37 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:11PM

Results of MW-111-15

Client Sample ID: MW-111-15

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331001 Lab Project ID: 1211331 Collection Date: 03/25/21 10:25 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1	Limits	03/30/21 17:55
Surrogates 4-Bromofluorobenzene (surr)	95.9	50-150		%	1		03/30/21 17:55

Batch Information

Analytical Batch: VFC15533 Analytical Method: AK101

Analyst: S.S

Analytical Date/Time: 03/30/21 17:55 Container ID: 1211331001-E Prep Batch: VXX36909
Prep Method: SW5030B
Prep Date/Time: 03/30/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		03/30/21 17:55
Ethylbenzene	0.440 J	1.00	0.310	ug/L	1		03/30/21 17:55
o-Xylene	0.390 J	1.00	0.310	ug/L	1		03/30/21 17:55
P & M -Xylene	0.850 J	2.00	0.620	ug/L	1		03/30/21 17:55
Toluene	0.390 J	1.00	0.310	ug/L	1		03/30/21 17:55
Xylenes (total)	1.24 J	3.00	0.930	ug/L	1		03/30/21 17:55
Surrogates							
1,4-Difluorobenzene (surr)	95	77-115		%	1		03/30/21 17:55

Batch Information

Analytical Batch: VFC15533 Analytical Method: SW8021B

Analyst: S.S

Analytical Date/Time: 03/30/21 17:55 Container ID: 1211331001-E Prep Batch: VXX36909
Prep Method: SW5030B
Prep Date/Time: 03/30/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

Print Date: 04/07/2021 1:17:11PM

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331002 Lab Project ID: 1211331

Collection Date: 03/25/21 10:35 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

_	D 110 1	1.00/01				Allowable	5
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1		04/02/21 14:01
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1		04/02/21 14:01
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1		04/02/21 14:01
Phenanthrene	0.0151 J	0.0481	0.0144	ug/L	1		04/02/21 14:01
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1		04/02/21 14:01
Surrogates							
2-Methylnaphthalene-d10 (surr)	64.3	42-86		%	1		04/02/21 14:01
Fluoranthene-d10 (surr)	65.6	50-97		%	1		04/02/21 14:01

Batch Information

Analytical Batch: XMS12550

Analytical Method: 8270D SIM LV (PAH)

Analyst: CDM

Analytical Date/Time: 04/02/21 14:01 Container ID: 1211331002-A

Prep Batch: XXX44570 Prep Method: SW3535A Prep Date/Time: 03/31/21 14:00 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:11PM

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331002 Lab Project ID: 1211331 Collection Date: 03/25/21 10:35 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable Limits	Date Analyzed
Diesel Range Organics	0.283 U	0.566	0.170	mg/L	1		04/02/21 12:06
Surrogates							
5a Androstane (surr)	82.3	50-150		%	1		04/02/21 12:06

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK102

Analyst: A.A

Analytical Date/Time: 04/02/21 12:06 Container ID: 1211331002-C Prep Batch: XXX44572 Prep Method: SW3520C Prep Date/Time: 03/31/21 16:37 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.236 U	0.472	0.142	mg/L	1		04/02/21 12:06
Surrogates							
n-Triacontane-d62 (surr)	87.3	50-150		%	1		04/02/21 12:06

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK103

Analyst: A.A

Analytical Date/Time: 04/02/21 12:06 Container ID: 1211331002-C Prep Batch: XXX44572 Prep Method: SW3520C Prep Date/Time: 03/31/21 16:37 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:11PM

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331002 Lab Project ID: 1211331 Collection Date: 03/25/21 10:35 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u> 0.100	<u>DL</u> 0.0310	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 03/30/21 18:13
Surrogates 4-Bromofluorobenzene (surr)	96.2	50-150	0.0010	g/_	1		03/30/21 18:13

Batch Information

Analytical Batch: VFC15533 Analytical Method: AK101

Analyst: S.S

Analytical Date/Time: 03/30/21 18:13 Container ID: 1211331002-E Prep Batch: VXX36909
Prep Method: SW5030B
Prep Date/Time: 03/30/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		03/30/21 18:13
Ethylbenzene	0.430 J	1.00	0.310	ug/L	1		03/30/21 18:13
o-Xylene	0.390 J	1.00	0.310	ug/L	1		03/30/21 18:13
P & M -Xylene	0.830 J	2.00	0.620	ug/L	1		03/30/21 18:13
Toluene	0.380 J	1.00	0.310	ug/L	1		03/30/21 18:13
Xylenes (total)	1.22 J	3.00	0.930	ug/L	1		03/30/21 18:13
Surrogates							
1,4-Difluorobenzene (surr)	94.5	77-115		%	1		03/30/21 18:13

Batch Information

Analytical Batch: VFC15533 Analytical Method: SW8021B

Analyst: S.S

Analytical Date/Time: 03/30/21 18:13 Container ID: 1211331002-E Prep Batch: VXX36909 Prep Method: SW5030B Prep Date/Time: 03/30/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 04/07/2021 1:17:11PM

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331003 Lab Project ID: 1211331

Collection Date: 03/25/21 12:05 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
2-Methylnaphthalene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Acenaphthene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Acenaphthylene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Anthracene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Benzo(a)Anthracene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Benzo[a]pyrene	0.00955 U	0.0191	0.00592	ug/L	1		04/02/21 14:21
Benzo[b]Fluoranthene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Benzo[g,h,i]perylene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Benzo[k]fluoranthene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Chrysene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Dibenzo[a,h]anthracene	0.00955 U	0.0191	0.00592	ug/L	1		04/02/21 14:21
Fluoranthene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Fluorene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Indeno[1,2,3-c,d] pyrene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Naphthalene	0.0477 U	0.0954	0.0296	ug/L	1		04/02/21 14:21
Phenanthrene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Pyrene	0.0239 U	0.0477	0.0143	ug/L	1		04/02/21 14:21
Surrogates							
2-Methylnaphthalene-d10 (surr)	57	42-86		%	1		04/02/21 14:21
Fluoranthene-d10 (surr)	61.7	50-97		%	1		04/02/21 14:21

Batch Information

Analytical Batch: XMS12550

Analytical Method: 8270D SIM LV (PAH)

Analyst: CDM

Analytical Date/Time: 04/02/21 14:21 Container ID: 1211331003-A

Prep Batch: XXX44570 Prep Method: SW3535A Prep Date/Time: 03/31/21 14:00 Prep Initial Wt./Vol.: 262 mL Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:11PM

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331003 Lab Project ID: 1211331 Collection Date: 03/25/21 12:05 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Diesel Range Organics	0.283 U	0.566	0.170	mg/L	1	Limits	04/02/21 12:16
Surrogates 5a Androstane (surr)	84	50-150		%	1		04/02/21 12:16

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK102

Analyst: A.A

Analytical Date/Time: 04/02/21 12:16 Container ID: 1211331003-C Prep Batch: XXX44572 Prep Method: SW3520C Prep Date/Time: 03/31/21 16:37 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Residual Range Organics	0.236 U	0.472	0.142	mg/L	1		04/02/21 12:16
Surrogates							
n-Triacontane-d62 (surr)	88.1	50-150		%	1		04/02/21 12:16

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK103

Analyst: A.A

Analytical Date/Time: 04/02/21 12:16 Container ID: 1211331003-C Prep Batch: XXX44572 Prep Method: SW3520C Prep Date/Time: 03/31/21 16:37 Prep Initial Wt./Vol.: 265 mL Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:11PM

200 West Potter Drive Anchorage, AK 95518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331003 Lab Project ID: 1211331 Collection Date: 03/25/21 12:05 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0721 J	0.100	0.0310	mg/L	1	Limits	03/30/21 18:31
Surrogates 4-Bromofluorobenzene (surr)	95.8	50-150		%	1		03/30/21 18:31

Batch Information

Analytical Batch: VFC15533 Analytical Method: AK101

Analyst: S.S

Analytical Date/Time: 03/30/21 18:31 Container ID: 1211331003-E

Prep Batch: VXX36909
Prep Method: SW5030B
Prep Date/Time: 03/30/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		03/30/21 18:31
Ethylbenzene	0.420 J	1.00	0.310	ug/L	1		03/30/21 18:31
o-Xylene	0.380 J	1.00	0.310	ug/L	1		03/30/21 18:31
P & M -Xylene	0.830 J	2.00	0.620	ug/L	1		03/30/21 18:31
Toluene	0.380 J	1.00	0.310	ug/L	1		03/30/21 18:31
Xylenes (total)	1.21 J	3.00	0.930	ug/L	1		03/30/21 18:31
Surrogates							
1,4-Difluorobenzene (surr)	96.1	77-115		%	1		03/30/21 18:31

Batch Information

Analytical Batch: VFC15533 Analytical Method: SW8021B

Analyst: S.S

Analytical Date/Time: 03/30/21 18:31 Container ID: 1211331003-E Prep Batch: VXX36909 Prep Method: SW5030B Prep Date/Time: 03/30/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 04/07/2021 1:17:11PM J flagging is activated

Results of Trip Blank

Client Sample ID: Trip Blank

Client Project ID: 102599-012 Gus PFAS DOT-MW

Lab Sample ID: 1211331004 Lab Project ID: 1211331

Collection Date: 03/25/21 10:25 Received Date: 03/29/21 08:04 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

Parameter Gasoline Range Organics	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
	0.0339 J	0.100	0.0310	mg/L	1	Limits	03/30/21 17:19
Surrogates 4-Bromofluorobenzene (surr)	92.4	50-150		%	1		03/30/21 17:19

Batch Information

Analytical Batch: VFC15533 Analytical Method: AK101

Analyst: S.S

Analytical Date/Time: 03/30/21 17:19 Container ID: 1211331004-A

Prep Batch: VXX36909 Prep Method: SW5030B Prep Date/Time: 03/30/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		03/30/21 17:19
Ethylbenzene	0.430 J	1.00	0.310	ug/L	1		03/30/21 17:19
o-Xylene	0.410 J	1.00	0.310	ug/L	1		03/30/21 17:19
P & M -Xylene	0.850 J	2.00	0.620	ug/L	1		03/30/21 17:19
Toluene	0.400 J	1.00	0.310	ug/L	1		03/30/21 17:19
Xylenes (total)	1.26 J	3.00	0.930	ug/L	1		03/30/21 17:19
Surrogates							
1,4-Difluorobenzene (surr)	96.1	77-115		%	1		03/30/21 17:19

Batch Information

Analytical Batch: VFC15533 Analytical Method: SW8021B

Analyst: S.S

Analytical Date/Time: 03/30/21 17:19 Container ID: 1211331004-A

Prep Batch: VXX36909 Prep Method: SW5030B Prep Date/Time: 03/30/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 04/07/2021 1:17:11PM

J flagging is activated

Method Blank

Blank ID: MB for HBN 1817302 [VXX/36909]

Blank Lab ID: 1604522

QC for Samples:

1211331001, 1211331002, 1211331003, 1211331004

Matrix: Water (Surface, Eff., Ground)

Results by AK101

ParameterResultsLOQ/CLDLUnitsGasoline Range Organics0.0500U0.1000.0310mg/L

Surrogates

4-Bromofluorobenzene (surr) 97.8 50-150 %

Batch Information

Analytical Batch: VFC15533 Prep Batch: VXX36909
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 3/30/2021 6:00:00AM

Analyst: S.S Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 3/30/2021 9:48:00AM Prep Extract Vol: 5 mL

Print Date: 04/07/2021 1:17:14PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1211331 [VXX36909]

Blank Spike Lab ID: 1604525 Date Analyzed: 03/30/2021 10:42 Spike Duplicate ID: LCSD for HBN 1211331

[VXX36909]

Spike Duplicate Lab ID: 1604526 Matrix: Water (Surface, Eff., Ground)

.

QC for Samples: 1211331001, 1211331002, 1211331003, 1211331004

Results by AK101

	ı	Blank Spike	(mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.08	108	1.00	1.07	107	(60-120)	0.41	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500		100	0.0500		101	(50-150)	1.50	

Batch Information

Analytical Batch: VFC15533
Analytical Method: AK101

Instrument: Agilent 7890A PID/FID

Analyst: S.S

Prep Batch: VXX36909
Prep Method: SW5030B

Prep Date/Time: 03/30/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 04/07/2021 1:17:16PM

Method Blank

Blank ID: MB for HBN 1817302 [VXX/36909]

Blank Lab ID: 1604522

QC for Samples:

1211331001, 1211331002, 1211331003, 1211331004

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.420J	1.00	0.310	ug/L
o-Xylene	0.380J	1.00	0.310	ug/L
P & M -Xylene	0.840J	2.00	0.620	ug/L
Toluene	0.390J	1.00	0.310	ug/L
Xylenes (total)	1.22J	3.00	0.930	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	95.5	77-115		%

Batch Information

Analytical Batch: VFC15533 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: S.S

Analytical Date/Time: 3/30/2021 9:48:00AM

Prep Batch: VXX36909 Prep Method: SW5030B

Prep Date/Time: 3/30/2021 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 04/07/2021 1:17:19PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1211331 [VXX36909]

Blank Spike Lab ID: 1604523 Date Analyzed: 03/30/2021 10:24 Spike Duplicate ID: LCSD for HBN 1211331

[VXX36909]

Spike Duplicate Lab ID: 1604524 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1211331001, 1211331002, 1211331003, 1211331004

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Benzene	100	117	117	100	117	117	(80-120)	0.38	(< 20)
Ethylbenzene	100	97.0	97	100	95.7	96	(75-125)	1.40	(< 20)
o-Xylene	100	96.9	97	100	95.4	95	(80-120)	1.60	(< 20)
P & M -Xylene	200	193	96	200	189	95	(75-130)	1.60	(< 20)
Toluene	100	103	103	100	102	102	(75-120)	0.93	(< 20)
Xylenes (total)	300	290	97	300	285	95	(79-121)	1.60	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50		104	50		102	(77-115)	1.60	

Batch Information

Analytical Batch: VFC15533 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: S.S

Prep Batch: VXX36909
Prep Method: SW5030B

Prep Date/Time: 03/30/2021 06:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 04/07/2021 1:17:21PM

Method Blank

Blank ID: MB for HBN 1817321 [XXX/44570]

Blank Lab ID: 1604607

QC for Samples:

1211331001, 1211331002, 1211331003

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	53.8	42-86		%
Fluoranthene-d10 (surr)	57.6	50-97		%

Batch Information

Analytical Batch: XMS12550

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: CDM

Analytical Date/Time: 4/2/2021 12:18:00PM

Prep Batch: XXX44570 Prep Method: SW3535A

Prep Date/Time: 3/31/2021 2:00:32PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:24PM

QC for Samples:

Blank Spike Summary

Blank Spike ID: LCS for HBN 1211331 [XXX44570]

Blank Spike Lab ID: 1604608 Date Analyzed: 04/02/2021 12:39

1211331001, 1211331002, 1211331003

Spike Duplicate ID: LCSD for HBN 1211331

[XXX44570]

Spike Duplicate Lab ID: 1604609 Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Blank Spike	e (ug/L)		Spike Dupli	cate (ug/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.14	57	2	1.02	51	(41-115)	10.40	(< 20)
2-Methylnaphthalene	2	1.14	57	2	1.00	50	(39-114)	12.80	(< 20)
Acenaphthene	2	1.19	59	2	1.13	57	(48-114)	4.60	(< 20)
Acenaphthylene	2	1.31	66	2	1.28	64	(35-121)	2.00	(< 20)
Anthracene	2	1.22	61	2	1.21	61	(53-119)	0.38	(< 20)
Benzo(a)Anthracene	2	1.30	65	2	1.22	61	(59-120)	6.50	(< 20)
Benzo[a]pyrene	2	1.53	77	2	1.45	72	(53-120)	5.90	(< 20)
Benzo[b]Fluoranthene	2	1.56	78	2	1.45	73	(53-126)	6.80	(< 20)
Benzo[g,h,i]perylene	2	1.63	82	2	1.54	77	(44-128)	6.00	(< 20)
Benzo[k]fluoranthene	2	1.55	78	2	1.46	73	(54-125)	6.10	(< 20)
Chrysene	2	1.37	69	2	1.30	65	(57-120)	5.10	(< 20)
Dibenzo[a,h]anthracene	2	1.77	89	2	1.66	83	(44-131)	6.40	(< 20)
Fluoranthene	2	1.32	66	2	1.28	64	(58-120)	3.30	(< 20)
Fluorene	2	1.26	63	2	1.25	62	(50-118)	0.81	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.83	92	2	1.72	86	(48-130)	6.30	(< 20)
Naphthalene	2	1.21	60	2	1.05	53	(43-114)	13.60	(< 20)
Phenanthrene	2	1.21	61	2	1.22	61	(53-115)	1.20	(< 20)
Pyrene	2	1.21	60	2	1.17	58	(53-121)	3.20	(< 20)
Surrogates									
2-Methylnaphthalene-d10 (surr)	2		51	2		46	(42-86)	10.30	
Fluoranthene-d10 (surr)	2		58	2		56	(50-97)	2.70	

Batch Information

Analytical Batch: XMS12550

Analytical Method: 8270D SIM LV (PAH)
Instrument: SVA Agilent 780/5975 GC/MS

Analyst: CDM

Prep Batch: XXX44570
Prep Method: SW3535A

Prep Date/Time: 03/31/2021 14:00

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:26PM

Method Blank

Blank ID: MB for HBN 1817337 [XXX/44572]

Blank Lab ID: 1604683

QC for Samples:

1211331001, 1211331002, 1211331003

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.300U
 0.600
 0.180
 mg/L

Surrogates

5a Androstane (surr) 79.7 60-120 %

Batch Information

Analytical Batch: XFC15884 Prep Batch: XXX44572
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B R
Analyst: A.A
Prep Date/Time: 3/31/2021 4:37:04PM
Prep Initial Wt./Vol.: 250 mL

Analyst: A.A Prep Initial Wt./Vol.: 250 mL Analytical Date/Time: 4/2/2021 11:17:00AM Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:29PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1211331 [XXX44572]

Blank Spike Lab ID: 1604684 Date Analyzed: 04/02/2021 11:27 Spike Duplicate ID: LCSD for HBN 1211331

[XXX44572]

Spike Duplicate Lab ID: 1604685 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1211331001, 1211331002, 1211331003

Results by AK102

		Blank Spike	e (mg/L)	9	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Diesel Range Organics	20	19.7	99	20	18.8	94	(75-125)	4.60	(< 20)
Surrogates									
5a Androstane (surr)	0.4		103	0.4		102	(60-120)	1.40	

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK102 Instrument: Agilent 7890B R

Analyst: A.A

Prep Batch: **XXX44572**Prep Method: **SW3520C**

Prep Date/Time: 03/31/2021 16:37

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:32PM

Method Blank

Blank ID: MB for HBN 1817337 [XXX/44572]

Blank Lab ID: 1604683

QC for Samples:

1211331001, 1211331002, 1211331003

Matrix: Water (Surface, Eff., Ground)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.250U0.5000.150mg/L

Surrogates

n-Triacontane-d62 (surr) 89.2 60-120 %

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK103

Instrument: Agilent 7890B R

Analyst: A.A

Analytical Date/Time: 4/2/2021 11:17:00AM

Prep Batch: XXX44572 Prep Method: SW3520C

Prep Date/Time: 3/31/2021 4:37:04PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:33PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1211331 [XXX44572]

Blank Spike LabID: 1604684 Date Analyzed: 04/02/2021 11:27 Spike Duplicate ID: LCSD for HBN 1211331

[XXX44572]

Spike Duplicate Lab ID: 1604685 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1211331001, 1211331002, 1211331003

Results by AK103

	· ·	Blank Spike	e (mg/L)	5	Spike Duplic	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
Residual Range Organics	20	20.2	101	20	19.2	96	(60-120)	5.30	(<20)
Surrogates									
n- Triacontane-d62 (surr)	0.4		98	0.4		91	(60-120)	8.00	

Batch Information

Analytical Batch: XFC15884 Analytical Method: AK103 Instrument: Agilent 7890B R

Analyst: A.A

Prep Batch: XXX44572
Prep Method: SW3520C

Prep Date/Time: 03/31/2021 16:37

Spike Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 20 mg/L Extract Vol: 1 mL

Print Date: 04/07/2021 1:17:35PM

SHANNON & WILS GEOTECHNICAL AND ENVIRONMENTA 2355 Hill Road Fairbanks, AK 99708 (907) 479-0600	•	CH	AIN-	OF-	CUS	TOD					Labor	ratory <u>565</u>	gel ofl
Turn Around Time: Normal Rush Please Specify Sample Identity	Quote No: J-Flags: Lab No.	Yes Time	Date Sampled	્રિ ×	10 00 00 00 00 00 00 00 00 00 00 00 00 0	Dad &		<u> </u>		133	4	Rem Comp	4
mw-11-15 mw-12-10	(2AG) (3AG) (4AC)	1035	3/25/21	*	* X	*					7		7
Project Information Number: 102599-012 Name: Gus DFAs DoT-Mio Contact: KIUF	Sample Total No. of Contain COC Seals/Intact? Received Good Cor	Y/N/NA	Signat	ture:	ished By	7: 1. Time 90		nature:	ished B	By: 2. Time: Date:	S	Reliquishe	d By: 3.
Ongoing Project? Yes No No	Temp: Delivery Method: tes;			any: <u>annan</u> Rece	ters Wilso Ived By:	1.			ived By			Received	
Distribution: White - w/shipment - returned Yellow - w/shipment - for cons Pink - Shannon & Wilson - job	sianee files	n w/ laboratory		l Name:		Time:	Print	ature: ed Name: pany:		Time:	—— Pr	ignature: Michellu Callei rinted Name: Schull Allannen ompany: GGS	Time: <u>4804</u> M4 Date: <u>3/24/21</u> IF, IRS 2.5 DS9

027	JNU 814	8 7	'23	32	Me	XX		(O	01	e/			√	7/28	27-81	148 7232
Shipper's Shanr 2355 I Fairba	Name and Address non and Wils Hill Rd anks, AK 99	son	ı In			Shipper's Acc 274002 Customer's 109	2007	733	<i>F</i>		otiable Vayb By	ill	Ala AIR				
USA			-	Геl:	907-4	79-0600				١					0 SEATTLE, WA 98 ⁻ ALASKACARGO.CO		
SGS 1 200 W	e's Name and Addre North Ameri / Potter Driv orage, AK 99	ca ′e	8			Consignee's A 274002	ccount 2159	Number 947		Also no	tify		A44.00.00	Tel			
Issuing Ca	arrier's Agent and C	ity		rei:	907-5	62-2343			- A	Accoun	ting Infor	mation		1 61	•	10	926
Agent's IA	NTA Code				· A	ccount No.			1	2355	Hill Ro	id Wilso I AK 9971					
Airport of	Departure (Addr. of	First	t Car	rier) and	d Requeste	d Routing	,		1		/10259 Streak						
Junea	By First Carrier					То / Ву		To / By		Currenc		WT/VAL	Other	Decla	red Value For Carriage	Declar	ed Value For Customs
ANC	Alaska Airl	ine	s					-			PX		X		NVD		NCV
Airport of Ancho	Destination Drage			F	Flight/Date AS (65/26	Flight/l	Date 	^^	Amouni	t of Insur						
Handling	Information STORE IN C	coc	OLE	R W	HEN PO	OSSIBLE											SCI
No of Pieces							Total				Nature and (Incl. Dime						
1	38.0		N			38	.0				-	AS AG	BREED		WATER SAI KEEP COOI	-	
1	38.0											 AS AG	REED		Dims: 13 x 14 GSX COL Volume: 2.528		
Prepaid	<u> </u>		ight i	Charge		Collect	l .	r Charges									
	AS AGREE		ation Ta	Charg	е		X	(BC	10.00)		•	; ;				
	,			-	ue Agent		I con	tains dang	erous go	oods, s	such par	t is proper	rly describe	ed by i	nd that insofar as any name and is in proper ns. I consent to the ir	condition	ı for carriage
1.0	Total C	ther	Char	ges Du	e Carrier	 	Fo In					on Contain	_		Signature of Shipper o		
-	Total Prepaid				Total Co	llect	<u> -/</u>		EROUS (L		ANGEROUS GOODS	·	
	AS AGREE	D					1	6 Mar 2		11:	52		Juneau	u 			Airlines
							EX	recuted On	(Date)				at (Place)				148 7232

•

#411556

Citywide Delivery • 440-3351 8421 Flamingo Drive • Anchorage, Alaska 99502

Collect Prepay Advance Charges Job # 1/4 PO# 1 S / S / S	TO	665 /	Hora -
	Collect □	Prepay □	Advance Charges
	Job # 31/11	PO#/15 8/1	8-743
SEG MIDICS	المستعورين		
	560	10/05	
		1	
arrange despendent and the second an			
The state of the s	errotte distributions and	The second secon	·
Shipped Signature	Shipped Signature		

e-Sample Receipt Form

SGS Workorder #:

1211331

Review Criteria	Condition (Yes,	No, N/A		Exception	ns	Noted b	oelo	ow o	•
Chain of Custody / Temperature Require	ements		N/A	Exemption permitte					ers.
Were Custody Seals intact? Note # & lo									
COC accompanied san									
DOD: Were samples received in COC corresponding co									
N/A **Exemption permitted if c			NII O	ago, or for complex	who	ro obilling	io no	at required	
<u></u>	_	-		1				Therm. ID:	IDE0
Temperature blank compliant* (i.e., 0-6 °C after	CF)? Yes		_	'	@	2.3			D39
16	_	Cooler II	_		@		_	Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" will b documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chill		Cooler II	_		@		_	Therm. ID:	
be noted if neither is available.		Cooler ID	_		@			Therm. ID:	
		Cooler II):		@		°C	Therm. ID:	
*If >6°C, were samples collected <8 hours a	ago? N/A								
If <0°C, were sample containers ice t	free? N/A								
	<u></u>	İ							
Note: Identify containers received at non-compliant tempera									
Use form FS-0029 if more space is ne	eded.								
Holding Time / Documentation / Sample Condition Rec	quirements	Note: Refe	to fo	orm F-083 "Sample Guid	de" fo	or specific h	oldin	g times.	
Were samples received within holding	time? Yes								
	<u> </u>	İ							
Do samples match COC** (i.e.,sample IDs,dates/times collections)	ted)? Yes								
**Note: If times differ <1hr, record details & login per CO									
***Note: If sample information on containers differs from COC, SGS will default to CC									
Were analytical requests clear? (i.e., method is specified for ana									
with multiple option for analysis (Ex: BTEX, M									
	,								
			NI/A	***Exemption permi	ittod	for motals	. (0.	a 200 8/602	NR)
Were proper containers (type/mass/volume/preservative***)u	Icod2 Voc		IV/A	<u> </u>	iteu	ioi illetais	, (e.	9,200.0/002	<u>0D).</u>
vvere proper containers (type/mass/volume/preservative)c	iseu : Tes								
Volatile / LL-Hg Regu	iromonto								
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sam									
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6									
Were all soil VOAs field extracted with MeOH+									
Note to Client: Any "No", answer above indicates non-	-compliance	with stand	ard p	procedures and may	imp	act data q	ualit	у.	
Additional	notes (if a	pplicable	e):						
, raditional			,						

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>
1211331001-A	No Preservative Required	ОК			
1211331001-B	No Preservative Required	OK			
1211331001-C	HCL to pH < 2	OK			
1211331001-D	HCL to pH < 2	OK			
1211331001-E	HCL to pH < 2	OK			
1211331001-F	HCL to pH < 2	OK			
1211331001-G	HCL to pH < 2	OK			
1211331002-A	No Preservative Required	OK			
1211331002-B	No Preservative Required	OK			
1211331002-C	HCL to pH < 2	OK			
1211331002-D	HCL to pH < 2	OK			
1211331002-E	HCL to pH < 2	OK			
1211331002-F	HCL to pH < 2	OK			
1211331002-G	HCL to pH < 2	OK			
1211331003-A	No Preservative Required	OK			
1211331003-B	No Preservative Required	OK			
1211331003-C	HCL to pH < 2	OK			
1211331003-D	HCL to pH < 2	OK			
1211331003-E	HCL to pH < 2	OK			
1211331003-F	HCL to pH < 2	OK			
1211331003-G	HCL to pH < 2	OK			
1211331004-A	HCL to pH < 2	OK			
1211331004-B	HCL to pH < 2	OK			
1211331004-C	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

30 of 30

Laboratory Data Review Checklist

Completed By:	
Justin Risley	
Title:	
Engineering Staff	
Date:	
April 8, 2021	
Consultant Firm:	
Shannon & Wilson, Inc.	
Laboratory Name:	
SGS	
Laboratory Report Number:	
1211331	
Laboratory Report Date:	
4/7/2021	
CS Site Name:	
DOT&PF Gustavus Airport State	ewide PFAS
ADEC File Number:	
2569.38.033	
Hazard Identification Number:	
26981	

May 2020 Page 1

	1211	331
La	borato	ry Report Date:
	Note	: Any N/A or No box checked must have an explanation in the comments box.
1.	Labo	<u>ratory</u>
	a.	Did an ADEC CS approved laboratory receive and <u>perform</u> all the submitted sample analyses?
		$Yes \boxtimes No \square N/A \square$ Comments:
	b.	If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
		$Yes \square No \square N/A \boxtimes Comments:$
	Tł	te requested analyses were conducted by SGS, North America, Inc. in Anchorage, AK.
2.	Chair	n of Custody (CoC)
	a.	CoC information completed, signed, and dated (including released/received by)?
		Yes⊠ No□ N/A□ Comments:
	b.	Correct analyses requested?
		$Yes \boxtimes No \square N/A \square$ Comments:
3.	Labo	ratory Sample Receipt Documentation
	a.	Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
		Yes⊠ No□ N/A□ Comments:
	Co	poler 1 was received at 2.5°C.
	b.	Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
		Yes⊠ No□ N/A□ Comments:
	c.	Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
		$Yes \boxtimes No \square N/A \square$ Comments:
	Th	e sample receipt form noted the samples arrived in good condition.

Laboratory Report Date:	
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or m samples, etc.?	iissing
Yes□ No□ N/A⊠ Comments:	
No discrepancies were noted.	
e. Data quality or usability affected?	
Comments:	
The data quality and/or usability was not affected; see above.	
4. <u>Case Narrative</u>	
a. Present and understandable?	
Yes \boxtimes No \square N/A \square Comments:	
b. Discrepancies, errors, or QC failures identified by the lab?	
Yes \boxtimes No \square N/A \square Comments:	
The case narrative does not identify any QC failures, discrepancies, or errors.	
c. Were all corrective actions documented?	
$Yes \square No \square N/A \boxtimes Comments:$	
See above.	
d. What is the effect on data quality/usability according to the case narrative?	
Comments:	
The data quality and/or usability was not affected; see above.	
5. <u>Samples Results</u>	
a. Correct analyses performed/reported as requested on COC?	
Yes \boxtimes No \square N/A \square Comments:	
b. All applicable holding times met?	
Yes \boxtimes No \square N/A \square Comments:	
	·

1211331

	1211331
Lal	poratory Report Date:
	c. All soils reported on a dry weight basis?
	Yes No N/A Comments:
	Soil samples were not submitted with this work order.
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	Yes \square No \boxtimes N/A \square Comments:
	e. Data quality or usability affected?
	The data quality and/or usability was affected; see above.
6.	 QC Samples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes⊠ No□ N/A□ Comments:
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives? Yes⊠ No□ N/A□ Comments:
	There were no method blank detections above the LOQ; however, ethylbenzene, o-Xylene, p&m-xylenes, total xylenes, and toluene were detected below the LOQ in the BTEX MB associated with this work order.
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:
	Results in the following samples are affected: MW-11-15, MW-111-15, MW-12-10, and Trip Blank.
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes⊠ No□ N/A⊠ Comments:
	Ethylbenzene, o-xylene, p&m-xylenes, total xylenes, and toluene were detected below the LOQ in the following project samples: <i>MW-11-15</i> , <i>MW-111-15</i> , <i>MW-12-10</i> , and <i>Trip Blank</i> . These results are considered not detected and have been flagged 'UB' at the LOQ.
	v. Data quality or usability affected? Comments:
	Yes; see above.
	Yes; see above.

1211331
Laboratory Report Date:
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes \boxtimes No \square N/A \square Comments:
LCS/LCSD samples were analyzed for BTEX, PAH, GRO, DRO and RRO analyses.
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
Yes \square No \boxtimes N/A \boxtimes Comments:
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes \boxtimes No \square N/A \square Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \boxtimes No \square N/A \square Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A; analytical accuracy and precision were demonstrated to be within acceptable limits.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes \square No \square N/A \boxtimes Comments:

Qualification of the data was not required; see above.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

The data quality and/or usability was not affected; see above.

211331	
ratory Report Date:	
c. Matrix Spike/Matrix Spike	- , , , , , , , , , , , , , , , , , , ,
Note: Leave blank if not i	- · ·
_	ISD reported per matrix, analysis and 20 samples?
Yes□ No⊠ N/A□ MS/MSD samples were not pe	Comments: erformed for the requested analyses. However, the laboratory analyzes.
	boratory accuracy and precision.
ii. Metals/Inorganics – or	ne MS and one MSD reported per matrix, analysis and 20 samples?
Yes□ No□ N/A⊠	Comments:
Metals and/or inorganics were	not analyzed as part of this work order.
iii. Accuracy – All percen project specified object	at recoveries (%R) reported and within method or laboratory limits actives, if applicable?
Yes□ No□ N/A⊠	Comments:
MS and MSD samples were no	ot analyzed for this work order.
	e percent differences (RPD) reported and less than method or laboratified objectives, if applicable? RPD reported from MS/MSD, and oate.
Yes□ No□ N/A⊠	Comments:
MS and MSD samples were no	ot analyzed for this work order.
v. If %R or RPD is outside	de of acceptable limits, what samples are affected? Comments:
N/A; MS and MSD samples w	ere not analyzed for this work order.
vi. Do the affected sample	e(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠	Comments:
MS and MSD samples were no	ot analyzed for this work order.
vii. Data quality or usabil	ity affected? (Use comment box to explain.) Comments:
The data quality and/or usabili	ty was not affected; see above.
d Surrogatas Organias Only	y or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods O
u. Surrogates – Organies Oni	
	coveries reported for organic analyses – field, QC and laboratory

1211331
Laboratory Report Date:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
Yes⊠ No□ N/A□ Comments:
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the da flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
There were no surrogate recovery failures associated with this work order.
iv. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples (If not, enter explanation below.)
$Yes \boxtimes No \square N/A \square$ Comments:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC (If not, a comment explaining why must be entered below)
Yes□ No□ N/A⊠ Comments:
Only one cooler was used to transport the samples in this work order.
iii. All results less than LOQ and project specified objectives?
Yes⊠ No□ N/A□ Comments:
GRO was detected below the LOQ.
Ethylbenzene, o-xylene, p&m-xylenes, and toluene were also detected below the LOQ; however, these analytes are due to a method blank failure (see 6.iv). No qualifiers required.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
Project samples MW-11-15, MW-111-15 and MW-12-10 are associated with the TB.
GRO detected in sample MW-12-10 are considered not detected and have been flagged 'UB' at the

GRO were not detected in MW-11-15 and MW-111-15. No qualifiers are required.

April 2021 Page 7

LOQ.

	1211331								
La	boratory Report Date:								
	v. Data quality or usability affected?								
	Comments:								
	The data quality and/or usability was affected; see above.								
	f. Field Duplicate								
	i. One field duplicate submitted per matrix, analysis and 10 project samples?								
	$Yes \boxtimes No \square N/A \square$ Comments:								
	ii. Submitted blind to lab?								
	Yes⊠ No□ N/A□ Comments:								
	The field duplicate pair MW-11-15/MW-111-15 was submitted with this work order								
	iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration								
	$Yes \boxtimes No \square N/A \square$ Comments:								
	iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:								
	The data quality and/or usability was not affected; see above.								
	 g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)? Yes□ No□ N/A⊠ Comments: 								
	Project samples were not collected with reusable equipment, so the prospect of foreign contaminants being introduced through equipment contamination is not plausible.								
	 i. All results less than LOQ and project specified objectives? Yes□ No□ N/A⊠ Comments: 								
	ii. If above LOQ or project specified objectives, what samples are affected?								

	1211331	
Lal	poratory Report Date:	
	iii. Data quality or usabili	ty affected?
		Comments:
	No; see above.	
7.	Other Data Flags/Qualifiers (ACO)	E, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?	
	Yes□ No□ N/A⊠	Comments:
	ICSL NOL N/AZ	Comments.

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks

2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: 1213677

Client Project: 101543-001 GUS PFAS-DRM

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 07/13/2021 8:31:57AM Results via Engage

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks
SGS Project: 1213677

Project Name/Site: 101543-001 GUS PFAS-DRM
Project Contact: Kristen Freiburger

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/13/2021 8:31:58AM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 05/27/2021 for Mercury by EPA200.8, Nitrate as N by SM 4500NO3-F and VOCs by EPA 524.2) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 07/13/2021 8:32:00AM

SGS North America Inc. 200 West Potter Drive, Anchorage, AK 99518

t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
PW-200-F Port	1213677001	06/21/2021	06/25/2021	Water (Surface, Eff., Ground)
PW-200-Sink	1213677002	06/21/2021	06/25/2021	Water (Surface, Eff., Ground)
PW-200	1213677003	06/21/2021	06/25/2021	Water (Surface, Eff., Ground)

Method Description

EP200.8 Metals in Water by 200.8 ICP-MS

Print Date: 07/13/2021 8:32:02AM

Detectable Results Summary

Client Sample ID: **PW-200** Lab Sample ID: 1213677003

Metals by ICP/MS

Parameter Arsenic Result 14.9 <u>Units</u> ug/L

Print Date: 07/13/2021 8:32:03AM

SGS North America Inc.

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Results of PW-200-F Port

Client Sample ID: PW-200-F Port

Client Project ID: 101543-001 GUS PFAS-DRM

Lab Sample ID: 1213677001 Lab Project ID: 1213677

Collection Date: 06/21/21 15:52 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

<u>Allowable</u> <u>Parameter</u> Result Qual LOQ/CL <u>DL</u> <u>Units</u> <u>DF</u> <u>Limits</u> Date Analyzed 2.50 U Arsenic 5.00 1.50 ug/L 1 07/08/21 08:50

Batch Information

Analytical Batch: MMS11183 Analytical Method: EP200.8

Analyst: AKA

Analytical Date/Time: 07/08/21 08:50 Container ID: 1213677001-A

Prep Batch: MXX34349 Prep Method: E200.2

Prep Date/Time: 07/03/21 14:16 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 07/13/2021 8:32:05AM J flagging is activated

Results of PW-200-Sink

Client Sample ID: PW-200-Sink

Client Project ID: 101543-001 GUS PFAS-DRM

Lab Sample ID: 1213677002 Lab Project ID: 1213677

Collection Date: 06/21/21 15:44 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	2.50 U	5.00	1.50	ug/L	1		07/08/21 09:33

Batch Information

Analytical Batch: MMS11183 Analytical Method: EP200.8

Analyst: AKA

Analytical Date/Time: 07/08/21 09:33 Container ID: 1213677002-A

Prep Batch: MXX34349 Prep Method: E200.2

Prep Date/Time: 07/03/21 14:16 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 07/13/2021 8:32:05AM J flagging is activated

Results of PW-200

Client Sample ID: PW-200

Client Project ID: 101543-001 GUS PFAS-DRM

Lab Sample ID: 1213677003 Lab Project ID: 1213677

Collection Date: 06/21/21 16:15 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Metals by ICP/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Arsenic	14.9	5.00	1.50	ug/L	1		07/08/21 09:42

Batch Information

Analytical Batch: MMS11183 Analytical Method: EP200.8

Analyst: AKA

Analytical Date/Time: 07/08/21 09:42 Container ID: 1213677003-A

Prep Batch: MXX34349 Prep Method: E200.2

Prep Date/Time: 07/03/21 14:16 Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 07/13/2021 8:32:05AM J flagging is activated

Method Blank

Blank ID: MB for HBN 1821716 [MXX/34349]

Blank Lab ID: 1620528

QC for Samples:

1213677001, 1213677002, 1213677003

Matrix: Water (Surface, Eff., Ground)

Results by EP200.8

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Arsenic
 2.50U
 5.00
 1.50
 ug/L

Batch Information

Analytical Batch: MMS11183 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: AKA

Analytical Date/Time: 7/8/2021 8:37:17AM

Prep Batch: MXX34349 Prep Method: E200.2

Prep Date/Time: 7/3/2021 2:16:49PM

Prep Initial Wt./Vol.: 20 mL Prep Extract Vol: 50 mL

Print Date: 07/13/2021 8:32:07AM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1213677 [MXX34349]

Blank Spike Lab ID: 1620529 Date Analyzed: 07/08/2021 08:39

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213677001, 1213677002, 1213677003

Results by EP200.8

Blank Spike (ug/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Arsenic
 1000
 1010
 101
 (85-115)

Batch Information

Analytical Batch: MMS11183 Prep Batch: MXX34349
Analytical Method: EP200.8 Prep Method: E200.2

Instrument: P7 Agilent 7800 Prep Date/Time: 07/03/2021 14:16

Analyst: AKA Spike Init Wt./Vol.: 1000 ug/L Extract Vol: 50 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 07/13/2021 8:32:09AM

Matrix Spike Summary

Original Sample ID: 1620531 MS Sample ID: 1620532 MS

MSD Sample ID:

Analysis Date: 07/08/2021 8:50 Analysis Date: 07/08/2021 8:53

Analysis Date:

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213677001, 1213677002, 1213677003

Results by EP200.8

Matrix Spike (ug/L) Spike Duplicate (ug/L)

<u>Parameter</u> <u>Sample</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>Spike</u> <u>Result</u> <u>Rec (%)</u> <u>CL</u> <u>RPD (%)</u> <u>RPD CL</u>

Arsenic 2.50U 1000 1010 101 70-130

Batch Information

Analytical Batch: MMS11183 Analytical Method: EP200.8 Instrument: P7 Agilent 7800

Analyst: AKA

Analytical Date/Time: 7/8/2021 8:53:26AM

Prep Batch: MXX34349

Prep Method: DW Digest for Metals on ICP-MS

Prep Date/Time: 7/3/2021 2:16:49PM

Prep Initial Wt./Vol.: 20.00mL Prep Extract Vol: 50.00mL

Print Date: 07/13/2021 8:32:11AM

SHANNON & WILSON, INC. 2355 HIII Road Fairbanks, AK 99709 (907) 479-0600 www.shannonwilson.com	CHAIN-	-OF-CUST	Analytic		Page of
Turn Around Time: Quote No:	MSA -SGS-20 16		os griv	1213677	Remarks/Matrix Composition/Grab? Sample Containers
Sample Identity Lab No.	Yes No Date Time Sample	e led UMP		/	
*PW-200-F POrt * HOLD * (1A) PW-200-SINK (2A) PW-200 (3A)	1544 6/21/1615 6/21/	/21 ×			1 groundwater
Project Information Sample F		Reliquished By		Reliquished By: 2.	Reliquished By: 3.
Number: 101543 OQ Total No. of Container Name: Gus P FA,5 - DQM COC Seals/Intact? Y. Contact: Y Received Good Cond	/NNA (H.D.) /Cold Y Pri		Tim Story Signatur Date: 6/25/2/ Printed N		Signature: Time: Printed Name: Date:
Ongoing Project? Yes No Delivery Method: Notes:	#Da3	Shangn + Williams Received By:	Sun, Inc	Received By: 2.	Company: Received By: 3.
Page 12	18 XX	ignature:	Time: Signatur Date: Printed N	e: Time:	Signature Time: 07.50
↑ Distribution: White - w/shipment - returned to Shannon & Wilson Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - job file		ompany:	Compan		Printed Name: Date: 06/25/21 Allie Daniel Company: SGS N.A.

cooler temp. 1.8 DHNO.

e-Sample Receipt Form

SGS Workorder #:

1213677

1213677

Review Criteria	Condition (Yes	, No, N/A		Exce	ptions Note	ed below	
Chain of Custody / Temperature Requi			I/A	Exemption per	mitted if sampl	er hand carries/deliv	ers.
Were Custody Seals intact? Note # &	location Yes	absent					
COC accompanied sa	amples? Yes						
DOD: Were samples received in COC corresponding of	coolers? N/A						
N/A **Exemption permitted if			urs ag	go, or for sam	ples where chil	ling is not required	
Temperature blank compliant* (i.e., 0-6 °C afte				1	@	1.8 °C Therm. ID:	D45
(,	/ .	Cooler ID:			@	°C Therm. ID:	
If samples received without a temperature blank, the "cooler temperature" will be documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chilled" be noted if neither is available.		Cooler ID:	_		@	°C Therm. ID:	
		Cooler ID:				°C Therm. ID:	
		-			@		
*If > C°C	2 2 2	Cooler ID:			@	°C Therm. ID:	
*If >6°C, were samples collected <8 hours	ago?	<u>Į</u>					
If <0°C, were sample containers ice	e free? No		A was	s received wi	th ice in conta	iner. Proceed with	1
		analysis.					
Note: Identify containers received at non-compliant temper							
Use form FS-0029 if more space is n	eeded.						
Holding Time / Documentation / Sample Condition Re	equirements	Note: Refer	to forn	m F-083 "Sampl	e Guide" for spec	ific holding times.	
Were samples received within holding	g time? Yes						
		Ī					
Do samples match COC** (i.e.,sample IDs,dates/times colle	ected)? Yes						
**Note: If times differ <1hr, record details & login per C	OC.	Ï					
***Note: If sample information on containers differs from COC, SGS will default to 0		n					
Were analytical requests clear? (i.e., method is specified for an	nalvses Yes						
with multiple option for analysis (Ex: BTEX, I		1					
, ,	,						
			/oc *	***Evamption	pormitted for m	etals (e.g,200.8/602	(ΔΛ)
Ware proper containers (type/mass/yelume/proceryative***	\uaad2 Vaa		62	Exemplion	Jernilled for mi	etais (e.g,200.0/002	. <u>UA).</u>
Were proper containers (type/mass/volume/preservative***	Juseu?	4					
Volatile / LL-Hg Reg	uiromonto	1					
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with sar		41					
Were all water VOA vials free of headspace (i.e., bubbles ≤	·	41					
Were all soil VOAs field extracted with MeOH	+BFB? N/A						
Note to Client: Any "No", answer above indicates no	n-compliance	with standa	rd pr	ocedures and	may impact da	ita quality.	
Additions	al notes (if a	annlicable	١٠				
Additiona	ai rioles (il c	Aphiloanie	<i>)</i> ·				

Sample Containers and Preservatives

Container Id	<u>Preservative</u>	<u>Container</u> <u>Condition</u>	Container Id	<u>Preservative</u>	Container Condition
1213677001-A 1213677002-A 1213677003-A	HNO3 to pH < 2 HNO3 to pH < 2 HNO3 to pH < 2	OK OK FR			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- OK The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Page 14 of 14

Laboratory Data Review Checklist

Completed By:		
Rachel Willis		
Title:		
Environmental Scientist		
Date:		
July 16, 2021		
Consultant Firm:		
Shannon & Wilson, Inc.		
Laboratory Name:		
SGS North America, Inc. (SGS)		
Laboratory Report Number:		
1213677		
Laboratory Report Date:		
July 17, 2021		
CS Site Name:		
DRM Gustavus PFAS		
ADEC File Number:		
1507.38.017		
Hazard Identification Number:		
26904		

1213677
Laboratory Report Date:
July 17, 2021
CS Site Name:
DRM Gustavus PFAS
Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
Yes⊠ No□ N/A□ Comments:
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
The samples were analyzed by SGS.
2. Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
Yes \boxtimes No \square N/A \square Comments:
b. Correct analyses requested?
$Yes \boxtimes No \square N/A \square$ Comments:
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes⊠ No□ N/A□ Comments:

1213677
Laboratory Report Date:
July 17, 2021
CS Site Name:
DRM Gustavus PFAS
 c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments:
The sample receipt forms note that sample 3A was received with ice in the container.
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
Yes⊠ No□ N/A□ Comments:
See above.
e. Data quality or usability affected?
Comments:
The laboratory proceeded with analysis. The arsenic result for sample <i>PW-200</i> is considered estimated flagged with a "J" on the analytical table.
4. <u>Case Narrative</u>
a. Present and understandable?
Yes \boxtimes No \square N/A \square Comments:
Tesizi Noti N/Ati Comments.
b. Discrepancies, errors, or QC failures identified by the lab?
Yes⊠ No□ N/A□ Comments:
The case narrative refers to the sample receipt to discuss sample condition.
c. Were all corrective actions documented?
Yes□ No□ N/A⊠ Comments:
The laboratory does not discuss any corrective actions.
The laboratory does not discuss any corrective actions.

	12	13677
La	bora	tory Report Date:
	Jul	y 17, 2021
CS	Sit	e Name:
	DF	M Gustavus PFAS
5.	Sa	mples Results
		a. Correct analyses performed/reported as requested on COC?
		Yes \boxtimes No \square N/A \square Comments:
		b. All applicable holding times met?
		Yes \boxtimes No \square N/A \square Comments:
		c. All soils reported on a dry weight basis?
	ſ	Yes \square No \square N/A \boxtimes Comments:
		Soil samples were not included with this work order.
		d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	ſ	Yes \boxtimes No \square N/A \square Comments:
		e. Data quality or usability affected?
		Data quality or usability are not affected.
6.	QC	<u>C Samples</u>
		a. Method Blank
		i. One method blank reported per matrix, analysis and 20 samples?
	·	Yes \boxtimes No \square N/A \square Comments:
		ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
		Yes \boxtimes No \square N/A \square Comments:

1213677
Laboratory Report Date:
July 17, 2021
CS Site Name:
DRM Gustavus PFAS
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
N/A; see above.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments:
See above.
v. Data quality or usability affected? Comments:
The results are unaffected; see below.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes□ No□ N/A⊠ Comments:
Organics were not reported with this work order.
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \boxtimes N/A \square$ Comments:
An LCS and MS were reported with this analysis. We do not have a measure of precision for these analytes.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:

1213677
Laboratory Report Date:
July 17, 2021
CS Site Name:
DRM Gustavus PFAS
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \square No \square N/A \boxtimes Comments: The laboratory did not run a duplicate for the LCS or MS sample. We do not have a measure of
precision
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
None.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
No flags are required.
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
Data quality or usability is not affected.
c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
Yes \square No \square N/A \boxtimes Comments:
Organics were not included with this work order.
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
Yes \square No \square N/A \boxtimes Comments:
An LCS and MS were reported for metals analysis. We do not have a measure of precision for these analyses.

1213677
Laboratory Report Date:
July 17, 2021
CS Site Name:
DRM Gustavus PFAS
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
$Yes \boxtimes No \square N/A \square$ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
$Yes \square No \square N/A \boxtimes Comments:$
See above.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
None; see above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
See above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Data quality or usability is not affected.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes \square No \square N/A \boxtimes Comments:
Organic analyses were not included with this work order.
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
Yes \square No \square N/A \boxtimes Comments:
See above.

1213677
Laboratory Report Date:
July 17, 2021
CS Site Name:
DRM Gustavus PFAS
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
Flags are not required; see above.
iv. Data quality or usability affected? Comments:
Data quality or usability are not affected.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes \square No \square N/A \boxtimes Comments:
Volatile compounds were not requested for this project. A trip blank is not required for the requested analyses.
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
$Yes \square No \square N/A \boxtimes Comments:$
See above.
iii. All results less than LOQ and project specified objectives?
Yes \square No \square N/A \boxtimes Comments:
See above.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
See above.
v. Data quality or usability affected? Comments:
Data quality or usability are not affected.

1213677
Laboratory Report Date:
July 17, 2021
CS Site Name:
DRM Gustavus PFAS
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
$Yes \square No \square N/A \boxtimes Comments:$
Only three project samples were submitted with this work order.
ii. Submitted blind to lab?
$Yes \square No \square N/A \boxtimes Comments:$
See above.
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration
$Yes \square No \square N/A \boxtimes Comments:$
See above.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
Data quality or usability are not affected.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
$Yes \square No \square N/A \boxtimes Comments:$
The sample was not collected with reusable equipment, therefore an equipment blank is not necessary.
i. All results less than LOQ and project specified objectives?
Yes \square No \square N/A \boxtimes Comments:
See above.

12	13677
Labora	atory Report Date:
Ju	ly 17, 2021
CS Sit	re Name:
DI	RM Gustavus PFAS
	ii. If above LOQ or project specified objectives, what samples are affected? Comments:
	None; see above.
	iii. Data quality or usability affected? Comments:
	Data quality or usability are not affected.
7. <u>Ot</u>	ther Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	$Yes \square No \square N/A \boxtimes Comments:$
	N/A

Laboratory Report of Analysis

To: Shannon & Wilson-Fairbanks

2355 Hill Rd. Fairbanks, AK 99701 (907)479-0600

Report Number: 1213682

Client Project: 102599-012 DOT GUS PFAS

Dear Kristen Freiburger,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of ten years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of fourteen (14) days from the date of this report unless other archiving requirements were included in the quote.

If there are any questions about the report or services performed during this project, please call Jennifer at (907) 562-2343. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Jennifer Dawkins
Project Manager
Jennifer.Dawkins@sgs.com

Date

Print Date: 07/19/2021 2:28:29PM Results via Engage

Case Narrative

SGS Client: Shannon & Wilson-Fairbanks
SGS Project: 1213682

Project Name/Site: 102599-012 DOT GUS PFAS
Project Contact: Kristen Freiburger

Refer to sample receipt form for information on sample condition.

*QC comments may be associated with the field samples found in this report. When applicable, comments will be applied to associated field samples.

Print Date: 07/19/2021 2:28:31PM

Laboratory Qualifiers

Enclosed are the analytical results associated with the above work order. The results apply to the samples as received. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indenmification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the context or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS maintains a formal Quality Assurance/Quality Control (QA/QC) program. A copy of our Quality Assurance Plan (QAP), which outlines this program, is available at your request. The laboratory certification numbers are AK00971 DW Chemistry (Provisionally Certified as of 05/27/2021 for Mercury by EPA200.8, Nitrate as N by SM 4500NO3-F and VOCs by EPA 524.2) & Microbiology & 17-021 (CS) for ADEC and 2944.01 for DOD ELAP/ISO17025 (RCRA methods: 1020B, 1311, 3010A, 3050B, 3520C, 3550C, 5030B, 5035A, 6020B, 7470A, 7471B, 8015C, 8021B, 8082A, 8260D, 8270D, 8270D-SIM, 9040C, 9045D, 9056A, 9060A, AK101 and AK102/103). SGS is only certified for the analytes listed on our Drinking Water Certification (DW methods: 200.8, 2130B, 2320B, 2510B, 300.0, 4500-CN-C,E, 4500-H-B, 4500-NO3-F, 4500-P-E and 524.2) and only those analytes will be reported to the State of Alaska for compliance. Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the

The following descriptors or qualifiers may be found in your report:

* The analyte has exceeded allowable regulatory or control limits.

! Surrogate out of control limits.

B Indicates the analyte is found in a blank associated with the sample.

CCV/CVA/CVB Continuing Calibration Verification
CCCV/CVC/CVCA/CVCB Closing Continuing Calibration Verification

CL Control Limit

DF Analytical Dilution Factor

DL Detection Limit (i.e., maximum method detection limit)
E The analyte result is above the calibrated range.

GT Greater Than
IB Instrument Blank

ICV Initial Calibration Verification
J The quantitation is an estimation.
LCS(D) Laboratory Control Spike (Duplicate)
LLQC/LLIQC Low Level Quantitation Check

LOD Limit of Detection (i.e., 1/2 of the LOQ)

LOQ Limit of Quantitation (i.e., reporting or practical quantitation limit)

LT Less Than MB Method Blank

MS(D) Matrix Spike (Duplicate)

ND Indicates the analyte is not detected.

RPD Relative Percent Difference
TNTC Too Numerous To Count

U Indicates the analyte was analyzed for but not detected.

Note: Sample summaries which include a result for "Total Solids" have already been adjusted for moisture content.

All DRO/RRO analyses are integrated per SOP.

Print Date: 07/19/2021 2:28:33PM

200 West Potter Drive, Anchorage, AK 99518 t 907.562.2343 f 907.561.5301 www.us.sgs.com

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
MW-111-15	1213682001	06/23/2021	06/25/2021	Water (Surface, Eff., Ground)
MW-11-15	1213682002	06/23/2021	06/25/2021	Water (Surface, Eff., Ground)
MW-12-10	1213682003	06/23/2021	06/25/2021	Water (Surface, Eff., Ground)
Trip Blank	1213682004	06/23/2021	06/25/2021	Water (Surface, Eff., Ground)

MethodMethod Description8270D SIM LV (PAH)8270 PAH SIM GC/MS LVAK101AK101/8021 Combo.SW8021BAK101/8021 Combo.AK102DRO/RRO Low Volume WaterAK103DRO/RRO Low Volume Water

Print Date: 07/19/2021 2:28:35PM

Detectable Results Summary

Client Sample ID: MW-111-15			
Lab Sample ID: 1213682001	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Phenanthrene	0.0250J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.233J	mg/L
Client Sample ID: MW-11-15			
Lab Sample ID: 1213682002	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Phenanthrene	0.0227J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.225J	mg/L
Client Sample ID: MW-12-10			
Lab Sample ID: 1213682003	<u>Parameter</u>	Result	<u>Units</u>
Polynuclear Aromatics GC/MS	Phenanthrene	0.0233J	ug/L
Semivolatile Organic Fuels	Diesel Range Organics	0.235J	mg/L

Print Date: 07/19/2021 2:28:36PM

Results of MW-111-15

Client Sample ID: MW-111-15

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682001 Lab Project ID: 1213682 Collection Date: 06/23/21 10:03 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
1-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
2-Methylnaphthalene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Acenaphthene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Acenaphthylene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Benzo(a)Anthracene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Benzo[a]pyrene	0.00925 U	0.0185	0.00574	ug/L	1		07/14/21 23:25
Benzo[b]Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Benzo[g,h,i]perylene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Benzo[k]fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Chrysene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Dibenzo[a,h]anthracene	0.00925 U	0.0185	0.00574	ug/L	1		07/14/21 23:25
Fluoranthene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Fluorene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Indeno[1,2,3-c,d] pyrene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Naphthalene	0.0463 U	0.0926	0.0287	ug/L	1		07/14/21 23:25
Phenanthrene	0.0250 J	0.0463	0.0139	ug/L	1		07/14/21 23:25
Pyrene	0.0232 U	0.0463	0.0139	ug/L	1		07/14/21 23:25
Surrogates							
2-Methylnaphthalene-d10 (surr)	69.1	42-86		%	1		07/14/21 23:25
Fluoranthene-d10 (surr)	73.9	50-97		%	1		07/14/21 23:25
i idolantifolio-dito (dull)	10.0	30-31		70	'		01, 17,21 20.20

Batch Information

Analytical Batch: XMS12742

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 07/14/21 23:25 Container ID: 1213682001-C Prep Batch: XXX45053 Prep Method: SW3535A Prep Date/Time: 06/28/21 13:00

Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

Results of MW-111-15

Client Sample ID: MW-111-15

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682001 Lab Project ID: 1213682 Collection Date: 06/23/21 10:03 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.233 J	0.577	0.173	mg/L	1		07/01/21 13:26
Surrogates							
5a Androstane (surr)	84.6	50-150		%	1		07/01/21 13:26

Batch Information

Analytical Batch: XFC15982 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 07/01/21 13:26 Container ID: 1213682001-A Prep Batch: XXX45080 Prep Method: SW3520C Prep Date/Time: 06/30/21 16:39 Prep Initial Wt./Vol.: 260 mL Prep Extract Vol: 1 mL

<u>Parameter</u> Residual Range Organics	Result Qual 0.240 U	<u>LOQ/CL</u> 0.481	<u>DL</u> 0.144	<u>Units</u> mg/L	<u>DF</u> 1	Allowable Limits	<u>Date Analyzed</u> 07/01/21 13:26
Surrogates							
n-Triacontane-d62 (surr)	93	50-150		%	1		07/01/21 13:26

Batch Information

Analytical Batch: XFC15982 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 07/01/21 13:26 Container ID: 1213682001-A Prep Batch: XXX45080 Prep Method: SW3520C Prep Date/Time: 06/30/21 16:39 Prep Initial Wt./Vol.: 260 mL

Prep Extract Vol: 1 mL

Results of MW-111-15

Client Sample ID: MW-111-15

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682001 Lab Project ID: 1213682 Collection Date: 06/23/21 10:03 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		07/02/21 20:22
Surrogates							
4-Bromofluorobenzene (surr)	84.1	50-150		%	1		07/02/21 20:22

Batch Information

Analytical Batch: VFC15692 Analytical Method: AK101

Analyst: MDT Analytical Date/Time: 07/02/21 20:22

Analytical Date/Time: 07/02/27 Container ID: 1213682001-E

Prep Batch: VXX37369
Prep Method: SW5030B
Prep Date/Time: 07/02/21 06:00
Prep Initial Wt./Vol.: 5 mL
Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		07/02/21 20:22
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:22
o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:22
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/02/21 20:22
Toluene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:22
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		07/02/21 20:22
Surrogates							
1,4-Difluorobenzene (surr)	101	77-115		%	1		07/02/21 20:22

Batch Information

Analytical Batch: VFC15692 Analytical Method: SW8021B

Analyst: MDT

Analytical Date/Time: 07/02/21 20:22 Container ID: 1213682001-E Prep Batch: VXX37369 Prep Method: SW5030B Prep Date/Time: 07/02/21 06:00 Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682002 Lab Project ID: 1213682 Collection Date: 06/23/21 10:13 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
2-Methylnaphthalene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Acenaphthene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Acenaphthylene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Benzo(a)Anthracene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Benzo[a]pyrene	0.00960 U	0.0192	0.00596	ug/L	1	07/14/21 23:45
Benzo[b]Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Benzo[g,h,i]perylene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Benzo[k]fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Chrysene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Dibenzo[a,h]anthracene	0.00960 U	0.0192	0.00596	ug/L	1	07/14/21 23:45
Fluoranthene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Fluorene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Indeno[1,2,3-c,d] pyrene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Naphthalene	0.0481 U	0.0962	0.0298	ug/L	1	07/14/21 23:45
Phenanthrene	0.0227 J	0.0481	0.0144	ug/L	1	07/14/21 23:45
Pyrene	0.0240 U	0.0481	0.0144	ug/L	1	07/14/21 23:45
Surrogates						
2-Methylnaphthalene-d10 (surr)	70.7	42-86		%	1	07/14/21 23:45
Fluoranthene-d10 (surr)	71.1	50-97		%	1	07/14/21 23:45

Batch Information

Analytical Batch: XMS12742

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 07/14/21 23:45 Container ID: 1213682002-C Prep Batch: XXX45053 Prep Method: SW3535A Prep Date/Time: 06/28/21 13:00 Prep Initial Wt./Vol.: 260 mL

Prep Extract Vol: 1 mL

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682002 Lab Project ID: 1213682 Collection Date: 06/23/21 10:13 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.225 J	0.588	0.176	mg/L	1		07/01/21 13:36
Surrogates							
5a Androstane (surr)	86.5	50-150		%	1		07/01/21 13:36

Batch Information

Analytical Batch: XFC15982 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 07/01/21 13:36 Container ID: 1213682002-A Prep Batch: XXX45080 Prep Method: SW3520C Prep Date/Time: 06/30/21 16:39 Prep Initial Wt./Vol.: 255 mL Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	<u>LOQ/CL</u>	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable	<u>Date Analyzed</u>
Residual Range Organics	0.245 U	0.490	0.147	mg/L	1	Limits	07/01/21 13:36
Surrogates n-Triacontane-d62 (surr)	93.5	50-150		%	1		07/01/21 13:36

Batch Information

Analytical Batch: XFC15982 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 07/01/21 13:36 Container ID: 1213682002-A Prep Batch: XXX45080
Prep Method: SW3520C
Prep Date/Time: 06/30/21 16:39
Prep Initial Wt./Vol.: 255 mL
Prep Extract Vol: 1 mL

Results of MW-11-15

Client Sample ID: MW-11-15

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682002 Lab Project ID: 1213682

Collection Date: 06/23/21 10:13 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		07/02/21 20:40
Surrogates							
4-Bromofluorobenzene (surr)	90.2	50-150		%	1		07/02/21 20:40

Batch Information

Analytical Batch: VFC15692 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 07/02/21 20:40

Container ID: 1213682002-E

Prep Batch: VXX37369 Prep Method: SW5030B Prep Date/Time: 07/02/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		07/02/21 20:40
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:40
o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:40
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/02/21 20:40
Toluene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:40
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		07/02/21 20:40
Surrogates							
1,4-Difluorobenzene (surr)	101	77-115		%	1		07/02/21 20:40

Batch Information

Analytical Batch: VFC15692 Analytical Method: SW8021B

Analyst: MDT

Analytical Date/Time: 07/02/21 20:40 Container ID: 1213682002-E

Prep Batch: VXX37369 Prep Method: SW5030B Prep Date/Time: 07/02/21 06:00 Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682003 Lab Project ID: 1213682 Collection Date: 06/23/21 08:50 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Polynuclear Aromatics GC/MS

						<u>Allowable</u>
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u> <u>Date Analyzed</u>
1-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
2-Methylnaphthalene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Acenaphthene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Acenaphthylene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Benzo(a)Anthracene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Benzo[a]pyrene	0.0100 U	0.0200	0.00620	ug/L	1	07/15/21 13:38
Benzo[b]Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Benzo[g,h,i]perylene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Benzo[k]fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Chrysene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Dibenzo[a,h]anthracene	0.0100 U	0.0200	0.00620	ug/L	1	07/15/21 13:38
Fluoranthene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Fluorene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Indeno[1,2,3-c,d] pyrene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Naphthalene	0.0500 U	0.100	0.0310	ug/L	1	07/15/21 13:38
Phenanthrene	0.0233 J	0.0500	0.0150	ug/L	1	07/15/21 13:38
Pyrene	0.0250 U	0.0500	0.0150	ug/L	1	07/15/21 13:38
Surrogates						
2-Methylnaphthalene-d10 (surr)	67.8	42-86		%	1	07/15/21 13:38
Fluoranthene-d10 (surr)	68.9	50-97		%	1	07/15/21 13:38

Batch Information

Analytical Batch: XMS12744

Analytical Method: 8270D SIM LV (PAH)

Analyst: LAW

Analytical Date/Time: 07/15/21 13:38 Container ID: 1213682003-C Prep Batch: XXX45053 Prep Method: SW3535A Prep Date/Time: 06/28/21 13:00

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682003 Lab Project ID: 1213682 Collection Date: 06/23/21 08:50 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Semivolatile Organic Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Diesel Range Organics	0.235 J	0.556	0.167	mg/L	1		07/01/21 13:46
Surrogates							
5a Androstane (surr)	81.3	50-150		%	1		07/01/21 13:46

Batch Information

Analytical Batch: XFC15982 Analytical Method: AK102

Analyst: IVM

Analytical Date/Time: 07/01/21 13:46 Container ID: 1213682003-A Prep Batch: XXX45080 Prep Method: SW3520C Prep Date/Time: 06/30/21 16:39 Prep Initial Wt./Vol.: 270 mL Prep Extract Vol: 1 mL

<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Allowable <u>Limits</u>	Date Analyzed
Residual Range Organics	0.232 U	0.463	0.139	mg/L	1		07/01/21 13:46
Surrogates							
n-Triacontane-d62 (surr)	90.7	50-150		%	1		07/01/21 13:46

Batch Information

Analytical Batch: XFC15982 Analytical Method: AK103

Analyst: IVM

Analytical Date/Time: 07/01/21 13:46 Container ID: 1213682003-A Prep Batch: XXX45080 Prep Method: SW3520C Prep Date/Time: 06/30/21 16:39 Prep Initial Wt./Vol.: 270 mL

Prep Extract Vol: 1 mL

Results of MW-12-10

Client Sample ID: MW-12-10

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682003 Lab Project ID: 1213682

Collection Date: 06/23/21 08:50 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		07/02/21 20:58
Surrogates							
4-Bromofluorobenzene (surr)	85.7	50-150		%	1		07/02/21 20:58

Batch Information

Analytical Batch: VFC15692 Analytical Method: AK101

Analyst: MDT Analytical Date/Time: 07/02/21 20:58

Container ID: 1213682003-E

Prep Batch: VXX37369 Prep Method: SW5030B Prep Date/Time: 07/02/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		07/02/21 20:58
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:58
o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:58
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/02/21 20:58
Toluene	0.500 U	1.00	0.310	ug/L	1		07/02/21 20:58
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		07/02/21 20:58
Surrogates							
1,4-Difluorobenzene (surr)	101	77-115		%	1		07/02/21 20:58

Batch Information

Analytical Batch: VFC15692 Analytical Method: SW8021B

Analyst: MDT

Analytical Date/Time: 07/02/21 20:58 Container ID: 1213682003-E

Prep Batch: VXX37369 Prep Method: SW5030B Prep Date/Time: 07/02/21 06:00 Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Results of Trip Blank

Client Sample ID: Trip Blank

Client Project ID: 102599-012 DOT GUS PFAS

Lab Sample ID: 1213682004 Lab Project ID: 1213682 Collection Date: 06/23/21 08:50 Received Date: 06/25/21 07:50 Matrix: Water (Surface, Eff., Ground)

Solids (%): Location:

Results by Volatile Fuels

						<u>Allowable</u>	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	<u>Limits</u>	Date Analyzed
Gasoline Range Organics	0.0500 U	0.100	0.0310	mg/L	1		07/02/21 18:18
Surrogates							
4-Bromofluorobenzene (surr)	81.6	50-150		%	1		07/02/21 18:18

Batch Information

Analytical Batch: VFC15692 Analytical Method: AK101 Analyst: MDT

Analytical Date/Time: 07/02/21 18:18 Container ID: 1213682004-A Prep Batch: VXX37369 Prep Method: SW5030B Prep Date/Time: 07/02/21 06:00 Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

						Allowable	
<u>Parameter</u>	Result Qual	LOQ/CL	<u>DL</u>	<u>Units</u>	<u>DF</u>	Limits	Date Analyzed
Benzene	0.250 U	0.500	0.150	ug/L	1		07/02/21 18:18
Ethylbenzene	0.500 U	1.00	0.310	ug/L	1		07/02/21 18:18
o-Xylene	0.500 U	1.00	0.310	ug/L	1		07/02/21 18:18
P & M -Xylene	1.00 U	2.00	0.620	ug/L	1		07/02/21 18:18
Toluene	0.500 U	1.00	0.310	ug/L	1		07/02/21 18:18
Xylenes (total)	1.50 U	3.00	0.930	ug/L	1		07/02/21 18:18
Surrogates							
1,4-Difluorobenzene (surr)	100	77-115		%	1		07/02/21 18:18

Batch Information

Analytical Batch: VFC15692 Analytical Method: SW8021B

Analyst: MDT Analytical Date/T

Analytical Date/Time: 07/02/21 18:18 Container ID: 1213682004-A Prep Batch: VXX37369 Prep Method: SW5030B Prep Date/Time: 07/02/21 06:00 Prep Initial Wt./Vol.: 5 mL

Prep Extract Vol: 5 mL

Method Blank

Blank ID: MB for HBN 1821967 [VXX/37369]

Blank Lab ID: 1621672

QC for Samples:

1213682001, 1213682002, 1213682003, 1213682004

Matrix: Water (Surface, Eff., Ground)

Results by AK101

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Gasoline Range Organics
 0.0500U
 0.100
 0.0310
 mg/L

Surrogates

4-Bromofluorobenzene (surr) 52 50-150 %

Batch Information

Analytical Batch: VFC15692 Prep Batch: VXX37369
Analytical Method: AK101 Prep Method: SW5030B

Instrument: Agilent 7890A PID/FID Prep Date/Time: 7/2/2021 6:00:00AM

Analyst: MDT Prep Initial Wt./Vol.: 5 mL Analytical Date/Time: 7/2/2021 11:20:00AM Prep Extract Vol: 5 mL

Print Date: 07/19/2021 2:28:41PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1213682 [VXX37369]

Blank Spike Lab ID: 1621677 Date Analyzed: 07/02/2021 10:43 Spike Duplicate ID: LCSD for HBN 1213682

[VXX37369]

Spike Duplicate Lab ID: 1621678 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213682001, 1213682002, 1213682003, 1213682004

Results by AK101

		Blank Spike	e (mg/L)	5	Spike Dupli	cate (mg/L)			
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	<u>CL</u>	RPD (%)	RPD CL
Gasoline Range Organics	1.00	1.15	115	1.00	1.12	112	(60-120)	2.90	(< 20)
Surrogates									
4-Bromofluorobenzene (surr)	0.0500		100	0.0500		101	(50-150)	0.42	

Batch Information

Analytical Batch: VFC15692 Analytical Method: AK101 Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37369
Prep Method: SW5030B

Prep Date/Time: 07/02/2021 06:00

Spike Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 1.00 mg/L Extract Vol: 5 mL

Print Date: 07/19/2021 2:28:43PM

Method Blank

Blank ID: MB for HBN 1821967 [VXX/37369]

Blank Lab ID: 1621672

QC for Samples:

1213682001, 1213682002, 1213682003, 1213682004

Matrix: Water (Surface, Eff., Ground)

Results by SW8021B

<u>Parameter</u>	<u>Results</u>	LOQ/CL	<u>DL</u>	<u>Units</u>
Benzene	0.250U	0.500	0.150	ug/L
Ethylbenzene	0.500U	1.00	0.310	ug/L
o-Xylene	0.500U	1.00	0.310	ug/L
P & M -Xylene	1.00U	2.00	0.620	ug/L
Toluene	0.500U	1.00	0.310	ug/L
Xylenes (total)	1.50U	3.00	0.930	ug/L
Surrogates				
1,4-Difluorobenzene (surr)	102	77-115		%

Batch Information

Analytical Batch: VFC15692 Analytical Method: SW8021B

Instrument: Agilent 7890A PID/FID

Analyst: MDT

Analytical Date/Time: 7/2/2021 11:20:00AM

Prep Batch: VXX37369 Prep Method: SW5030B

Prep Date/Time: 7/2/2021 6:00:00AM

Prep Initial Wt./Vol.: 5 mL Prep Extract Vol: 5 mL

Print Date: 07/19/2021 2:28:46PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1213682 [VXX37369]

Blank Spike Lab ID: 1621673 Date Analyzed: 07/02/2021 10:25 Spike Duplicate ID: LCSD for HBN 1213682

[VXX37369]

Spike Duplicate Lab ID: 1621674 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213682001, 1213682002, 1213682003, 1213682004

Results by SW8021B

		Blank Spike	e (ug/L)	;	Spike Dupli	cate (ug/L)			
<u>Parameter</u>	<u>Spike</u>	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Benzene	100	104	104	100	108	108	(80-120)	3.10	(< 20)
Ethylbenzene	100	88.2	88	100	90.0	90	(75-125)	1.90	(< 20)
o-Xylene	100	85.4	85	100	87.3	87	(80-120)	2.20	(< 20)
P & M -Xylene	200	172	86	200	177	89	(75-130)	3.10	(< 20)
Toluene	100	94.3	94	100	96.4	96	(75-120)	2.20	(< 20)
Xylenes (total)	300	257	86	300	265	88	(79-121)	2.80	(< 20)
Surrogates									
1,4-Difluorobenzene (surr)	50		105	50		105	(77-115)	0.32	

Batch Information

Analytical Batch: VFC15692 Analytical Method: SW8021B Instrument: Agilent 7890A PID/FID

Analyst: MDT

Prep Batch: VXX37369
Prep Method: SW5030B

Prep Date/Time: 07/02/2021 06:00

Spike Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL Dupe Init Wt./Vol.: 100 ug/L Extract Vol: 5 mL

Print Date: 07/19/2021 2:28:48PM

Method Blank

Blank ID: MB for HBN 1821392 [XXX/45053]

Blank Lab ID: 1618950

QC for Samples:

1213682001, 1213682002, 1213682003

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

<u>Parameter</u>	Results	LOQ/CL	<u>DL</u>	<u>Units</u>
1-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
2-Methylnaphthalene	0.0250U	0.0500	0.0150	ug/L
Acenaphthene	0.0250U	0.0500	0.0150	ug/L
Acenaphthylene	0.0250U	0.0500	0.0150	ug/L
Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo(a)Anthracene	0.0250U	0.0500	0.0150	ug/L
Benzo[a]pyrene	0.0100U	0.0200	0.00620	ug/L
Benzo[b]Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Benzo[g,h,i]perylene	0.0250U	0.0500	0.0150	ug/L
Benzo[k]fluoranthene	0.0250U	0.0500	0.0150	ug/L
Chrysene	0.0250U	0.0500	0.0150	ug/L
Dibenzo[a,h]anthracene	0.0100U	0.0200	0.00620	ug/L
Fluoranthene	0.0250U	0.0500	0.0150	ug/L
Fluorene	0.0250U	0.0500	0.0150	ug/L
Indeno[1,2,3-c,d] pyrene	0.0250U	0.0500	0.0150	ug/L
Naphthalene	0.0500U	0.100	0.0310	ug/L
Phenanthrene	0.0250U	0.0500	0.0150	ug/L
Pyrene	0.0250U	0.0500	0.0150	ug/L
Surrogates				
2-Methylnaphthalene-d10 (surr)	66.5	42-86		%
Fluoranthene-d10 (surr)	69.7	50-97		%

Batch Information

Analytical Batch: XMS12708

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Analytical Date/Time: 7/1/2021 8:26:00PM

Prep Batch: XXX45053 Prep Method: SW3535A

Prep Date/Time: 6/28/2021 1:00:27PM

Prep Initial Wt./Vol.: 250 mL Prep Extract Vol: 1 mL

Print Date: 07/19/2021 2:28:51PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1213682 [XXX45053]

Blank Spike Lab ID: 1618951 Date Analyzed: 07/01/2021 20:47 Spike Duplicate ID: LCSD for HBN 1213682

[XXX45053]

Spike Duplicate Lab ID: 1618952 Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213682001, 1213682002, 1213682003

Results by 8270D SIM LV (PAH)

	Blank Spike (ug/L)			Spike Duplicate (ug/L)					
<u>Parameter</u>	Spike	Result	Rec (%)	Spike	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	2	1.68	84	2	1.40	70	(41-115)	18.10	(< 20)
2-Methylnaphthalene	2	1.67	84	2	1.39	70	(39-114)	18.20	(< 20)
Acenaphthene	2	1.75	88	2	1.50	75	(48-114)	15.40	(< 20)
Acenaphthylene	2	1.77	89	2	1.59	79	(35-121)	11.00	(< 20)
Anthracene	2	1.70	85	2	1.54	77	(53-119)	10.00	(< 20)
Benzo(a)Anthracene	2	1.58	79	2	1.40	70	(59-120)	11.90	(< 20)
Benzo[a]pyrene	2	1.73	87	2	1.60	80	(53-120)	7.70	(< 20)
Benzo[b]Fluoranthene	2	1.63	82	2	1.42	71	(53-126)	13.80	(< 20)
Benzo[g,h,i]perylene	2	1.92	96	2	1.81	91	(44-128)	5.50	(< 20)
Benzo[k]fluoranthene	2	1.73	86	2	1.63	81	(54-125)	6.10	(< 20)
Chrysene	2	1.63	82	2	1.49	75	(57-120)	8.80	(< 20)
Dibenzo[a,h]anthracene	2	1.95	97	2	1.84	92	(44-131)	5.50	(< 20)
Fluoranthene	2	1.55	78	2	1.39	70	(58-120)	10.70	(< 20)
Fluorene	2	1.78	89	2	1.57	78	(50-118)	12.60	(< 20)
Indeno[1,2,3-c,d] pyrene	2	1.90	95	2	1.78	89	(48-130)	6.60	(< 20)
Naphthalene	2	1.71	86	2	1.43	72	(43-114)	17.70	(< 20)
Phenanthrene	2	1.73	87	2	1.55	77	(53-115)	11.20	(< 20)
Pyrene	2	1.57	78	2	1.41	70	(53-121)	10.80	(< 20)
urrogates									
2-Methylnaphthalene-d10 (surr)	2		76	2		68	(42-86)	10.80	
Fluoranthene-d10 (surr)	2		76	2		71	(50-97)	6.60	

Batch Information

Analytical Batch: XMS12708

Analytical Method: 8270D SIM LV (PAH)
Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Prep Batch: XXX45053
Prep Method: SW3535A

Prep Date/Time: 06/28/2021 13:00

Spike Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL Dupe Init Wt./Vol.: 2 ug/L Extract Vol: 1 mL

Print Date: 07/19/2021 2:28:53PM

Matrix Spike Summary

Original Sample ID: 1213714007 MS Sample ID: 1618953 MS MSD Sample ID: 1618954 MSD

QC for Samples: 1213682001, 1213682002, 1213682003 Analysis Date: 07/01/2021 22:29 Analysis Date: 07/01/2021 22:50 Analysis Date: 07/01/2021 23:10

Matrix: Water (Surface, Eff., Ground)

Results by 8270D SIM LV (PAH)

		Matrix Spike (ug/L)			Spik	Spike Duplicate (ug/L)				
<u>Parameter</u>	<u>Sample</u>	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
1-Methylnaphthalene	7.87	2.04	8.08	10 *	2.04	9.17	64	41-115	12.70	(< 20)
2-Methylnaphthalene	7.03	2.04	7.41	19 *	2.04	8.56	75	39-114	14.40	(< 20)
Acenaphthene	0.0261U	2.04	1.5	74	2.04	1.53	75	48-114	2.00	(< 20)
Acenaphthylene	0.0261U	2.04	1.49	73	2.04	1.47	72	35-121	1.20	(< 20)
Anthracene	0.0261U	2.04	1.61	79	2.04	1.50	74	53-119	6.60	(< 20)
Benzo(a)Anthracene	0.0261U	2.04	1.82	89	2.04	1.67	82	59-120	8.60	(< 20)
Benzo[a]pyrene	0.0104U	2.04	1.87	91	2.04	1.72	84	53-120	8.20	(< 20)
Benzo[b]Fluoranthene	0.0261U	2.04	1.84	90	2.04	1.69	83	53-126	8.70	(< 20)
Benzo[g,h,i]perylene	0.0261U	2.04	1.83	90	2.04	1.70	83	44-128	7.60	(< 20)
Benzo[k]fluoranthene	0.0261U	2.04	1.81	89	2.04	1.67	82	54-125	8.00	(< 20)
Chrysene	0.0261U	2.04	1.87	92	2.04	1.71	84	57-120	8.70	(< 20)
Dibenzo[a,h]anthracene	0.0104U	2.04	1.88	92	2.04	1.76	86	44-131	6.60	(< 20)
Fluoranthene	0.0261U	2.04	1.66	81	2.04	1.50	73	58-120	10.10	(< 20)
Fluorene	0.671	2.04	2.12	71	2.04	2.10	70	50-118	1.20	(< 20)
Indeno[1,2,3-c,d] pyrene	0.0261U	2.04	1.82	89	2.04	1.70	83	48-130	7.30	(< 20)
Naphthalene	3.89	2.04	4.62	36 *	2.04	5.26	67	43-114	12.90	(< 20)
Phenanthrene	0.765	2.04	2.29	75	2.04	2.15	68	53-115	6.60	(< 20)
Pyrene	0.105	2.04	1.71	79	2.04	1.55	71	53-121	9.80	(< 20)
Surrogates										
2-Methylnaphthalene-d10 (surr)		2.04	1.25	61	2.04	1.43	70	42-86	12.90	
Fluoranthene-d10 (surr)		2.04	1.61	79	2.04	1.47	72	50-97	9.20	

Batch Information

Analytical Batch: XMS12708

Analytical Method: 8270D SIM LV (PAH)

Instrument: SVA Agilent 780/5975 GC/MS

Analyst: LAW

Analytical Date/Time: 7/1/2021 10:50:00PM

Prep Batch: XXX45053

Prep Method: 3535 Solid Phase Ext for 8270 PAH SIM LV

Prep Date/Time: 6/28/2021 1:00:27PM

Prep Initial Wt./Vol.: 245.00mL Prep Extract Vol: 1.00mL

Print Date: 07/19/2021 2:28:55PM

Method Blank

Blank ID: MB for HBN 1821571 [XXX/45080]

Blank Lab ID: 1619781

QC for Samples:

1213682001, 1213682002, 1213682003

Matrix: Water (Surface, Eff., Ground)

Results by AK102

 Parameter
 Results
 LOQ/CL
 DL
 Units

 Diesel Range Organics
 0.0750U
 0.150
 0.0450
 mg/L

Surrogates

5a Androstane (surr) 95.8 60-120 %

Batch Information

Analytical Batch: XFC15982 Analytical Method: AK102

Instrument: Agilent 7890B F

Analyst: IVM

Analytical Date/Time: 7/1/2021 11:48:00AM

Prep Batch: XXX45080 Prep Method: SW3520C

Prep Date/Time: 6/30/2021 4:39:56PM

Prep Initial Wt./Vol.: 1000 mL Prep Extract Vol: 1 mL

Print Date: 07/19/2021 2:28:57PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1213682 [XXX45080]

Blank Spike Lab ID: 1619782 Date Analyzed: 07/01/2021 12:08

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213682001, 1213682002, 1213682003

Results by AK102

Blank Spike (mg/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Diesel Range Organics
 5
 4.65
 93
 (75-125)

Surrogates

5a Androstane (surr) 0.1 101 (60-120)

Batch Information

Analytical Batch: XFC15982 Prep Batch: XXX45080
Analytical Method: AK102 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 06/30/2021 16:39

Analyst: IVM Spike Init Wt./Vol.: 5 mg/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 07/19/2021 2:28:59PM

Method Blank

Blank ID: MB for HBN 1821571 [XXX/45080]

Blank Lab ID: 1619781

QC for Samples:

1213682001, 1213682002, 1213682003

Matrix: Water (Surface, Eff., Ground)

Results by AK103

ParameterResultsLOQ/CLDLUnitsResidual Range Organics0.0625U0.1250.0375mg/L

Surrogates

n-Triacontane-d62 (surr) 106 60-120 %

Batch Information

Analytical Batch: XFC15982 Analytical Method: AK103 Instrument: Agilent 7890B F

Analyst: IVM

Analytical Date/Time: 7/1/2021 11:48:00AM

Prep Batch: XXX45080 Prep Method: SW3520C

Prep Date/Time: 6/30/2021 4:39:56PM

Prep Initial Wt./Vol.: 1000 mL Prep Extract Vol: 1 mL

Print Date: 07/19/2021 2:29:02PM

Blank Spike Summary

Blank Spike ID: LCS for HBN 1213682 [XXX45080]

Blank Spike Lab ID: 1619782 Date Analyzed: 07/01/2021 12:08

Matrix: Water (Surface, Eff., Ground)

QC for Samples: 1213682001, 1213682002, 1213682003

Results by AK103

Blank Spike (mg/L)

 Parameter
 Spike
 Result
 Rec (%)
 CL

 Residual Range Organics
 5
 4.94
 99
 (60-120)

Surrogates

n-Triacontane-d62 (surr) 0.1 99 (60-120)

Batch Information

Analytical Batch: XFC15982 Prep Batch: XXX45080
Analytical Method: AK103 Prep Method: SW3520C

Instrument: Agilent 7890B F Prep Date/Time: 06/30/2021 16:39

Analyst: IVM Spike Init Wt./Vol.: 5 mg/L Extract Vol: 1 mL

Dupe Init Wt./Vol.: Extract Vol:

Print Date: 07/19/2021 2:29:04PM

SHANNON & WILSON, INC. 2355 Hill Road Fairbanks, AK 99709	HAIN-OF-CUSTODY REC	DRD Laboratory SG-S Page of Attn:
(907) 479-0600 www.shannonwilson.com	Analytical M	ethods (include preservative if used)
Turn Around Time: Quote No:		Remarks/Matrix Composition/Grab? Sample Containers
MSA Number: 484	<u>nsa-s</u> es-2016 / ///	
Please Specify J-Flags: Yes	NSA-S6S-2016 No Date Sampled Date Sampled	Remarks/Matrix
Sample Identity Lab No. Tim	Date Sampled	
MW-111-15 SAD 100	5 6/23/2 × X ×	7 groundwater
mw-11-15 (2AG) 101		
MW-12-10 3AG 085		
	1213	5682
Project Information Sample Receip	Reliquished By: 1, Reliq	uished By: 2. Reliquished By: 3.
Number: 162594-012 Total No. of Containers:	Signature: Time 0800 Signature:	Time: Signature: Time:
Name: DOT G-US PFA-MW COC Seals/Intact? Y/N/NA/Contact: K-P-F	Printed Name: Date 25/21 Printed Name:	Date:Printed Name: Date:
Ongoing Project? Yes No Temp: 5. 7° #D2		
Sampler: TKR Delivery Method: H.D.	Company: Shown on the Sun Inc.	Company:
Notes:		eived By: 2. Received By: 3.
	Signature: Time: Signature:	Time:Signature:Time:50
p#347128:	Printed Name: Date: Printed Name:	Date: Printed Name: () Date: (425/2)
V V V V V V V V V V V V V V V V V V V	·	18000 (000)
Distribution: White - w/shipment - returned to Shannon & Wilson w/ labora Yellow - w/shipment - for consignee files	tory report Company: Company:	Company: SGC-1F1B
Pink - Shannon & Wilson - job file		1 J G1 - 15, 1B

e-Sample Receipt Form

SGS Workorder #:

1213682

Review Criteria	Condition (Yes	s, No, N/A				tions Not		
Chain of Custody / Temperature Requir				Exemp	tion perm	itted if sampl	er hand carries/del	ivers.
Were Custody Seals intact? Note # & Id	ocation	absent	t					
COC accompanied sal	mples? Yes							
DOD: Were samples received in COC corresponding co	oolers? N/A							
N/A **Exemption permitted if o	chilled & coll	ected <8	hours	ago, or t	for sample	es where chil	ling is not required	
Temperature blank compliant* (i.e., 0-6 °C after	r CF)? Yes	Coole	· ID:		1	@	1.8 °C Therm. IC	D45
	, j	Coole				@	°C Therm. ID):
If samples received without a temperature blank, the "cooler temperature" will	be	Coole				@	°C Therm. ID	
documented instead & "COOLER TEMP" will be noted to the right. "ambient" or "chil	lled" will	Coole				@	°C Therm. ID	
be noted if neither is available.		Coole				@	°C Therm. ID	
*If >6°C, were samples collected <8 hours	2002		ID.			w_	Q memi. iL	·
11 >0 C, were samples collected <0 Hours	ago?	4						
	4 0 1							
If <0°C, were sample containers ice	free? N/A	1						
Note: Identify containers received at non-compliant tempera								
Use form FS-0029 if more space is ne	eeded.							
Holding Time / Documentation / Sample Condition Re	quirements	Note: Re	efer to f	orm F-083	3 "Sample (Guide" for spec	ific holding times.	
Were samples received within holding	time? Yes							
		Ī						
Do samples match COC** (i.e.,sample IDs,dates/times colle	cted)? Yes							
**Note: If times differ <1hr, record details & login per CC	DC.	Ī						
***Note: If sample information on containers differs from COC, SGS will default to C		n						
Were analytical requests clear? (i.e., method is specified for ana	alvses Yes							
with multiple option for analysis (Ex: BTEX, N		7						
	,							
			N/A	***Evor	nntion no	rmittad for m	otale (o. g. 200, 9/60	204)
141			N/A	Exer	npuon pe	imilied for m	etals (e.g,200.8/60	<u> 20A).</u>
Were proper containers (type/mass/volume/preservative***)	used?	4						
V.1-01-711 D B	ulua 1	-						
Volatile / LL-Hg Requ								
Were Trip Blanks (i.e., VOAs, LL-Hg) in cooler with same								
Were all water VOA vials free of headspace (i.e., bubbles ≤ 6								
Were all soil VOAs field extracted with MeOH+	BFB? N/A							
Note to Client: Any "No", answer above indicates non	n-compliance	with sta	ndard	orocedui	res and m	ay impact da	nta quality.	
Allec	l = = /:c	- II II II I	- l - \ .					
Additional	notes (if	applica	pie):					

Sample Containers and Preservatives

<u>Container Id</u>	<u>Preservative</u>	Container Condition	Container Id	<u>Preservative</u>	Container Condition
1213682001-A	HCL to pH < 2	ОК			
1213682001-B	HCL to pH < 2	OK			
1213682001-C	No Preservative Required	OK			
1213682001-D	No Preservative Required	OK			
1213682001-E	HCL to pH < 2	OK			
1213682001-F	HCL to pH < 2	OK			
1213682001-G	HCL to pH < 2	OK			
1213682002-A	HCL to pH < 2	OK			
1213682002-B	HCL to pH < 2	OK			
1213682002-C	No Preservative Required	OK			
1213682002-D	No Preservative Required	OK			
1213682002-E	HCL to pH < 2	OK			
1213682002-F	HCL to pH < 2	OK			
1213682002-G	HCL to pH < 2	OK			
1213682003-A	HCL to pH < 2	OK			
1213682003-B	HCL to pH < 2	OK			
1213682003-C	No Preservative Required	OK			
1213682003-D	No Preservative Required	OK			
1213682003-E	HCL to pH < 2	OK			
1213682003-F	HCL to pH < 2	OK			
1213682003-G	HCL to pH < 2	OK			
1213682004-A	HCL to pH < 2	OK			
1213682004-B	HCL to pH < 2	OK			
1213682004-C	HCL to pH < 2	OK			

Container Condition Glossary

Containers for bacteriological, low level mercury and VOA vials are not opened prior to analysis and will be assigned condition code OK unless evidence indicates than an inappropriate container was submitted.

- $\ensuremath{\mathsf{OK}}$ The container was received at an acceptable pH for the analysis requested.
- BU The container was received with headspace greater than 6mm.
- DM The container was received damaged.
- FR The container was received frozen and not usable for Bacteria or BOD analyses.
- IC The container provided for microbiology analysis was not a laboratory-supplied, pre-sterilized container and therefore was not suitable for analysis.
- NC- The container provided was not preserved or was under-preserved. The method does not allow for additional preservative added after collection.
- PA The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt and the container is now at the correct pH. See the Sample Receipt Form for details on the amount and lot # of the preservative added.
- PH The container was received outside of the acceptable pH for the analysis requested. Preservative was added upon receipt, but was insufficient to bring the container to the correct pH for the analysis requested. See the Sample Receipt Form for details on the amount and lot # of the preservative added. QN Insufficient sample quantity provided.

Laboratory Data Review Checklist

Completed By:	
Justin Risley	
Title:	
Engineering Staff	
Date:	
August 7, 2021	
Consultant Firm:	
Shannon & Wilson, Inc.	
Laboratory Name:	
SGS	
Laboratory Report Number:	
1213682	
Laboratory Report Date:	
7/19/2021	
CS Site Name:	
DOT&PF Gustavus Airport Statewide PFAS	
ADEC File Number:	
1507.38.017	
Hazard Identification Number:	
26904	

May 2020 Page 1

	1213	82					
La	borato	y Report Date:					
	Note	Any N/A or No box checked must have an explanation in the comments box.					
1.	Labo	<u>atory</u>					
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all the submitted sample analyses?						
	Yes⊠ No□ N/A□ Comments:						
	b.	If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?					
		$Yes \square No \square N/A \boxtimes Comments:$					
	Tł	e requested analyses were conducted by SGS, North America, Inc. in Anchorage, AK.					
2.	Chair	of Custody (CoC)					
	a.	CoC information completed, signed, and dated (including released/received by)?					
		Yes \boxtimes No \square N/A \square Comments:					
	b.	Correct analyses requested?					
		Yes \boxtimes No \square N/A \square Comments:					
3.	Labo	atory Sample Receipt Documentation					
	a.	Sample/cooler temperature documented and within range at receipt (0° to 6° C)?					
		$Yes \boxtimes No \square N/A \square$ Comments:					
	Co	oler 1 was received at 1.8°C.					
	b.	Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?					
		$Yes \boxtimes No \square N/A \square$ Comments:					
	c.	Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?					
		$Yes \boxtimes No \square N/A \square$ Comments:					
	Th	e sample receipt form noted the samples arrived in good condition.					

Laboratory Report Date:						
d. If there were any discrepancies, were they documented? For example, incorr containers/preservation, sample temperature outside of acceptable range, ins samples, etc.?	*					
$Yes \square No \square N/A \boxtimes Comments:$						
No discrepancies were noted.	No discrepancies were noted.					
e. Data quality or usability affected?						
Comments:						
The data quality and/or usability was not affected; see above.						
4. <u>Case Narrative</u>						
a. Present and understandable?						
Yes \boxtimes No \square N/A \square Comments:						
b. Discrepancies, errors, or QC failures identified by the lab?						
Yes \boxtimes No \square N/A \square Comments:						
The case narrative does not identify any QC failures, discrepancies, or errors.						
c. Were all corrective actions documented?						
Yes \square No \square N/A \boxtimes Comments:						
See above.						
d. What is the effect on data quality/usability according to the case narrative?						
Comments:						
The data quality and/or usability was not affected; see above.						
5. <u>Samples Results</u>						
a. Correct analyses performed/reported as requested on COC?						
Yes \boxtimes No \square N/A \square Comments:						
b. All applicable holding times met?						
Yes \boxtimes No \square N/A \square Comments:						

	1213682						
Lab	oratory Report Date:						
	c. All soils reported on a dry weight basis?						
	$Yes \square No \square N/A \boxtimes Comments:$						
	Soil samples were not submitted with this work order.						
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?						
	Yes⊠ No□ N/A□ Comments:						
	e. Data quality or usability affected?						
	The data quality and/or usability was not affected; see above.						
6.	QC Samples						
	a. Method Blank						
	i. One method blank reported per matrix, analysis and 20 samples?						
	$Yes \boxtimes No \square N/A \square$ Comments:						
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?						
	$Yes \boxtimes No \square N/A \square$ Comments:						
	None of the requested analytes were detected in the method blanks.						
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:						
	N/A; see above.						
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?						
	$Yes \square No \square N/A \boxtimes Comments:$						
	See above.						
	v. Data quality or usability affected? Comments:						
	Data quality or usability is not affected.						

1213682	
---------	--

Laboratory Report Date

ratory Report Date:
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes \square No \boxtimes N/A \square Comments:
LCS/LCSD samples were analyzed for BTEX, PAH, and GRO analyses. An LCS was performed for DRO and RRO.
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
Yes \square No \boxtimes N/A \boxtimes Comments:
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \boxtimes No \square N/A \square Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/A; analytical accuracy and precision were demonstrated to be within acceptable limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
Qualification of the data was not required; see above.
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
The data quality and/or usability was not affected; see above.

1213682	
Laboratory Report Date:	
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project 	
i. Organics – One MS/MSD reported per matrix, analysis and	20 samples?
Yes \square No \boxtimes N/A \square Comments:	
MS/MSD samples were performed for PAH analysis. The laboratory assess laboratory accuracy and precision for other analyses except D	
ii. Metals/Inorganics – one MS and one MSD reported per mat	rix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$	
Metals and/or inorganics were not analyzed as part of this work order	er.
iii. Accuracy – All percent recoveries (%R) reported and within project specified objectives, if applicable?	method or laboratory limits and
Yes \square No \boxtimes N/A \square Comments:	
Percent recovery for 1-methylnaphthalene, 2-methylnaphthalene, and limits.	d naphthalene were below QC
iv. Precision – All relative percent differences (RPD) reported a limits and project specified objectives, if applicable? RPD resample/sample duplicate.	
$Yes \boxtimes No \square N/A \square$ Comments:	
v. If %R or RPD is outside of acceptable limits, what samples Comments:	are affected?
Analytical accuracy and precision are demonstrated by the LCS/LCS acceptable limits. Additionally, the parent sample was not a part of t results are determined to be unaffected.	•
vi. Do the affected sample(s) have data flags? If so, are the data	flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$	
See above.	

1213682	
---------	--

Laboratory Report Date:

vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? $Yes \boxtimes No \square N/A \square$ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \boxtimes No \square N/A \square$ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? $Yes \square No \square N/A \boxtimes$ Comments: There were no surrogate recovery failures associated with this work order. iv. Data quality or usability affected? Comments: The data quality and/or usability was not affected; see above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) $Yes \boxtimes No \square N/A \square$ Comments: ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: Only one cooler was used to transport the samples in this work order. iii. All results less than LOQ and project specified objectives? $Yes \boxtimes No \square N/A \square$ Comments:

1213682
Laboratory Report Date:
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
No analytes were detected in the trip blank.
v. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
$Yes \boxtimes No \square N/A \square$ Comments:
ii. Submitted blind to lab?
Yes \boxtimes No \square N/A \square Comments:
The field duplicate pair MW-11-15/MW-111-15 was submitted with this work order
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where $R_1 = Sample Concentration$ $R_2 = Field Duplicate Concentration$
Yes \boxtimes No \square N/A \square Comments:
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
The data quality and/or usability was not affected; see above.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
Yes□ No□ N/A⊠ Comments:
Project samples were not collected with reusable equipment, so the prospect of foreign contaminants being introduced through equipment contamination is not plausible.
i. All results less than LOQ and project specified objectives?
Yes \square No \square N/A \boxtimes Comments:
An equipment blank was not required for this project; see above.

	1213682	
La	poratory Report Date:	
	ii. If above LOQ or pro	ect specified objectives, what samples are affected? Comments:
	N/A; see above.	
	iii. Data quality or usabi	lity affected? Comments:
	No; see above.	
7.	Other Data Flags/Qualifiers (ACC	DE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?	
	$Yes \square No \square N/A \boxtimes$	Comments:

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-64367-1 Client Project/Site: Gus. Annual

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamin Oltiman

Authorized for release by: 9/10/2020 12:18:05 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

_

0

10

13

14

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	9
Surrogate Summary	37
QC Sample Results	38
QC Association Summary	43
Lab Chronicle	45
Certification Summary	50
Method Summary	51
Sample Summary	52
Chain of Custody	53
Receipt Checklists	56

3

4

6

8

9

11

12

14

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Qualifiers

LCMS

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

0

46

11

13

14

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-64367-1
Project/Site: Gus. Annual

Job ID: 320-64367-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-64367-1

Receipt

The samples were received on 9/5/2020~2:55 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 6.0° C.

Receipt Exceptions

The following samples had a slight discoloration in both containers. PW-219 (320-64367-1), PW-438 (320-64367-3), PW-303 (320-64367-6), PW-061 (320-64367-7), PW-037 (320-64367-8), PW-039 (320-64367-10), PW-230 (320-64367-12), PW-032 (320-64367-14), PW-401 (320-64367-16), PW-501 (320-64367-18), PW-1001 (320-64367-20), PW-462 (320-64367-24), PW-2001 (320-64367-25), PW-204 (320-64367-26), PW-112 (320-64367-27) and PW-012 (320-64367-28)

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. The second two pages of the COC was not relinquished.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-410395 and 320-410395.

Method 537.1 DW: The following samples PW-203 (320-64367-5), PW-303 (320-64367-6), PW-039 (320-64367-10), PW-059 (320-64367-13), PW-032 (320-64367-14), PW-401 (320-64367-16), PW-501 (320-64367-18) and PW-221 (320-64367-19) in preparation batch 320-410395 and 320-410395 were observed to be light yellow in color prior to extraction.

Method 537.1 DW: The following samples PW-219 (320-64367-1), PW-438 (320-64367-3), PW-061 (320-64367-7), PW-037 (320-64367-8) and PW-230 (320-64367-12) in preparation batch 320-410395 were observed to be yellow in color prior to extraction.

Method 537.1 DW: The following samples PW-219 (320-64367-1), PW-438 (320-64367-3), PW-061 (320-64367-7), PW-230 (320-64367-12) and PW-501 (320-64367-18) in preparation batch 320-410395 were observed to contain a thin layer of sediment at the bottom of the bottles.

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-410412.

Method 537.1 DW: The following samples PW-419 (320-64367-21), PW-204 (320-64367-26) and PW-112 (320-64367-27) in preparation batch 320-410412 were observed to be light yellow in color prior to extraction.

Method 537.1 DW: The following samples PW-1001 (320-64367-20), PW-010 (320-64367-23), PW-2001 (320-64367-25) and PW-012 (320-64367-28) in preparation batch 320-410412 were observed to be yellow in color prior to extraction.

Method 537.1 DW: The following samples PW-1001 (320-64367-20), PW-010 (320-64367-23), PW-462 (320-64367-24), PW-2001 (320-64367-25), PW-204 (320-64367-26) and PW-112 (320-64367-27) in preparation batch 320-410412 were observed to contain a thin layer of sediment at the bottom of the bottles.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

_

5

6

8

9

11

12

14

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual Client Sample ID: PW-219 Lab Sample ID: 320-64367-1 No Detections. Client Sample ID: PW-211 Lab Sample ID: 320-64367-2 Dil Fac D Method Analyte **MDL** Unit Result Qualifier RL Prep Type Perfluorooctanesulfonic acid (PFOS) 0.65 J 537.1 DW Total/NA 1.9 0.48 ng/L Client Sample ID: PW-438 Lab Sample ID: 320-64367-3 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type Perfluorohexanoic acid (PFHxA) 0.52 J 1.9 0.48 ng/L 537.1 DW Total/NA 537.1 DW Total/NA Perfluorohexanesulfonic acid (PFHxS) 1.9 1.9 0.48 ng/L Perfluorooctanesulfonic acid (PFOS) 3.7 1.9 0.48 ng/L 537.1 DW Total/NA Client Sample ID: PW-212 Lab Sample ID: 320-64367-4 No Detections. Client Sample ID: PW-203 Lab Sample ID: 320-64367-5 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Perfluorohexanoic acid (PFHxA) 537.1 DW 0.67 J 1.9 0.46 ng/L Total/NA Perfluorooctanoic acid (PFOA) 0.50 J 0.46 ng/L 537.1 DW Total/NA 1.9 1 0.95 J 537.1 DW Total/NA

Perfluorooctanesulfonic acid (PFOS) 0.70 J 1.9 0.46 ng/L 537.1 DW Total/NA Client Sample ID: PW-303 Lab Sample ID: 320-64367-6

1.9

0.46 ng/L

1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.48 J	1.9	0.48 ng/L	1	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.81 J	1.9	0.48 ng/L	1 537.1 DW	Total/NA

Client Sample ID: PW-061 Lab Sample ID: 320-64367-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.5	J	1.9	0.48	ng/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.82	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	1.9		1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.49	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.85	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.49	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-037 Lab Sample ID: 320-64367-8

No Detections.

Perfluorohexanesulfonic acid (PFHxS)

Client Sample ID: PW-240 Lab Sample ID: 320-64367-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	2.0	1.9	0.47 ng/L		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.8 J	1.9	0.47 ng/L	1	537.1 DW	Total/NA

Client Sample ID: PW-039 Lab Sample ID: 320-64367-10

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

9/10/2020

Page 5 of 56

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual Client Sample ID: PW-040 Lab Sample ID: 320-64367-11 No Detections. Client Sample ID: PW-230 Lab Sample ID: 320-64367-12 **MDL** Unit Dil Fac D Method Analyte Result Qualifier RL Prep Type Perfluorooctanoic acid (PFOA) 1.0 J 1.8 0.46 ng/L 537.1 DW Total/NA 0.71 J 537.1 DW Total/NA Perfluorohexanesulfonic acid (PFHxS) 1.8 0.46 ng/L Perfluorooctanesulfonic acid (PFOS) 0.68 J 1.8 0.46 ng/L 537.1 DW Total/NA Client Sample ID: PW-059 Lab Sample ID: 320-64367-13 Result Qualifier **MDL** Unit Analyte RL Dil Fac D Method Prep Type 537.1 DW Perfluorobutanesulfonic acid (PFBS) 0.75 J 1.9 0.47 ng/L Total/NA Perfluorohexanesulfonic acid (PFHxS) 0.78 J 0.47 ng/L 537.1 DW Total/NA 1.9 Client Sample ID: PW-032 Lab Sample ID: 320-64367-14 No Detections. Lab Sample ID: 320-64367-15 Client Sample ID: PW-038 No Detections. Client Sample ID: PW-401 Lab Sample ID: 320-64367-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.4		1.9	0.47	ng/L	1	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.3	J	1.9	0.47	ng/L	1	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.71	J	1.9	0.47	ng/L	1	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.89	J	1.9	0.47	ng/L	1	537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	9.6		1.9	0.47	ng/L	1	537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	38		1.9	0.47	ng/L	1	537.1 DW	Total/NA

Analysis	Danult	O	DI.	MDI	1114	D!! F D	NA - 4l al	Duna Tana
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	wetnoa	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.74	J	1.9	0.48	ng/L	1	537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.2	J	1.9	0.48	ng/L	1	537.1 DW	Total/NA

Charle Campio 12.1 W Co.					Lub Ot	411	ipio ib. oz	-0 0-1007 10	
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.1		1.9	0.48	ng/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.2	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.68	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.90	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorohevanesulfonic acid (PEHvS)	9.0		1 0	0.49	na/l	1		527 1 DW	Total/NIA

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Client Sample ID: PW-221				Lab Sample ID: 3	20-64367-19
Perfluorooctanesulfonic acid (PFOS)	38	1.9	0.48 ng/L	1 537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	9.9	1.9	0.48 ng/L	1 537.1 DW	Total/NA

2.0

2.0

0.49 ng/L

0.49 ng/L

This Detection Summary does not include radiochemical test results.

0.86 J

1.5 J

Client Sample ID: PW-414

Client Sample ID: PW-501

Perfluorohexanesulfonic acid (PFHxS)

Perfluorooctanesulfonic acid (PFOS)

Eurofins TestAmerica, Sacramento

537.1 DW

537.1 DW

Total/NA

Total/NA

9/10/2020

Lab Sample ID: 320-64367-17

Lab Sample ID: 320-64367-18

Page 6 of 56

Detection Summary Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual Lab Sample ID: 320-64367-20 Client Sample ID: PW-1001 Analyte Result Qualifier **MDL** Unit Dil Fac D Method RL Prep Type 537.1 DW Perfluorohexanoic acid (PFHxA) 1.8 0.46 ng/L Total/NA 4.3 537.1 DW Perfluoroheptanoic acid (PFHpA) 1.5 J 1.8 0.46 ng/L Total/NA Perfluorooctanoic acid (PFOA) 1.8 0.46 ng/L 537.1 DW Total/NA 2.0 Perfluorobutanesulfonic acid (PFBS) 0.84 1.8 0.46 ng/L 537.1 DW Total/NA Perfluorohexanesulfonic acid (PFHxS) Total/NA 7.4 1.8 0.46 ng/L 537.1 DW Perfluorooctanesulfonic acid (PFOS) 10 1.8 0.46 ng/L 537.1 DW Total/NA Client Sample ID: PW-419 Lab Sample ID: 320-64367-21 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Perfluorohexanoic acid (PFHxA) 0.54 J 1.9 0.48 ng/L 537.1 DW Total/NA Perfluorohexanesulfonic acid (PFHxS) 1.9 537.1 DW Total/NA 1.9 0.48 ng/L Perfluorooctanesulfonic acid (PFOS) 0.48 ng/L 537.1 DW Total/NA 3.4 1.9 Client Sample ID: PW-213 Lab Sample ID: 320-64367-22 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Perfluorohexanoic acid (PFHxA) 6.7 1.9 0.48 ng/L 537.1 DW Total/NA 2.5 Perfluoroheptanoic acid (PFHpA) 1.9 0.48 ng/L 537.1 DW Total/NA 1 Perfluorooctanoic acid (PFOA) 537.1 DW Total/NA 1.4 1.9 0.48 ng/L 1 Perfluorobutanesulfonic acid (PFBS) 1.6 1.9 0.48 ng/L 537.1 DW Total/NA Perfluorohexanesulfonic acid (PFHxS) 1.9 0.48 ng/L 537.1 DW Total/NA 17 Perfluorooctanesulfonic acid (PFOS) 61 537.1 DW Total/NA 1.9 0.48 ng/L Client Sample ID: PW-010 Lab Sample ID: 320-64367-23 Analyte Result Qualifier MDL Unit Dil Fac D Method RL Prep Type 0.60 J 1.9 0.49 ng/L 537.1 DW Perfluorohexanesulfonic acid (PFHxS) Total/NA Perfluorooctanesulfonic acid (PFOS) 0.88 J 1.9 0.49 ng/L 537.1 DW Total/NA Client Sample ID: PW-462 Lab Sample ID: 320-64367-24 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Perfluorohexanoic acid (PFHxA) 4.9 1.8 0.46 ng/L 537.1 DW Total/NA Total/NA Perfluoroheptanoic acid (PFHpA) 2.0 0.46 ng/L 537.1 DW 1.8 1 Perfluorooctanoic acid (PFOA) 0.99 J 1.8 0.46 ng/L 1 537.1 DW Total/NA Perfluorobutanesulfonic acid (PFBS) 0.74 18 0.46 ng/L 1 537.1 DW Total/NA Perfluorohexanesulfonic acid (PFHxS) 13 1.8 0.46 ng/L 1 537.1 DW Total/NA Perfluorooctanesulfonic acid (PFOS) 68 537.1 DW Total/NA 1.8 0.46 ng/L 5

Client Sample ID: PW-2001	Lab Sample ID: 320-64367-25

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.2		1.9	0.48	ng/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.5	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	1.9		1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.85	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	7.3		1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	9.7		1.9	0.48	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-204 Lab Sample ID: 320-64367-26

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.97 J	1.9	0.47 ng/L	1 537.1 DW	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

9/10/2020

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Lab Sam	ple ID:	320-6	4367-26
---------	---------	-------	---------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	0.47	J	1.9	0.47	ng/L		_	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.75	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.2		1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	6.1		1.9	0.47	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-112

Lab Sample ID: 320-64367-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	0.48	ng/L	1	_	537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.50	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.7		1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	15		1.9	0.48	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-012

Lab Sample ID: 320-64367-28

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.1 J	1.9	0.47 ng/L		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.2	1.9	0.47 ng/L	1	537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	14	1.9	0.47 ng/L	1	537.1 DW	Total/NA

This Detection Summary does not include radiochemical test results.

Page 8 of 56

2

3

4

6

Q

9

10

11

12

11

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-219 Lab Sample ID: 320-64367-1

Date Collected: 08/31/20 17:06 Matrix: Water Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		70 - 130				09/08/20 13:10	09/09/20 10:19	1
13C2 PFDA	88		70 - 130				09/08/20 13:10	09/09/20 10:19	1

70 - 130

70 - 130

81

9/10/2020

09/08/20 13:10 09/09/20 10:19

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Lab Sample ID: 320-64367-2 **Client Sample ID: PW-211**

Date Collected: 08/31/20 16:09 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Perfluorooctanesulfonic acid (PFOS)	0.65	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	88		70 - 130					09/09/20 10:27	1
13C2 PFDA	86		70 - 130					09/09/20 10:27	1
d5-NEtFOSAA	82		70 - 130				09/08/20 13:10	09/09/20 10:27	1
13C3 HFPO-DA	82		70 - 130				09/08/20 13:10	09/09/20 10:27	

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Date Received: 09/05/20 14:55

Client Sample ID: PW-438 Lab Sample ID: 320-64367-3 Date Collected: 08/31/20 14:42

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.52	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorohexanesulfonic acid (PFHxS)	1.9		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Perfluorooctanesulfonic acid (PFOS)	3.7		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:35	1

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	13C2 PFHxA	84		70 - 130	09/08/20 13:10	09/09/20 10:35	1
ı	13C2 PFDA	84		70 - 130	09/08/20 13:10	09/09/20 10:35	1
١	d5-NEtFOSAA	83		70 - 130	09/08/20 13:10	09/09/20 10:35	1
ı	13C3 HFPO-DA	80		70 - 130	09/08/20 13:10	09/09/20 10:35	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Client Sample ID: PW-212 Lab Sample ID: 320-64367-4

Date Collected: 08/31/20 15:35 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 10:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	85		70 - 130				09/08/20 13:10	09/09/20 10:42	1
13C2 PFDA	87		70 - 130				09/08/20 13:10	09/09/20 10:42	1
d5-NEtFOSAA	84		70 - 130				09/08/20 13:10	09/09/20 10:42	1
13C3 HFPO-DA	83		70 - 130				09/08/20 13:10	09/09/20 10:42	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Date Received: 09/05/20 14:55

Client Sample ID: PW-203 Lab Sample ID: 320-64367-5 Date Collected: 09/01/20 16:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.67	J	1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorooctanoic acid (PFOA)	0.50	J	1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorohexanesulfonic acid (PFHxS)	0.95	J	1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Perfluorooctanesulfonic acid (PFOS)	0.70	J	1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.46	ng/L		09/08/20 13:10	09/09/20 10:50	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	88		70 - 130	09/08/20 13:10	09/09/20 10:50	1
13C2 PFDA	83		70 - 130	09/08/20 13:10	09/09/20 10:50	1
d5-NEtFOSAA	82		70 - 130	09/08/20 13:10	09/09/20 10:50	1
13C3 HFPO-DA	79		70 - 130	09/08/20 13:10	09/09/20 10:50	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Client Sample ID: PW-303 Lab Sample ID: 320-64367-6 Date Collected: 09/01/20 16:45 **Matrix: Water**

Date Received: 09/05/20 14:55

d5-NEtFOSAA

13C3 HFPO-DA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.48	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorohexanesulfonic acid (PFHxS)	0.81	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 10:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		70 - 130				09/08/20 13:10	09/09/20 10:58	1
13C2 PFDA	90		70 - 130				09/08/20 13:10	09/09/20 10:58	1

70 - 130

70 - 130

86

81

09/08/20 13:10 09/09/20 10:58

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-061

Date Collected: 09/01/20 15:54

Lab Sample ID: 320-64367-7

Matrix: Water

Date Collected: 09/01/20 15:54
Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.5	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
Perfluoroheptanoic acid (PFHpA)	0.82	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
Perfluorooctanoic acid (PFOA)	1.9		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
Perfluorobutanesulfonic acid (PFBS)	0.49	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	
Perfluorohexanesulfonic acid (PFHxS)	0.85	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
Perfluorooctanesulfonic acid (PFOS)	0.49	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9		ng/L		09/08/20 13:10	09/09/20 11:06	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	,
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	,
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	,
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	85		70 - 130				09/08/20 13:10	09/09/20 11:06	1
13C2 PFDA	85		70 - 130				09/08/20 13:10	09/09/20 11:06	

70 - 130

70 - 130

75

80

Eurofins TestAmerica, Sacramento

9/10/2020

09/08/20 13:10 09/09/20 11:06

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

13C3 HFPO-DA

Client Sample ID: PW-037 Lab Sample ID: 320-64367-8 **Matrix: Water**

Date Collected: 09/01/20 13:39 Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 11:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		70 - 130				09/08/20 13:10	09/09/20 11:13	1
13C2 PFDA	90		70 - 130				09/08/20 13:10	09/09/20 11:13	1
d5-NEtFOSAA	78		70 - 130				09/08/20 13:10	09/09/20 11:13	1

70 - 130

80

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-240 Lab Sample ID: 320-64367-9

Date Collected: 09/01/20 08:06 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorohexanesulfonic acid (PFHxS)	2.0		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Perfluorooctanesulfonic acid (PFOS)	1.8	J	1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.47	ng/L			09/09/20 11:44	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		70 - 130				09/08/20 13:10	09/09/20 11:44	1
13C2 PFDA	92		70 - 130				09/08/20 13:10	09/09/20 11:44	1

70 - 130

70 - 130

85

84

09/08/20 13:10 09/09/20 11:44

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

13C3 HFPO-DA

Client Sample ID: PW-039 Lab Sample ID: 320-64367-10

Date Collected: 09/01/20 14:22 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.49	ng/L		09/08/20 13:10	09/09/20 11:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	92		70 - 130				09/08/20 13:10	09/09/20 11:52	1
13C2 PFDA	92		70 - 130				09/08/20 13:10	09/09/20 11:52	1
d5-NEtFOSAA	79		70 - 130				09/08/20 13:10	09/09/20 11:52	1

70 - 130

83

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Client Sample ID: PW-040 Lab Sample ID: 320-64367-11 Date Collected: 09/01/20 14:45

Matrix: Water

Date Received: 09/05/20 14:55 Method: 537 1 DW - Perfluorinated Alkyl Acids (LC/MS)

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	•
Perfluorooctanoic acid (PFOA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	,
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 11:59	•

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	85	70 - 130	09/08/20 13:10	09/09/20 11:59	1
13C2 PFDA	89	70 - 130	09/08/20 13:10	09/09/20 11:59	1
d5-NEtFOSAA	87	70 - 130	09/08/20 13:10	09/09/20 11:59	1
13C3 HEPO-DA	79	70 130	09/08/20 13:10	09/09/20 11:59	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual

Client Sample ID: PW-230

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-64367-12

Date Collected: 09/01/20 12:26 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorooctanoic acid (PFOA)	1.0	J	1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorohexanesulfonic acid (PFHxS)	0.71	J	1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Perfluorooctanesulfonic acid (PFOS)	0.68	J	1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9Cl-PF3O	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.46	ng/L		09/08/20 13:10	09/09/20 12:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		70 - 130				09/08/20 13:10	09/09/20 12:07	1
13C2 PFDA	88		70 - 130				09/08/20 13:10	09/09/20 12:07	1

70 - 130

70 - 130

81

09/08/20 13:10 09/09/20 12:07

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Date Received: 09/05/20 14:55

Acid (HFPO-DA)

(ADONA)

4,8-Dioxa-3H-perfluorononanoic acid

Client Sample ID: PW-059 Lab Sample ID: 320-64367-13 Date Collected: 09/01/20 11:28

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorobutanesulfonic acid (PFBS)	0.75	J	1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorohexanesulfonic acid (PFHxS)	0.78	J	1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1
Hexafluoropropylene Oxide Dimer	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:15	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analvzed	Dil Fac
Surroyate	70Kecovery	Qualifier	Lillits		Allalyzeu	DII Fac
13C2 PFHxA	89		70 - 130	09/08/20 13:10	09/09/20 12:15	1
13C2 PFDA	89		70 - 130	09/08/20 13:10	09/09/20 12:15	1
d5-NEtFOSAA	85		70 - 130	09/08/20 13:10	09/09/20 12:15	1
13C3 HFPO-DA	83		70 - 130	09/08/20 13:10	09/09/20 12:15	1

1.9

0.47 ng/L

ND

09/08/20 13:10 09/09/20 12:15

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Date Received: 09/05/20 14:55

Client Sample ID: PW-032 Lab Sample ID: 320-64367-14 Date Collected: 09/01/20 09:37

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorooctanoic acid (PFOA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorononanoic acid (PFNA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorodecanoic acid (PFDA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluoroundecanoic acid (PFUnA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorotridecanoic acid (PFTriA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:23	1

Surrogate	%Recovery Qualif	fier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	90	70 - 130	09/08/20 13:10	09/09/20 12:23	1
13C2 PFDA	92	70 - 130	09/08/20 13:10	09/09/20 12:23	1
d5-NEtFOSAA	85	70 - 130	09/08/20 13:10	09/09/20 12:23	1
13C3 HFPO-DA	82	70 - 130	09/08/20 13:10	09/09/20 12:23	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Client Sample ID: PW-038 Lab Sample ID: 320-64367-15

Matrix: Water

Date Collected: 09/01/20 13:13 Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:30	1

١	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	13C2 PFHxA	94		70 - 130	09/08/20 13:10	09/09/20 12:30	1
١	13C2 PFDA	95		70 - 130	09/08/20 13:10	09/09/20 12:30	1
١	d5-NEtFOSAA	94		70 - 130	09/08/20 13:10	09/09/20 12:30	1
١	13C3 HFPO-DA	83		70 - 130	09/08/20 13:10	09/09/20 12:30	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Client Sample ID: PW-401 Lab Sample ID: 320-64367-16

Date Collected: 09/01/20 10:29 Matrix: Water Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.4		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluoroheptanoic acid (PFHpA)	1.3	J	1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorooctanoic acid (PFOA)	0.71	J	1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorobutanesulfonic acid (PFBS)	0.89	J	1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorohexanesulfonic acid (PFHxS)	9.6		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Perfluorooctanesulfonic acid (PFOS)	38		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.47	ng/L		09/08/20 13:10	09/09/20 12:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	87		70 - 130					09/09/20 12:38	1
13C2 PFDA	90		70 - 130				09/08/20 13 10	09/09/20 12:38	1

l	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	13C2 PFHxA	87		70 - 130	09/08/20 13:10	09/09/20 12:38	1
l	13C2 PFDA	90		70 - 130	09/08/20 13:10	09/09/20 12:38	1
l	d5-NEtFOSAA	83		70 - 130	09/08/20 13:10	09/09/20 12:38	1
l	13C3 HFPO-DA	84		70 - 130	09/08/20 13:10	09/09/20 12:38	1

9

3

5

7

9

10

12

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual

Client Sample ID: PW-414

Date Received: 09/05/20 14:55

4,8-Dioxa-3H-perfluorononanoic acid

(ADONA)

Lab Sample ID: 320-64367-17 Date Collected: 09/01/20 08:59

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorohexanesulfonic acid (PFHxS)	0.74	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Perfluorooctanesulfonic acid (PFOS)	1.2	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 12:46	1
`									

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	91	70 - 130	09/08/20 13:10	09/09/20 12:46	1
13C2 PFDA	95	70 - 130	09/08/20 13:10	09/09/20 12:46	1
d5-NEtFOSAA	87	70 - 130	09/08/20 13:10	09/09/20 12:46	1
13C3 HFPO-DA	87	70 - 130	09/08/20 13:10	09/09/20 12:46	1

1.9

0.48 ng/L

ND

09/08/20 13:10 09/09/20 12:46

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Client Sample ID: PW-501 Lab Sample ID: 320-64367-18

Date Collected: 09/01/20 10:19 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.1		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluoroheptanoic acid (PFHpA)	1.2	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorooctanoic acid (PFOA)	0.68	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorobutanesulfonic acid (PFBS)	0.90	J	1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorohexanesulfonic acid (PFHxS)	9.9		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Perfluorooctanesulfonic acid (PFOS)	38		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:10	09/09/20 13:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	87		70 - 130				09/08/20 13:10	09/09/20 13:17	1

Surrogate	%Recovery Qualif	fier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	87	70 - 130	09/08/20 13:10	09/09/20 13:17	1
13C2 PFDA	88	70 - 130	09/08/20 13:10	09/09/20 13:17	1
d5-NEtFOSAA	83	70 - 130	09/08/20 13:10	09/09/20 13:17	1
13C3 HFPO-DA	85	70 - 130	09/08/20 13:10	09/09/20 13:17	1

9/10/2020

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-221 Lab Sample ID: 320-64367-19

Date Collected: 09/02/20 08:56 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	•
Perfluorooctanoic acid (PFOA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	•
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	
Perfluorohexanesulfonic acid (PFHxS)	0.86	J	2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	•
Perfluorooctanesulfonic acid (PFOS)	1.5	J	2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.49	Ü		09/08/20 13:11	09/09/20 13:24	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	,
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	•
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.49	ng/L		09/08/20 13:11	09/09/20 13:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	85		70 - 130				09/08/20 13:11	09/09/20 13:24	1
13C2 PFDA	89		70 - 130				09/08/20 13:11	09/09/20 13:24	

70 - 130

70 - 130

81

09/08/20 13:11 09/09/20 13:24

09/08/20 13:11 09/09/20 13:24

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual

Client Sample ID: PW-1001

Lab Sample ID: 320-64367-20

Matrix: Water

Date Collected: 09/02/20 10:16 Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.3		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluoroheptanoic acid (PFHpA)	1.5	J	1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorooctanoic acid (PFOA)	2.0		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorobutanesulfonic acid (PFBS)	0.84	J	1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorohexanesulfonic acid (PFHxS)	7.4		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Perfluorooctanesulfonic acid (PFOS)	10		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9Cl-PF3O	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 14:41	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	d Dil Fac
13C2 PFHxA	90	70 - 130	09/08/20 13:48 09/09/20 14	4:41 1
13C2 PFDA	88	70 - 130	09/08/20 13:48 09/09/20 14	4:41 1
d5-NEtFOSAA	84	70 - 130	09/08/20 13:48 09/09/20 14	4:41 1
13C3 HFPO-DA	82	70 - 130	09/08/20 13:48 09/09/20 14	4:41 1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

13C3 HFPO-DA

Client Sample ID: PW-419 Lab Sample ID: 320-64367-21

Date Collected: 09/02/20 12:03 **Matrix: Water** Date Received: 09/05/20 14:55

Rosuit	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.54	J	1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
1.9		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
3.4		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	,
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	1
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	•
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	
ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:49	
	Qualifier	Limits				Prepared	Analyzed	Dil Fa
87		70 - 130				09/08/20 13:48	09/09/20 14:49	
90		70 - 130				09/08/20 13:48	09/09/20 14:49	1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND 1.9 3.4 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 1.9 ND 1.9	ND 1.9 0.48 ND 1.9 0.	ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND	ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND 1.9 0.48 ng/L 1.9 0.48 ng/L ND 1.9 0.48 ng/L ND	ND 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 1.9 1.9 0.48 ng/L 09/08/20 13:48 ND 1.9 0.48 ng/L 09/08/20 13:48 ND <t< td=""><td>ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L <</td></t<>	ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 1.9 0.48 ng/L 09/08/20 13:48 09/09/20 14:49 ND 1.9 0.48 ng/L <

70 - 130

83

09/08/20 13:48 09/09/20 14:49

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Client Sample ID: PW-213 Lab Sample ID: 320-64367-22

Date Collected: 09/02/20 11:33 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	6.7		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluoroheptanoic acid (PFHpA)	2.5		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorooctanoic acid (PFOA)	1.4	J	1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorobutanesulfonic acid (PFBS)	1.6	J	1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorohexanesulfonic acid (PFHxS)	17		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Perfluorooctanesulfonic acid (PFOS)	61		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 14:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	87		70 - 130					09/09/20 14:57	1
42C2 DED 4	00		70 400				00/00/20 12:10	00/00/00 44.57	,

Surro	ogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2	PFHxA	87		70 - 130	09/08/20 13:48	09/09/20 14:57	1
13C2	PFDA	92		70 - 130	09/08/20 13:48	09/09/20 14:57	1
d5-NI	EtFOSAA	89		70 - 130	09/08/20 13:48	09/09/20 14:57	1
13C3	HFPO-DA	80		70 - 130	09/08/20 13:48	09/09/20 14:57	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-010 Lab Sample ID: 320-64367-23

Date Collected: 09/02/20 12:56 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	•
Perfluorooctanoic acid (PFOA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	
Perfluorodecanoic acid (PFDA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	•
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	•
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	•
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	
Perfluorohexanesulfonic acid (PFHxS)	0.60	J	1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	
Perfluorooctanesulfonic acid (PFOS)	0.88	J	1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	•
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9Cl-PF3O	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	,
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	,
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.49	ng/L		09/08/20 13:48	09/09/20 15:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		70 - 130				09/08/20 13:48	09/09/20 15:04	
13C2 PFDA	88		70 - 130				09/08/20 13:48	09/09/20 15:04	1
/= N/E/E0044							00/00/00 45 15		

70 - 130

70 - 130

79

09/08/20 13:48 09/09/20 15:04

09/08/20 13:48 09/09/20 15:04

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Date Received: 09/05/20 14:55

Client Sample ID: PW-462 Lab Sample ID: 320-64367-24 Date Collected: 09/02/20 09:09

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.9		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluoroheptanoic acid (PFHpA)	2.0		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorooctanoic acid (PFOA)	0.99	J	1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorobutanesulfonic acid (PFBS)	0.74	J	1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorohexanesulfonic acid (PFHxS)	13		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Perfluorooctanesulfonic acid (PFOS)	68		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.46	ng/L		09/08/20 13:48	09/09/20 15:12	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
13C2 PFHxA	88		70 - 130	09/08/20 13:48	09/09/20 15:12	1	
13C2 PFDA	90		70 - 130	09/08/20 13:48	09/09/20 15:12	1	
d5-NEtFOSAA	84		70 - 130	09/08/20 13:48	09/09/20 15:12	1	
13C3 HFPO-DA	79		70 - 130	09/08/20 13:48	09/09/20 15:12	1	

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Lab Sample ID: 320-64367-25 Client Sample ID: PW-2001

Matrix: Water

Date Collected: 09/02/20 10:06 Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.2		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluoroheptanoic acid (PFHpA)	1.5	J	1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorooctanoic acid (PFOA)	1.9		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorobutanesulfonic acid (PFBS)	0.85	J	1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorohexanesulfonic acid (PFHxS)	7.3		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Perfluorooctanesulfonic acid (PFOS)	9.7		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:20	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	87	70 - 130	09/08/20 13:48	09/09/20 15:20	1
13C2 PFDA	87	70 - 130	09/08/20 13:48	09/09/20 15:20	1
d5-NEtFOSAA	78	70 - 130	09/08/20 13:48	09/09/20 15:20	1
13C3 HFPO-DA	79	70 - 130	09/08/20 13:48	09/09/20 15:20	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Date Received: 09/05/20 14:55

Client Sample ID: PW-204 Lab Sample ID: 320-64367-26 Date Collected: 09/02/20 08:05

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.97	J	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluoroheptanoic acid (PFHpA)	0.47	J	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorooctanoic acid (PFOA)	0.75	J	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorohexanesulfonic acid (PFHxS)	3.2		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Perfluorooctanesulfonic acid (PFOS)	6.1		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:28	1

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	13C2 PFHxA	86		70 - 130	09/08/20 13:48	09/09/20 15:28	1
l	13C2 PFDA	90		70 - 130	09/08/20 13:48	09/09/20 15:28	1
l	d5-NEtFOSAA	89		70 - 130	09/08/20 13:48	09/09/20 15:28	1
l	13C3 HFPO-DA	73		70 - 130	09/08/20 13:48	09/09/20 15:28	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Date Received: 09/05/20 14:55

Client Sample ID: PW-112 Lab Sample ID: 320-64367-27 Date Collected: 09/03/20 14:01

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorobutanesulfonic acid (PFBS)	0.50	J	1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorohexanesulfonic acid (PFHxS)	4.7		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Perfluorooctanesulfonic acid (PFOS)	15		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/08/20 13:48	09/09/20 15:35	1

١	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	13C2 PFHxA	87		70 - 130	09/08/20 13:48	09/09/20 15:35	1
١	13C2 PFDA	87		70 - 130	09/08/20 13:48	09/09/20 15:35	1
١	d5-NEtFOSAA	82		70 - 130	09/08/20 13:48	09/09/20 15:35	1
	13C3 HFPO-DA	82		70 - 130	09/08/20 13:48	09/09/20 15:35	1

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-012 Lab Sample ID: 320-64367-28

Date Collected: 09/03/20 14:11 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result (Qualifier RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.1	J 1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorooctanoic acid (PFOA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorononanoic acid (PFNA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorodecanoic acid (PFDA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluoroundecanoic acid (PFUnA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorotridecanoic acid (PFTriA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorohexanesulfonic acid (PFHxS)	4.2	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	1
Perfluorooctanesulfonic acid (PFOS)	14	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	,
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	,
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	,
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.47	ng/L		09/08/20 13:48	09/09/20 15:43	
Surrogate	%Recovery (Qualifier Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	92	70 - 130				09/08/20 13:48	09/09/20 15:43	
13C2 PFDA	94	70 - 130				09/08/20 13:48	09/09/20 15:43	

70 - 130

70 - 130

85

09/08/20 13:48 09/09/20 15:43

09/08/20 13:48 09/09/20 15:43

Surrogate Summary

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Recov	very (Accepta
		PFHxA	PFDA	d5NEFOS	HFPODA	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)	
320-64367-1	PW-219	89	88	84	81	
320-64367-2	PW-211	88	86	82	82	
320-64367-3	PW-438	84	84	83	80	
320-64367-4	PW-212	85	87	84	83	
320-64367-5	PW-203	88	83	82	79	
320-64367-6	PW-303	86	90	86	81	
320-64367-7	PW-061	85	85	75	80	
20-64367-8	PW-037	89	90	78	80	
320-64367-9	PW-240	86	92	85	84	
320-64367-10	PW-039	92	92	79	83	
320-64367-11	PW-040	85	89	87	79	
320-64367-12	PW-230	86	88	90	81	
320-64367-13	PW-059	89	89	85	83	
320-64367-14	PW-032	90	92	85	82	
320-64367-15	PW-038	94	95	94	83	
320-64367-16	PW-401	87	90	83	84	
320-64367-17	PW-414	91	95	87	87	
320-64367-18	PW-501	87	88	83	85	
320-64367-19	PW-221	85	89	85	81	
320-64367-20	PW-1001	90	88	84	82	
320-64367-21	PW-419	87	90	85	83	
320-64367-22	PW-213	87	92	89	80	
320-64367-23	PW-010	86	88	89	79	
320-64367-24	PW-462	88	90	84	79	
320-64367-25	PW-2001	87	87	78	79	
320-64367-26	PW-204	86	90	89	73	
320-64367-27	PW-112	87	87	82	82	
320-64367-28	PW-012	92	94	90	85	
LCS 320-410395/2-A	Lab Control Sample	84	86	87	83	
LCSD 320-410395/3-A	Lab Control Sample Dup	91	91	85	86	
LCS 320-410412/2-A	Lab Control Sample	90	91	94	85	
LLCSD 320-410412/3-A	Lab Control Sample Dup	85	90	86	83	
MB 320-410395/1-A	Method Blank	97	93	90	87	
MB 320-410412/1-A	Method Blank	88	96	94	83	

Surrogate Legend

PFHxA = 13C2 PFHxA PFDA = 13C2 PFDA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA

Page 37 of 56

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sample ID: MB 320-410395/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 410554 **Prep Batch: 410395** MB MB

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9Cl-PF3O	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.50	ng/L		09/08/20 13:10	09/09/20 10:11	1

	MB MB				
Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	97	70 - 130	09/08/20 13:10	09/09/20 10:11	1
13C2 PFDA	93	70 - 130	09/08/20 13:10	09/09/20 10:11	1
d5-NEtFOSAA	90	70 - 130	09/08/20 13:10	09/09/20 10:11	1
13C3 HFPO-DA	87	70 - 130	09/08/20 13:10	09/09/20 10:11	1

Lab Sample ID: LCS 320-410395/2-A **Client Sample ID: Lab Control Sample Prep Type: Total/NA Matrix: Water**

Analysis Batch: 410607							Prep Batch: 410395
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	160	138		ng/L		86	70 - 130
Perfluoroheptanoic acid (PFHpA)	160	152		ng/L		95	70 - 130
Perfluorooctanoic acid (PFOA)	160	142		ng/L		88	70 - 130
Perfluorononanoic acid (PFNA)	160	144		ng/L		90	70 - 130
Perfluorodecanoic acid (PFDA)	160	151		ng/L		94	70 - 130
Perfluoroundecanoic acid (PFUnA)	160	146		ng/L		91	70 - 130
Perfluorododecanoic acid (PFDoA)	160	142		ng/L		89	70 - 130
Perfluorotridecanoic acid (PFTriA)	160	147		ng/L		92	70 - 130
Perfluorotetradecanoic acid (PFTeA)	160	150		ng/L		94	70 - 130
Perfluorobutanesulfonic acid (PFBS)	141	134		ng/L		95	70 - 130

Page 38 of 56

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCS 320-410395/2-A **Matrix: Water**

Analysis Batch: 410607

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 410395 %Rec.

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
146	143		ng/L		98	70 - 130	
148	137		ng/L		92	70 - 130	
160	136		ng/L		85	70 - 130	
160	134		ng/L		84	70 - 130	
149	147		ng/L		98	70 - 130	
151	140		ng/L		93	70 - 130	
160	135		ng/L		85	70 - 130	
151	131		ng/L		87	70 - 130	
	Added 146 148 160 160 149 151	Added Result 146 143 148 137 160 136 160 134 149 147 151 140 160 135	Added Result Qualifier 146 143 148 137 160 136 160 134 149 147 151 140 160 135	Added Result Qualifier Unit 146 143 ng/L 148 137 ng/L 160 136 ng/L 160 134 ng/L 149 147 ng/L 151 140 ng/L 160 135 ng/L	Added Result Qualifier Unit D 146 143 ng/L ng/L 148 137 ng/L 160 136 ng/L 160 134 ng/L 149 147 ng/L 151 140 ng/L 160 135 ng/L	Added Result Qualifier Unit D %Rec 146 143 ng/L 98 148 137 ng/L 92 160 136 ng/L 85 160 134 ng/L 84 149 147 ng/L 98 151 140 ng/L 93 160 135 ng/L 85	Added Result 143 Qualifier ng/L Unit ng/L D %Rec ps Limits ps 148 137 ng/L 92 70 - 130 160 136 ng/L 85 70 - 130 160 134 ng/L 84 70 - 130 149 147 ng/L 98 70 - 130 151 140 ng/L 93 70 - 130 160 135 ng/L 85 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	84		70 - 130
13C2 PFDA	86		70 - 130
d5-NEtFOSAA	87		70 - 130
13C3 HFPO-DA	83		70 - 130

Lab Sample ID: LCSD 320-410395/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 410607							Prep Batch: 410395		
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	160	147		ng/L		92	70 - 130	6	30
Perfluoroheptanoic acid (PFHpA)	160	155		ng/L		97	70 - 130	2	30
Perfluorooctanoic acid (PFOA)	160	145		ng/L		91	70 - 130	3	30
Perfluorononanoic acid (PFNA)	160	157		ng/L		98	70 - 130	8	30
Perfluorodecanoic acid (PFDA)	160	162		ng/L		101	70 - 130	7	30
Perfluoroundecanoic acid (PFUnA)	160	156		ng/L		98	70 - 130	7	30
Perfluorododecanoic acid (PFDoA)	160	155		ng/L		97	70 - 130	9	30
Perfluorotridecanoic acid (PFTriA)	160	148		ng/L		92	70 - 130	1	30
Perfluorotetradecanoic acid (PFTeA)	160	162		ng/L		102	70 - 130	8	30
Perfluorobutanesulfonic acid (PFBS)	141	131		ng/L		93	70 - 130	2	30
Perfluorohexanesulfonic acid (PFHxS)	146	136		ng/L		94	70 - 130	5	30
Perfluorooctanesulfonic acid (PFOS)	148	133		ng/L		90	70 - 130	3	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	160	140		ng/L		88	70 - 130	3	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	160	139		ng/L		87	70 - 130	4	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid (9CI-PF3O	149	140		ng/L		94	70 - 130	5	30

Eurofins TestAmerica, Sacramento

9/10/2020

Page 39 of 56

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Matrix: Water

Analysis Batch: 410607

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 410395**

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid (11Cl-PF	151	138		ng/L		92	70 - 130	1	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	160	144		ng/L		90	70 - 130	6	30	
4,8-Dioxa-3H-perfluorononanoic	151	145		ng/L		96	70 - 130	10	30	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	91		70 - 130
13C2 PFDA	91		70 - 130
d5-NEtFOSAA	85		70 - 130
13C3 HFPO-DA	86		70 - 130

Lab Sample ID: MB 320-410412/1-A

Matrix: Water

Analysis Batch: 410657

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 410412

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.50	ng/L		09/08/20 13:48	09/09/20 14:34	1

MB MB

Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	88		70 - 130	09/08/20 13:48	09/09/20 14:34	1
13C2 PFDA	96		70 - 130	09/08/20 13:48	09/09/20 14:34	1
d5-NEtFOSAA	94		70 - 130	09/08/20 13:48	09/09/20 14:34	1
13C3 HFPO-DA	83		70 - 130	09/08/20 13:48	09/09/20 14:34	1

Page 40 of 56

Client: Shannon & Wilson, Inc Job ID: 320-64367-1

Project/Site: Gus. Annual

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LLCS 320-410412/2-A Matrix: Water Analysis Batch: 410658				Clie	nt Sa	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 410412
	Spike	LLCS	LLCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	4.00	3.57		ng/L		89	50 - 150
Perfluoroheptanoic acid (PFHpA)	4.00	3.86		ng/L		96	50 ₋ 150
Perfluorooctanoic acid (PFOA)	4.00	3.72		ng/L		93	50 ₋ 150
Perfluorononanoic acid (PFNA)	4.00	3.87		ng/L		97	50 ₋ 150
Perfluorodecanoic acid (PFDA)	4.00	3.86		ng/L		96	50 ₋ 150
Perfluoroundecanoic acid (PFUnA)	4.00	3.85		ng/L		96	50 - 150
Perfluorododecanoic acid (PFDoA)	4.00	3.61		ng/L		90	50 - 150
Perfluorotridecanoic acid (PFTriA)	4.00	3.80		ng/L		95	50 - 150
Perfluorotetradecanoic acid (PFTeA)	4.00	4.12		ng/L		103	50 - 150
Perfluorobutanesulfonic acid (PFBS)	3.54	3.26		ng/L		92	50 - 150
Perfluorohexanesulfonic acid (PFHxS)	3.64	3.44		ng/L		94	50 - 150
Perfluorooctanesulfonic acid (PFOS)	3.71	3.54		ng/L		95	50 - 150
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	4.00	3.50		ng/L		88	50 - 150
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	4.00	3.61		ng/L		90	50 - 150
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid (9Cl-PF3O	3.73	3.29		ng/L		88	50 - 150
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid (11Cl-PF	3.77	3.45		ng/L		92	50 - 150
Hexafluoropropylene Oxide	4.00	3.43		ng/L		86	50 - 150

3.77

3.57

ng/L

LLCS LLCS

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	90		70 - 130
13C2 PFDA	91		70 - 130
d5-NEtFOSAA	94		70 - 130
13C3 HFPO-DA	85		70 - 130

Lab Sample ID: LLCSD 320-410412/3-A

Matrix: Water

Dimer Acid (HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic

acid (ADONA)

Analysis Batch: 410658							Prep Ba	tch: 41	0412
	Spike	LLCSD	LLCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	4.00	3.49		ng/L		87	50 - 150	2	50
Perfluoroheptanoic acid (PFHpA)	4.00	3.79		ng/L		95	50 - 150	2	50
Perfluorooctanoic acid (PFOA)	4.00	3.75		ng/L		94	50 - 150	0.9	50
Perfluorononanoic acid (PFNA)	4.00	3.60		ng/L		90	50 - 150	7	50
Perfluorodecanoic acid (PFDA)	4.00	3.60		ng/L		90	50 - 150	7	50
Perfluoroundecanoic acid (PFUnA)	4.00	3.71		ng/L		93	50 - 150	4	50
Perfluorododecanoic acid (PFDoA)	4.00	3.37		ng/L		84	50 - 150	7	50

Eurofins TestAmerica, Sacramento

50 - 150

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Page 41 of 56

9/10/2020

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Gus. Annual

Job ID: 320-64367-1

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LLCSD 320-410412/3-A Matrix: Water

Analysis Batch: 410658

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 410412

	Spike	LLCSD	LLCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorotridecanoic acid	4.00	3.63		ng/L		91	50 - 150	5	50
(PFTriA)									
Perfluorotetradecanoic acid	4.00	3.96		ng/L		99	50 - 150	4	50
(PFTeA)									
Perfluorobutanesulfonic acid	3.54	3.16		ng/L		89	50 - 150	3	50
(PFBS)									
Perfluorohexanesulfonic acid	3.64	3.25		ng/L		89	50 ₋ 150	6	50
(PFHxS)									
Perfluorooctanesulfonic acid	3.71	3.25		ng/L		87	50 - 150	9	50
(PFOS)									
N-methylperfluorooctanesulfona	4.00	3.44		ng/L		86	50 - 150	2	50
midoacetic acid (NMeFOSAA)									
N-ethylperfluorooctanesulfonami	4.00	3.41		ng/L		85	50 - 150	6	50
doacetic acid (NEtFOSAA)									
9-Chlorohexadecafluoro-3-oxan	3.73	3.28		ng/L		88	50 - 150	0.3	50
onane-1-sulfonic acid (9CI-PF3O									
11-Chloroeicosafluoro-3-oxaund	3.77	3.12		ng/L		83	50 - 150	10	50
ecane-1-sulfonic acid (11CI-PF									
Hexafluoropropylene Oxide	4.00	3.42		ng/L		86	50 - 150	0.06	50
Dimer Acid (HFPO-DA)									
4,8-Dioxa-3H-perfluorononanoic	3.77	3.60		ng/L		96	50 - 150	0.7	50
acid (ADONA)									

LLCSD LLCSD

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	85		70 - 130
13C2 PFDA	90		70 - 130
d5-NEtFOSAA	86		70 - 130
13C3 HFPO-DA	83		70 - 130

Eurofins TestAmerica, Sacramento

5

7

0

10

10

13

14

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual

LCMS

Prep Batch: 410395

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64367-1	PW-219	Total/NA	Water	537.1 DW	
320-64367-2	PW-211	Total/NA	Water	537.1 DW	
320-64367-3	PW-438	Total/NA	Water	537.1 DW	
320-64367-4	PW-212	Total/NA	Water	537.1 DW	
320-64367-5	PW-203	Total/NA	Water	537.1 DW	
320-64367-6	PW-303	Total/NA	Water	537.1 DW	
320-64367-7	PW-061	Total/NA	Water	537.1 DW	
320-64367-8	PW-037	Total/NA	Water	537.1 DW	
320-64367-9	PW-240	Total/NA	Water	537.1 DW	
320-64367-10	PW-039	Total/NA	Water	537.1 DW	
320-64367-11	PW-040	Total/NA	Water	537.1 DW	
320-64367-12	PW-230	Total/NA	Water	537.1 DW	
320-64367-13	PW-059	Total/NA	Water	537.1 DW	
320-64367-14	PW-032	Total/NA	Water	537.1 DW	
320-64367-15	PW-038	Total/NA	Water	537.1 DW	
320-64367-16	PW-401	Total/NA	Water	537.1 DW	
320-64367-17	PW-414	Total/NA	Water	537.1 DW	
320-64367-18	PW-501	Total/NA	Water	537.1 DW	
320-64367-19	PW-221	Total/NA	Water	537.1 DW	
MB 320-410395/1-A	Method Blank	Total/NA	Water	537.1 DW	
LCS 320-410395/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	
LCSD 320-410395/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	

Prep Batch: 410412

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64367-20	PW-1001	Total/NA	Water	537.1 DW	
320-64367-21	PW-419	Total/NA	Water	537.1 DW	
320-64367-22	PW-213	Total/NA	Water	537.1 DW	
320-64367-23	PW-010	Total/NA	Water	537.1 DW	
320-64367-24	PW-462	Total/NA	Water	537.1 DW	
320-64367-25	PW-2001	Total/NA	Water	537.1 DW	
320-64367-26	PW-204	Total/NA	Water	537.1 DW	
320-64367-27	PW-112	Total/NA	Water	537.1 DW	
320-64367-28	PW-012	Total/NA	Water	537.1 DW	
MB 320-410412/1-A	Method Blank	Total/NA	Water	537.1 DW	
LLCS 320-410412/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	
LLCSD 320-410412/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	

Analysis Batch: 410554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64367-1	PW-219	Total/NA	Water	537.1 DW	410395
320-64367-2	PW-211	Total/NA	Water	537.1 DW	410395
320-64367-3	PW-438	Total/NA	Water	537.1 DW	410395
320-64367-4	PW-212	Total/NA	Water	537.1 DW	410395
320-64367-5	PW-203	Total/NA	Water	537.1 DW	410395
320-64367-6	PW-303	Total/NA	Water	537.1 DW	410395
320-64367-7	PW-061	Total/NA	Water	537.1 DW	410395
320-64367-8	PW-037	Total/NA	Water	537.1 DW	410395
MB 320-410395/1-A	Method Blank	Total/NA	Water	537.1 DW	410395

Page 43 of 56

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-64367-1 Project/Site: Gus. Annual

LCMS

Analysis Batch: 410606

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64367-9	PW-240	Total/NA	Water	537.1 DW	410395
320-64367-10	PW-039	Total/NA	Water	537.1 DW	410395
320-64367-11	PW-040	Total/NA	Water	537.1 DW	410395
320-64367-12	PW-230	Total/NA	Water	537.1 DW	410395
320-64367-13	PW-059	Total/NA	Water	537.1 DW	410395
320-64367-14	PW-032	Total/NA	Water	537.1 DW	410395
320-64367-15	PW-038	Total/NA	Water	537.1 DW	410395
320-64367-16	PW-401	Total/NA	Water	537.1 DW	410395
320-64367-17	PW-414	Total/NA	Water	537.1 DW	410395

Analysis Batch: 410607

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method F	Prep Batch
320	-64367-18	PW-501	Total/NA	Water	537.1 DW	410395
320	-64367-19	PW-221	Total/NA	Water	537.1 DW	410395
LCS	S 320-410395/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	410395
LCS	SD 320-410395/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	410395

Analysis Batch: 410657

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64367-20	PW-1001	Total/NA	Water	537.1 DW	410412
320-64367-21	PW-419	Total/NA	Water	537.1 DW	410412
320-64367-22	PW-213	Total/NA	Water	537.1 DW	410412
320-64367-23	PW-010	Total/NA	Water	537.1 DW	410412
320-64367-24	PW-462	Total/NA	Water	537.1 DW	410412
320-64367-25	PW-2001	Total/NA	Water	537.1 DW	410412
320-64367-26	PW-204	Total/NA	Water	537.1 DW	410412
320-64367-27	PW-112	Total/NA	Water	537.1 DW	410412
320-64367-28	PW-012	Total/NA	Water	537.1 DW	410412
MB 320-410412/1-A	Method Blank	Total/NA	Water	537.1 DW	410412

Analysis Batch: 410658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LLCS 320-410412/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	410412
LLCSD 320-410412/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	410412

Job ID: 320-64367-1

Client: Shannon & Wilson, Inc Project/Site: Gus. Annual

Lab Sample ID: 320-64367-1

Matrix: Water

Client Sample ID: PW-219 Date Collected: 08/31/20 17:06 Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			270.2 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410554	09/09/20 10:19	SK	TAL SAC

Client Sample ID: PW-211 Lab Sample ID: 320-64367-2 Date Collected: 08/31/20 16:09

Matrix: Water

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			260.5 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410554	09/09/20 10:27	SK	TAL SAC

Client Sample ID: PW-438 Lab Sample ID: 320-64367-3

Date Collected: 08/31/20 14:42 **Matrix: Water**

Date Received: 09/05/20 14:55

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method **Factor** Amount Amount Number or Analyzed Analyst Run Lab Total/NA Prep 537.1 DW 262.9 mL 1.00 mL 410395 09/08/20 13:10 EH TAL SAC Total/NA Analysis 537.1 DW 410554 09/09/20 10:35 SK TAL SAC 1

Client Sample ID: PW-212 Lab Sample ID: 320-64367-4

Date Collected: 08/31/20 15:35 **Matrix: Water**

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			265.7 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410554	09/09/20 10:42	SK	TAL SAC

Client Sample ID: PW-203 Lab Sample ID: 320-64367-5 **Matrix: Water**

Date Collected: 09/01/20 16:55 Date Received: 09/05/20 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			269.2 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537 1 DW		1			410554	09/09/20 10:50	SK	TAL SAC

Client Sample ID: PW-303 Lab Sample ID: 320-64367-6 Date Collected: 09/01/20 16:45 **Matrix: Water**

Date Received: 09/05/20 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			259.5 mL	1.00 mL	410395	. <u> </u>		TAL SAC
Total/NA	Analysis	537 1 DW		1			410554	09/09/20 10:58	SK	TAL SAC

Eurofins TestAmerica, Sacramento

10

Job ID: 320-64367-1

Client: Shannon & Wilson, Inc Project/Site: Gus. Annual

Client Sample ID: PW-061

Date Collected: 09/01/20 15:54 Date Received: 09/05/20 14:55 Lab Sample ID: 320-64367-7

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			262 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410554	09/09/20 11:06	SK	TAL SAC

Client Sample ID: PW-037 Lab Sample ID: 320-64367-8

Date Collected: 09/01/20 13:39 Matrix: Water

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			258 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410554	09/09/20 11:13	SK	TAL SAC

Client Sample ID: PW-240 Lab Sample ID: 320-64367-9

Date Collected: 09/01/20 08:06

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			263.5 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410606	09/09/20 11:44	SK	TAL SAC

Client Sample ID: PW-039

Date Collected: 09/01/20 14:22

Matrix: Water

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			257.1 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410606	09/09/20 11:52	SK	TAL SAC

Client Sample ID: PW-040

Date Collected: 09/01/20 14:45

Lab Sample ID: 320-64367-11

Matrix: Water

Date Received: 09/05/20 14:55

Pror	о Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
	I/NA	Prep	537.1 DW	Kuii	- ractor	267.5 mL	1.00 mL	410395	09/08/20 13:10		TAL SAC
Tota	I/NA	Analysis	537.1 DW		1			410606	09/09/20 11:59	SK	TAL SAC

Client Sample ID: PW-230

Date Collected: 09/01/20 12:26

Lab Sample ID: 320-64367-12

Matrix: Water

Date Received: 09/05/20 14:55

Analysis

537.1 DW

Total/NA

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			270.8 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC

Eurofins TestAmerica, Sacramento

09/09/20 12:07 SK

410606

TAL SAC

Job ID: 320-64367-1

Client: Shannon & Wilson, Inc Project/Site: Gus. Annual

Client Sample ID: PW-059

Date Collected: 09/01/20 11:28 Date Received: 09/05/20 14:55

Lab Sample ID: 320-64367-13

Matrix: Water

Matrix: Water

TAL SAC

Batch Dil Initial Batch Batch Final Prepared Method Number or Analyzed **Prep Type** Type Run **Factor Amount** Amount Analyst Lab Total/NA 537.1 DW 263.5 mL 1.00 mL 410395 09/08/20 13:10 EH TAL SAC Prep Total/NA 410606 09/09/20 12:15 SK Analysis 537.1 DW TAL SAC 1

Client Sample ID: PW-032 Lab Sample ID: 320-64367-14

Date Collected: 09/01/20 09:37 **Matrix: Water** Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			261.2 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410606	09/09/20 12:23	SK	TAL SAC

Client Sample ID: PW-038 Lab Sample ID: 320-64367-15

Date Collected: 09/01/20 13:13 **Matrix: Water**

Date Received: 09/05/20 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW	· 		262.6 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410606	09/09/20 12:30	SK	TAL SAC

Client Sample ID: PW-401 Lab Sample ID: 320-64367-16

Date Collected: 09/01/20 10:29 Date Received: 09/05/20 14:55

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Factor Amount Amount Number or Analyzed Type Run Analyst Lab Total/NA 410395 09/08/20 13:10 EH Prep 537.1 DW 264.8 mL 1.00 mL TAL SAC Total/NA

Client Sample ID: PW-414 Lab Sample ID: 320-64367-17 Date Collected: 09/01/20 08:59 **Matrix: Water**

410606

09/09/20 12:38 SK

1

Date Received: 09/05/20 14:55

Analysis

537.1 DW

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			261.5 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410606	09/09/20 12:46	SK	TAL SAC

Client Sample ID: PW-501 Lab Sample ID: 320-64367-18

Date Collected: 09/01/20 10:19 **Matrix: Water** Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			262.4 mL	1.00 mL	410395	09/08/20 13:10	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410607	09/09/20 13:17	SK	TAL SAC

Job ID: 320-64367-1

Client: Shannon & Wilson, Inc Project/Site: Gus. Annual

Client Sample ID: PW-221

Lab Sample ID: 320-64367-19

Matrix: Water

Date Collected: 09/02/20 08:56 Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			256.2 mL	1.00 mL	410395	09/08/20 13:11	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410607	09/09/20 13:24	SK	TAL SAC

Lab Sample ID: 320-64367-20 Client Sample ID: PW-1001 Date Collected: 09/02/20 10:16

Matrix: Water

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			270.7 mL	1.00 mL	410412	09/08/20 13:48	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410657	09/09/20 14:41	K1S	TAL SAC

Client Sample ID: PW-419 Lab Sample ID: 320-64367-21

Date Collected: 09/02/20 12:03 **Matrix: Water**

Date Received: 09/05/20 14:55

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 537.1 DW 262.9 mL 1.00 mL 410412 09/08/20 13:48 EH TAL SAC Total/NA Analysis 537.1 DW 410657 09/09/20 14:49 K1S TAL SAC 1

Client Sample ID: PW-213 Lab Sample ID: 320-64367-22 **Matrix: Water**

Date Collected: 09/02/20 11:33 Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			258.6 mL	1.00 mL	410412	09/08/20 13:48	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410657	09/09/20 14:57	K1S	TAL SAC

Client Sample ID: PW-010 Lab Sample ID: 320-64367-23 Date Collected: 09/02/20 12:56 **Matrix: Water**

Date Received: 09/05/20 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			257.7 mL	1.00 mL	410412	09/08/20 13:48	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410657	09/09/20 15:04	K1S	TAL SAC

Client Sample ID: PW-462 Lab Sample ID: 320-64367-24 Date Collected: 09/02/20 09:09 **Matrix: Water**

Date Received: 09/05/20 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			271.9 mL	1.00 mL	410412	09/08/20 13:48		TAL SAC
Total/NA	Analysis	537 1 DW		1			410657	09/09/20 15:12	K1S	TAL SAC

Eurofins TestAmerica, Sacramento

Lab Chronicle

Client: Shannon & Wilson, Inc
Project/Site: Gus. Annual

Job ID: 320-64367-1

Client Sample ID: PW-2001

Lab Sample ID: 320-64367-25

09/09/20 15:28 K1S

09/09/20 15:43 K1S

Matrix: Water

TAL SAC

TAL SAC

Date Collected: 09/02/20 10:06 Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			262.1 mL	1.00 mL	410412	09/08/20 13:48	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			410657	09/09/20 15:20	K1S	TAL SAC

Client Sample ID: PW-204 Lab Sample ID: 320-64367-26

Date Collected: 09/02/20 08:05 Matrix: Water Date Received: 09/05/20 14:55

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Factor Amount Amount** Number or Analyzed Type Run Analyst Lab Total/NA Prep 537.1 DW 264.1 mL 1.00 mL 410412 09/08/20 13:48 EH TAL SAC

1

Client Sample ID: PW-112 Lab Sample ID: 320-64367-27

Date Collected: 09/03/20 14:01 Matrix: Water

410657

410657

Date Received: 09/05/20 14:55

Analysis

Analysis

537.1 DW

537.1 DW

Total/NA

Batch Batch Dil Initial Final Batch **Prepared** Method **Prep Type** Type Run Factor **Amount Amount** Number or Analyzed Analyst Lab Total/NA Prep 537.1 DW 261.3 mL 1.00 mL 410412 09/08/20 13:48 EΗ TAL SAC Total/NA Analysis 537.1 DW 410657 09/09/20 15:35 K1S TAL SAC 1

Client Sample ID: PW-012 Lab Sample ID: 320-64367-28

Date Collected: 09/03/20 14:11 Matrix: Water Date Received: 09/05/20 14:55

Batch Batch Dil Initial Final Batch Prepared Amount Method Amount Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab Total/NA Prep 537.1 DW 267.6 mL 1.00 mL 410412 09/08/20 13:48 EΗ TAL SAC

Laboratory References:

Total/NA

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

6

7

10

12

13

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc
Project/Site: Gus. Annual

Job ID: 320-64367-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	10-31-20
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-1	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
√irginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

-

8

10

11

12

14

 $^{^{*}\} Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid.$

Method Summary

Client: Shannon & Wilson, Inc Project/Site: Gus. Annual Job ID: 320-64367-1

Method	Method Description	Protocol	Laboratory
537.1 DW	Perfluorinated Alkyl Acids (LC/MS)	EPA	TAL SAC
537.1 DW	Extraction of Perfluorinated Alkyl Acids	EPA	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Л

5

7

8

10

11

13

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: Gus. Annual Job ID: 320-64367-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-64367-1	PW-219	Water	08/31/20 17:06	09/05/20 14:55
320-64367-2	PW-211	Water	08/31/20 16:09	09/05/20 14:55
320-64367-3	PW-438	Water	08/31/20 14:42	09/05/20 14:55
320-64367-4	PW-212	Water	08/31/20 15:35	09/05/20 14:55
320-64367-5	PW-203	Water	09/01/20 16:55	09/05/20 14:55
320-64367-6	PW-303	Water	09/01/20 16:45	09/05/20 14:55
320-64367-7	PW-061	Water	09/01/20 15:54	09/05/20 14:55
320-64367-8	PW-037	Water	09/01/20 13:39	09/05/20 14:55
320-64367-9	PW-240	Water	09/01/20 08:06	09/05/20 14:55
320-64367-10	PW-039	Water	09/01/20 14:22	09/05/20 14:55
320-64367-11	PW-040	Water	09/01/20 14:45	09/05/20 14:55
320-64367-12	PW-230	Water	09/01/20 12:26	09/05/20 14:55
320-64367-13	PW-059	Water	09/01/20 11:28	09/05/20 14:55
320-64367-14	PW-032	Water	09/01/20 09:37	09/05/20 14:55
320-64367-15	PW-038	Water	09/01/20 13:13	09/05/20 14:55
320-64367-16	PW-401	Water	09/01/20 10:29	09/05/20 14:55
320-64367-17	PW-414	Water	09/01/20 08:59	09/05/20 14:55
320-64367-18	PW-501	Water	09/01/20 10:19	09/05/20 14:55
320-64367-19	PW-221	Water	09/02/20 08:56	09/05/20 14:55
320-64367-20	PW-1001	Water	09/02/20 10:16	09/05/20 14:55
320-64367-21	PW-419	Water	09/02/20 12:03	09/05/20 14:55
320-64367-22	PW-213	Water	09/02/20 11:33	09/05/20 14:55
320-64367-23	PW-010	Water	09/02/20 12:56	09/05/20 14:55
320-64367-24	PW-462	Water	09/02/20 09:09	09/05/20 14:55
320-64367-25	PW-2001	Water	09/02/20 10:06	09/05/20 14:55
320-64367-26	PW-204	Water	09/02/20 08:05	09/05/20 14:55
320-64367-27	PW-112	Water	09/03/20 14:01	09/05/20 14:55
320-64367-28	PW-012	Water	09/03/20 14:11	09/05/20 14:55

6

8

9

10

12

ç	9
-	
ì	=
ζ	
C	_

SHANNON & W Geotechnical and Enviro	VILSON, INC.	C	HAIN	-OF-	CUST	ODY I	RECO	RD	Labo	ratory Tes	Page 1	_ of_3
	Vestport Center Drive is, MO 63146-3564 99-9660	303 Wellsian Richland, W. (509) 946-63	A 99352			А		neters/Sample C	Container I			
airbanks, AK 99709 Anchor 907) 479-0600 (907) 5	airbanks Street, Suite 3 age, AK 99518 61-2120				//	160	//	/ /	/-	//	/	
ortland, OR 97201-2498 Denver	7th Street, Suite 1024 , Co 80202 25-3800 Lab No.	Time	Date Sample	la la	13 M	2+	//	//			Remarks/Matri	ίχ
PW-219		17.06	8/31/2	D	X						anduct	100
PW-211		1609	8/31/2	_	X					2 0	CONCE STATE	
PW-438		1442	8/31/2		×					2		
PW-212		1535	8/31/2	1	D				1	2		
Pw-203		1655	9/1/20	-	X				1	2		
Pw-303		1645	9/1/2		X	320-64	367 Chain of (Custody		2		
PW-061		1554	9/1/2		X					2		
PW-037		1339	9/1/2		X					2		
PW- 240		0806	9/1/20		X					2		
PW-039		1422	9/1/2		X					2	1	
Project Information	Sam	ple Recei	pt	Relinquished By: 1. Relinquished B				y: 2. Relinquished By: 3.				
Project Number: 102599-0	The state of the s	of Container	S	Signature	J	ime: 900	Signature	Time	ř	Signature:	Time:_	
Project Name: Gus. Annua Contact: KRI=				Printed Name: Date: 9/4/20 Printed Name: Da					e; Printed Name: Date:			
Ongoing Project? Yes No	Received God Delivery Meth		IQ	A. Masters Company: Company:				Company: Com		Company:	Company:	
Sampler: ARM	(attach shipping	g bill, if any)			nonth	1 Ison						
Instructions					Received By: 1.			eived By:	2.		ived By:	3.
Requested Turnaround Time:					07	ime: 1455	Signature:	Signature: Time:		_ Signature:	Signature: Time:	
Special Instructions:				Printed Name Date: 9151 w Printed Name Printed			Printed Na	Printed Name: Date:		Printed Name	e; Date:_	
Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File				Company	Erosu	Company:				Company:		

C	
Ξ	
\leq	
Ñ	
ċ	
Ň	
ċ	
_	

SHANNON Geotechnical and	Environmental Consultants	CHA	IN-OF	-CUST	ODY R	RECORD		aboratory_	Page 4_ of 3	
206) 632-8020	St. Louis, MO 63146-3564 (314) 699-9660	303 Wellsian Way Richland, WA 99352 (509) 946-6309	2		Ana	alysis Parameter (include		ner Descrip	otion	
Fairbanks, AK 99709 907) 479-0600	5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 561-2120				/0 /	///	//		//	
Portland, OR 97201-2498	1200 17th Street, Suite 1024 Denver, Co 80202 (303) 825-3800		ate /	8/0/2	5+18	//				
Sample Identity	Lab No.		npled 6		\leftarrow			1300	Remarks/Matrix	
PW-640		1445 9/1	120	X				2	groundwater	
PW-230		1226 9/1	120	X				2	0	
PW-059			1/20	X				2		
PW-032			120	X				2		
PW-038			1/20	X				2		
PW-401			120	X				2		
ow-414			120	X				2		
2 W-50										
		0856 9/2	120	X				2		
PW-22			120	X				2		
PW-1001		1016 9/2	/20					a		
Project Informa	ntion Sam	ple Receipt	R	elinquished		Relinqu	ished By:		Relinquished By: 3.	
Project Number:	Total Number	of Containers	Signatu	ire:	ime:	_ Signature:	Time:	Sign	nature Time;	
Project Name:		tact? Y/N/NA	Printed	Name: D	Date	Prin	Printed Name: Date:			
Contact:	1	od Cond./Cold								
Origonia Froject: Tes 17 No 12			Compa	iny:		Company:			Company:	
Sampler:	Instructions	bill, (any)	T/P	eceived By	: 1.	Receive	ad By:	2.	Received By: 3.	
Requested Turnaround T		- cope	Signatu		ime: 1455	Signature:	Time:		nature: Time:	
Special Instructions:	Those C	0	Ben	a agr						
			100000000000000000000000000000000000000		Date: 915 Ln	Printed Name:	Date:	Prin	ted Name: Date:	
Yellow - w/shipn	ent - returned to Shannon & V nent - for consignee files & Wilson - Job File	Vilson w/ laboratory re	port Compa	redu stog		Company		Con	npany:	

Page 2 of 3

SHANNON & WILL Geotechnical and Environm	C	HAIN	-OF	CUST	ODY	RE	CORD		Laborat	tory	Page 3	of 3	
400 N. 34th Street, Suite 100 2043 Wes Seattle, WA 98103 St. Louis, (206) 632-8020 (314) 699	MO 63146-3564	303 Wellsian Richland, W (509) 946-63	A 99352				Analy	rsis Parameters	s/Sample Cont		scription		
Fairbanks, AK 99709 Anchorag (907) 479-0600 (907) 561	Street, Suite 1024 to 80202		Date	/	13 QUE	5-16	/	(Include	preservative ii	//		7	
Sample Identity	Lab No.	Time	Sampled	100	SE OUN				/ /	1		Remarks/Matrix	ĺ
PW-419		1203	9/2/20		X					6	2 gra	ndwate	5
PW-213		113 3	9/2/2		×					i	2 ,		
pw-010		1256	9/2/2		×						a		
PW-462		0909	9/2/20		X					1	2		
PW-2001		1006	9/2/2		X						2	HE H	
pw-204		0805	9/2/2		X						2		
PW-112		1401	9/3/21		X						7 1		
PW-012		1411	9/9/20		~						2		
			. 1									1-1-1-D	0
Project Information		ole Recei	-	t Relinquished By: 1.					ished By:	2.	Relinquished By: 3. Signature: Time:		
Project Number:	Total Number COC Seals/Int							Signature:					
Project Name: Contact:	Received Goo			Printed N	ame: D	ate:		Printed Name:	Date:		Printed Name:	Date:	
Ongoing Project? Yes No D	rod: Company:						Company:			Company:			
Inst	ructions	1/00		Re	ceived By:	1	1.	Receive	ed By:	2.	Receive	ed By:	3.
Requested Turnaround Time		1	0	Signature		ime: [45	5	Signature:	Time:		Signature:	Time:	
Special Instructions:				Printed A		late: GUS	w	Printed Name:	Date:		Printed Name	Date:	
Distribution: White - w/shipment - retur Yellow - w/shipment - for Pink - Shannon & Wilson -	consignee files	/ilson w/ labor	atory report	Compan		Yes .		Company:			Company		

Δ Δ Δ

Client: Shannon & Wilson, Inc Job Number: 320-64367-1

Login Number: 64367 List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Thompson, Sarah W

Creator. Monipson, Saran W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1094972
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	gel packs
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	COC not relinquished.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Page 56 of 56

Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:	
Amber Masters	
Title:	
Environmental Scientist	
Date:	
September 10, 2020	
Consultant Firm:	
Shannon & Wilson, Inc.	
aboratory Name:	
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)	
Laboratory Report Number:	
320-64367-1	
aboratory Report Date:	
September 10, 2020	
CS Site Name:	
DOT&PF Gustavus Airport Statewide PFAS	
ADEC File Number:	
2569.38.033	
Hazard Identification Number:	
26981	

	320-04307-1
Labo	pratory Report Date:
1	Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>I</u>	<u>Laboratory</u>
	a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments:
	The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes \square No \square N/A \boxtimes Comments:
	The requested analyses were conducted by TestAmerica of West Sacramento, CA.
2. <u>c</u>	Chain of Custody (CoC)
	 a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments:
	The laboratory notes the COC was not relinquished. The first page was signed and pages 2 and 3
	reference the first. The sample results are not affected by this discrepancy.
	b. Correct analyses requested?
	Yes⊠ No□ N/A□ Comments:
3. <u>I</u>	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes⊠ No□ N/A□ Comments:
	Tesizi Noili N/All Confinents.
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	Yes⊠ No□ N/A□ Comments:
	Samples were preserved with Trizma.
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	The sample receipt form notes that the samples were received in good condition.

	320-64367-1		
Lab	Laboratory Report Date:		
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?		
	Yes \boxtimes No \square N/A \square Comments:		
	See 2.a. above.		
	e. Data quality or usability affected?		
	Comments:		
	The data quality and/or usability was not affected; see above.		
	4. <u>Case Narrative</u>		
	a. Present and understandable?		
	Yes \boxtimes No \square N/A \square Comments:		

at	ory Report Date:
	b. Discrepancies, errors, or QC failures identified by the lab?
	Yes \boxtimes No \square N/A \square Comments:
	The case narrative indicates the following: The following samples had a slight discoloration in both containers: PW-219, PW-438, PW-303, P 061, PW-037, PW-039, PW-230, PW-032, PW-401, PW-501, PW-1001, PW-462, PW-2001, PW-2 PW-112, and PW-012
	The following samples were observed to be a light yellow in color prior to extraction: <i>PW-203 PW-303</i> , <i>PW-039</i> , <i>PW-059</i> , <i>PW-032</i> , <i>PW-401</i> , <i>PW-501</i> and <i>PW-221</i> in preparation batch 320-410395 a 320-410395; <i>PW-419</i> , <i>PW-204</i> , and <i>PW-112</i> in preparation batch 320-410412.
	The following samples <i>PW-219</i> , <i>PW-438</i> , <i>PW-061</i> , <i>PW-037</i> and <i>PW-230</i> in preparation batch 320-410395 and <i>PW-1001</i> , <i>PW-010 PW-2001</i> and <i>PW-012</i> in preparation batch 320-410412 were observed to be yellow in color prior to extraction.
	The following samples were observed to have contain a thin layer of sediment at the bottom of the bottles: <i>PW-219</i> , <i>PW-438</i> , <i>PW-061</i> , <i>PW-230</i> and <i>PW-501</i> in preparation batch 320-410395 and <i>PW 1001</i> , <i>PW-010</i> , <i>PW-2001</i> , and <i>PW-012</i> in preparation batch 320-64367-27 were observed to contain thin layer of sediment at the bottom of the bottles.
	The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. The secon two pages of the COC was not relinquished.
	The samples arrived in good condition and properly preserved. The temperature of the sample coolereceived with this shipment was 6.0° C upon arrival at the laboratory.
	There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batches 320-410395, 320-410395 and 320-410412
	c. Were all corrective actions documented?
	Yes \square No \square N/A \boxtimes Comments:
	Corrective actions were not required.
	d. What is the effect on data quality/usability according to the case narrative?
	Comments:
	The case narrative does not identify an effect on the data quality and/or usability.
_	
11	nples Results
	a. Correct analyses performed/reported as requested on COC?
ı	Yes \boxtimes No \square N/A \square Comments:

Labora	Laboratory Report Date:		
	b. All applicable holding times met?		
ı	Yes \boxtimes No \square N/A \square Comments:		
	c. All soils reported on a dry weight basis?		
i	Yes \square No \square N/A \boxtimes Comments:		
	Soil samples were not submitted with this work order.		
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?		
i	$Yes \boxtimes No \square N/A \square$ Comments:		
	The reporting limit (RL) is less than the applicable DEC regulatory limit for the project.		
	e. Data quality or usability affected?		
	The data quality and/or usability was not affected; see above.		
6. <u>QC</u>	<u>C Samples</u>		
	a. Method Blank		
	i. One method blank reported per matrix, analysis and 20 samples?		
1	Yes⊠ No□ N/A□ Comments:		
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?		
,	Yes⊠ No□ N/A□ Comments:		
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:		
	There were no detections in the method blanks.		
	iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		
i	Yes \square No \square N/A \boxtimes Comments:		
	Qualification of the data was not required. See above.		
	v. Data quality or usability affected? Comments:		
	Results are not affected. See above.		

320-64367-1

320-64367-1	

Laboratory Report Date:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes \boxtimes No \square N/A \square Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
NA; analytical accuracy and precision were demonstrated to be within acceptable limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
Qualification of the data was not required; see above.
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
The data quality and/or usability was not affected; see above.

	320-64367-1
Lab	poratory Report Date:
	c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)Note: Leave blank if not required for project
	i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
	Yes□ No⊠ N/A□ Comments:
	Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batches. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and precision.
	ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
	Yes \square No \square N/A \boxtimes Comments:
	Metals and/or inorganics were not analyzed as part of this work order.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
	Yes□ No□ N/A⊠ Comments:
	MS and MSD samples were not analyzed for this work order.
	iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
	Yes□ No□ N/A⊠ Comments:
	MS and MSD samples were not analyzed for this work order.
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
	NA; MS and MSD samples were not analyzed for this work order.
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	Yes□ No□ N/A⊠ Comments:
	MS and MSD samples were not analyzed for this work order.

320-64367-1	

Labor

ratory Report Date:
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality and/or usability was not affected; see above.
d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes⊠ No□ N/A□ Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
$Yes \boxtimes No \square N/A \square$ Comments:
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠ Comments:
There were no IDA recovery failures associated with this work order.
iv. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes \square No \square N/A \boxtimes Comments:
PFAS are not volatile compounds. A trip blank is not required for the requested analysis.
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC?(If not, a comment explaining why must be entered below)
$Yes \square$ No \square N/A \boxtimes Comments:
A trip blank is not required for the requested analysis.
iii. All results less than LOQ and project specified objectives?
Yes \square No \square N/A \boxtimes Comments:
A trip blank is not required for the requested analysis.

Page 8 May 2020

	320-64367-1
La	boratory Report Date:
	iv. If above LOQ or project specified objectives, what samples are affected? Comments:
	NA; a trip blank is not required for the requested analysis.
	v. Data quality or usability affected? Comments:
	The data quality and/or usability was not affected; see above.
	f. Field Duplicate
	i. One field duplicate submitted per matrix, analysis and 10 project samples?
	Yes⊠ No□ N/A□ Comments:
	ii. Submitted blind to lab?
	Yes \boxtimes No \square N/A \square Comments:
	The field duplicate <i>pairs PW-203/PW-303, PW-401/PW-501, PW-012/PW-112</i> , and <i>PW-1001/PW-2001</i> were submitted with this work order
	iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
	Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration
	R ₂ – Ficia Duplicate Concentration
	Yes \square No \boxtimes N/A \square Comments:
	RPD for PFHxA results of field duplicate pairs <i>PW-203/PW-303</i> is 33.0%.
	iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
	No; results of PFHxA in the field duplicate pair PW-203/PW-303 are already estimated values reported below the reporting limit and are not considered affected.
	g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
	Yes□ No□ N/A⊠ Comments:
	Decontamination or equipment blank were not required for this project.
	i. All results less than LOQ and project specified objectives?
	Yes \square No \square N/A \boxtimes Comments:

Decontamination or equipment blank were not required for this project.

32	20-64367-1	
Laboratory Report Date:		
	ii. If above LOQ or project specified objectives, what samples are affected?Comments:	
	Decontamination or equipment blank were not required for this project.	
	iii. Data quality or usability affected? Comments:	
	The data quality and/or usability was not affected; see above.	
7. <u>O</u>	other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)	
	a. Defined and appropriate?	
	V. N. D. N/AD. Comments	

Comments:

Sample *PW-462* was collected from a hand pump; purging stabilization criteria was not met. Detected results are considered estimated and flagged 'J', non-detected results are flagged 'UJ' in the analytical database.

Page 10 May 2020

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-64368-1 Client Project/Site: GUSMW

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Vani altim

Authorized for release by: 9/16/2020 12:46:34 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

9

11

12

15

Ш

Client: Shannon & Wilson, Inc Project/Site: GUSMW

Laboratory Job ID: 320-64368-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Isotope Dilution Summary	27
QC Sample Results	29
QC Association Summary	32
Lab Chronicle	33
Certification Summary	37
Method Summary	38
Sample Summary	39
Chain of Custody	40
Receipt Checklists	43

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Qualifiers

LCMS

Qualifier Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Sacramento

Page 3 of 43 9/16/2020

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Job ID: 320-64368-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-64368-1

Receipt

The samples were received on 9/5/2020 2:55 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 6.0° C.

Receipt Exceptions

2 of 3 pages of COC were not relinquished by shipper.

LCMS

Method 537 (modified): The continuing calibration verification (CCV) associated with batch 320-412177 recovered above the upper control limit for Perfluorotridecanoic acid (PFTriA). The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples contain a thin layer of sediments at the bottom of the container prior to extraction: MW-1-140 (320-64368-1), MW-2-20 (320-64368-2), MW-1-40 (320-64368-5), MW-10-20 (320-64368-7), MW-9-30 (320-64368-9), MW-3-40 (320-64368-10), MW-12-10 (320-64368-15) and MW-4-20 (320-64368-17).

Method 3535: The following samples contain floating particulates in the container prior to extraction: MW-3-15 (320-64368-6), MW-8-120 (320-64368-1), MW-8-20 (320-64368-11), MW-5-20 (320-64368-12), MW-7-20 (320-64368-13), MW-6-20 (320-64368-14), MW-6-120 (320-64368-16) and MW-4-20 (320-64368-17).

Method 3535: The following samples were light yellow after extraction/final volume: MW-1-40 (320-64368-5), MW-3-15 (320-64368-6), MW-10-20 (320-64368-7), MW-8-120 (320-64368-8), MW-9-30 (320-64368-9), MW-3-40 (320-64368-10), MW-12-10 (320-64368-15) and MW-4-20 (320-64368-17).

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-412145.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

0

0

9

10

12

13

14

15

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-1-140

Client Sample ID: MW-1-15

onent dample ib. Mivv-1-140	nt Gampio 15: Intt 1 140							
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorotetradecanoic acid (PFTeA)	0.43	J	1.7	0.25	ng/L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.32	JB	1.7	0.14	ng/L	1	537 (modified)	Total/NA
Client Sample ID: MW-2-20						Lab S	ample ID: 32	0-64368-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	84		1.7	0.50	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	37		1.7	0.21	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	36		1.7	0.73	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	4.0		1.7	0.23	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	3.0		1.7	0.17	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	32	В	1.7	0.15	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	260		1.7	0.46	ng/L	1	537 (modified)	Total/NA

	Analyte	Result Quali	mer RL	MDL	Unit	Dii Fac	ט	wethod	Prep Type	
	Perfluorobutanesulfonic acid (PFBS)	0.33 J	1.7	0.17	ng/L	1		537 (modified)	Total/NA	
	Perfluorohexanesulfonic acid (PFHxS)	0.69 JB	1.7	0.15	ng/L	1		537 (modified)	Total/NA	
Client Sample ID: MW-2-30 Lab Sample ID: 320-6										

•								•	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorotetradecanoic acid (PFTeA)	0.39	J	1.7	0.25	ng/L	1	_	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.3	J	1.7	0.17	ng/L	1		537 (modified)	Total/NA

_						
Client Sample ID: MW-1-40				Lab Sa	ample ID: 32	0-64368-5
Perfluorohexanesulfonic acid (PFHxS)	0.38 JB	1.7	0.15 ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.3 J	1.7	0.17 ng/L	1	537 (modified)	Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Perfluorohexanesulfonic acid (PFHxS)	0.32	JB	1.7	0.15	ng/L	1	_	537 (modified)	Total/NA	_
Client Sample ID: MW-3-15	5					Lab S	Sa	mple ID: 32	0-64368-6	5

Client Sample ID: MW-3-15		Lab Sample ID: 320-64368-						
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.0	J	1.7	0.50	ng/L		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.44	J	1.7	0.22	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.57	J	1.7	0.17	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.5	В	1.7	0.15	ng/L	1	537 (modified)	Total/NA
Dorflyona actomogylfonia acid (DEOC)	6.7		4 7	0.47	n a /l	4	E27 (modified)	Total/NIA

	idoroccianecianomo dola (1 1 00)	0.7	1.7	0.47 Hg/L	1 007 (modified) Total/147
Clie	ent Sample ID: MW-10-20				Lab Sample ID: 320-64368-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	11		1.7	0.49	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	4.5		1.7	0.21	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.6		1.7	0.72	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.42	J	1.7	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.64	J	1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	13	В	1.7	0.14	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	140		1.7	0.46	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

9/16/2020

Lab Sample ID: 320-64368-1

Lab Sample ID: 320-64368-3

Client: Shannon & Wilson, Inc
Project/Site: GUSMW

Job ID: 320-64368-1

Client Sample ID: MW-8-120	Lab Sample ID: 320-64368-8
----------------------------	----------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorotetradecanoic acid (PFTeA)	0.50	J	1.7	0.25	ng/L	1	_	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.32	JB	1.7	0.14	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-9-30 Lab Sample ID: 320-64368-9

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	16	1.7	0.50	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	6.0	1.7	0.21	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.3	1.7	0.73	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.6 J	1.7	0.17	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	23 B	1.7	0.15	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	88	1.7	0.46	ng/L	1	537 (modified)	Total/NA

Client Sample ID: MW-3-40

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.9		1.7	0.49	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.63	J	1.7	0.21	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.2		1.7	0.72	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.9		1.7	0.17	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	19	В	1.7	0.14	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	12		1.7	0.46	ng/L	1	537 (modified)	Total/NA

Client Sample ID: MW-8-20

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.33 JB	1.7	0.14 ng/L		537 (modified)	Total/NA

Client Sample ID: MW-5-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.76	J	1.7	0.49	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.22	J	1.7	0.21	ng/L	1		537 (modified)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.41	J	1.7	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.29	J	1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.6	JB	1.7	0.14	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.0		1.7	0.45	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-7-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.2	J	1.7	0.51	ng/L	1	537 (modified) Total/NA
Perfluoroheptanoic acid (PFHpA)	0.84	J	1.7	0.22	ng/L	1	537 (modified) Total/NA
Perfluorooctanoic acid (PFOA)	2.7		1.7	0.74	ng/L	1	537 (modified) Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.45	J	1.7	0.17	ng/L	1	537 (modified) Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.76	JB	1.7	0.15	ng/L	1	537 (modified) Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.9		1.7	0.47	ng/L	1	537 (modified) Total/NA

Client Sample ID: MW-6-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorotetradecanoic acid (PFTeA)	0.34	J	1.7	0.25	ng/L		_	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.30	J	1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.8	В	1.7	0.15	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Page 6 of 43 9/16/2020

2

4

6

8

9

Lab Sample ID: 320-64368-10

Lab Sample ID: 320-64368-11

Lab Sample ID: 320-64368-12

Lab Sample ID: 320-64368-13

Lab Sample ID: 320-64368-14

11

13

14

15

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client	Sam	ple ID:	: MW-	12-10
--------	-----	---------	-------	-------

Lab Sample ID: 320-64368-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	17		1.7	0.51	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	15		1.7	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	9.8		1.7	0.74	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.97	J	1.7	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.8		1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	52	В	1.7	0.15	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	210		1.7	0.47	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-6-120

Lab Sample ID: 320-64368-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	0.28	J	1.7	0.17	ng/L	1	_	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.8	В	1.7	0.14	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.91	J	1.7	0.46	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-4-20

Lab Sample ID: 320-64368-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	0.28	J	1.7	0.22	ng/L		_	537 (modified)	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.40	J	1.7	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.32	J	1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.71	JВ	1.7	0.15	ng/L	1		537 (modified)	Total/NA

Client Sample ID: EB-11-15

Lab Sample ID: 320-64368-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.28	JB	1.7	0.15	ng/L	1	_	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.48	J	1.7	0.47	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-11-15

Lab Sample ID: 320-64368-19

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	27	1.7	0.49	ng/L		_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	7.0	1.7	0.21	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.4	1.7	0.72	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	1.4 J	1.7	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	1.1 J	1.7	0.26	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.2	1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	15 B	1.7	0.14	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	76	1.7	0.46	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

9/16/2020

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-1-140

Lab Sample ID: 320-64368-1

Date Collected: 08/31/20 16:49

Date Received: 09/05/20 14:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.49	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.72	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorotetradecanoic acid (PFTeA)	0.43	J	1.7	0.25	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorohexanesulfonic acid (PFHxS)	0.32	JB	1.7	0.14	ng/L		09/14/20 18:44	09/15/20 12:08	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 12:08	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.6	ng/L		09/14/20 18:44	09/15/20 12:08	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17		ng/L		09/14/20 18:44	09/15/20 12:08	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		09/14/20 18:44	09/15/20 12:08	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 12:08	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 12:08	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:08	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	74		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C4 PFHpA	74		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C4 PFOA	71		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C5 PFNA	69		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C2 PFDA	73		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C2 PFUnA	71		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C2 PFDoA	71		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C2 PFTeDA	76		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C3 PFBS	68		25 - 150				09/14/20 18:44	09/15/20 12:08	1
1802 PFHxS	72		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C4 PFOS	71		25 - 150				09/14/20 18:44	09/15/20 12:08	1
d3-NMeFOSAA	53		25 - 150				09/14/20 18:44	09/15/20 12:08	1
d5-NEtFOSAA	57		25 - 150				09/14/20 18:44	09/15/20 12:08	1
13C3 HFPO-DA	63		25 - 150				00/14/20 18:44	09/15/20 12:08	1

9/16/2020

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Lab Sample ID: 320-64368-2 Client Sample ID: MW-2-20

Date Collected: 09/01/20 16:20 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	84		1.7	0.50	ng/L		09/14/20 18:44	09/15/20 12:17	•
Perfluoroheptanoic acid (PFHpA)	37		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorooctanoic acid (PFOA)	36		1.7	0.73	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorononanoic acid (PFNA)	4.0		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorobutanesulfonic acid (PFBS)	3.0		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorohexanesulfonic acid (PFHxS)	32	В	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:17	1
Perfluorooctanesulfonic acid (PFOS)	260		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 12:17	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 12:17	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 12:17	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 12:17	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4		ng/L		09/14/20 18:44	09/15/20 12:17	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 12:17	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:17	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	81		25 - 150				09/14/20 18:44	09/15/20 12:17	
13C4 PFHpA	81		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C4 PFOA	75		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C5 PFNA	80		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C2 PFDA	96		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C2 PFUnA	79		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C2 PFDoA	97		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C2 PFTeDA	92		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C3 PFBS	83		25 - 150				09/14/20 18:44	09/15/20 12:17	1
1802 PFHxS	87		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C4 PFOS	80		25 - 150				09/14/20 18:44	09/15/20 12:17	1
d3-NMeFOSAA	67		25 - 150				09/14/20 18:44	09/15/20 12:17	1
d5-NEtFOSAA	70		25 - 150				09/14/20 18:44	09/15/20 12:17	1
13C3 HFPO-DA	71		25 - 150				09/14/20 18:44	09/15/20 12:17	1

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-1-15 Lab Sample ID: 320-64368-3

Date Collected: 08/31/20 18:12 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.73	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorobutanesulfonic acid (PFBS)	0.33	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorohexanesulfonic acid (PFHxS)	0.69	JB	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:26	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7		ng/L		09/14/20 18:44	09/15/20 12:26	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 12:26	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17		ng/L		09/14/20 18:44	09/15/20 12:26	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 12:26	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 12:26	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		09/14/20 18:44	09/15/20 12:26	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.16	ng/L		09/14/20 18:44	09/15/20 12:26	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	76		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C4 PFHpA	79		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C4 PFOA	76		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C5 PFNA	77		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C2 PFDA	91		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C2 PFUnA	71		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C2 PFDoA	79		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C2 PFTeDA	85		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C3 PFBS	75		25 - 150				09/14/20 18:44	09/15/20 12:26	1
1802 PFHxS	81		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C4 PFOS	75		25 - 150				09/14/20 18:44	09/15/20 12:26	1
d3-NMeFOSAA	59		25 - 150				09/14/20 18:44	09/15/20 12:26	1
d5-NEtFOSAA	64		25 - 150				09/14/20 18:44	09/15/20 12:26	1
13C3 HFPO-DA	68		25 - 150				09/14/20 18:44	09/15/20 12:26	1

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-2-30 Lab Sample ID: 320-64368-4

Date Collected: 09/01/20 15:49 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.73	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorotetradecanoic acid (PFTeA)	0.39	J	1.7	0.25	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorobutanesulfonic acid (PFBS)	1.3	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorohexanesulfonic acid (PFHxS)	0.38	JB	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:35	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 12:35	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 12:35	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 12:35	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 12:35	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 12:35	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		09/14/20 18:44	09/15/20 12:35	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:35	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	75		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C4 PFHpA	79		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C4 PFOA	76		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C5 PFNA	81		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C2 PFDA	78		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C2 PFUnA	75		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C2 PFDoA	89		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C2 PFTeDA	81		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C3 PFBS	78		25 - 150				09/14/20 18:44	09/15/20 12:35	1
1802 PFHxS	79		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C4 PFOS	76		25 - 150				09/14/20 18:44	09/15/20 12:35	1
d3-NMeFOSAA	56		25 - 150				09/14/20 18:44	09/15/20 12:35	1
d5-NEtFOSAA	60		25 - 150				09/14/20 18:44	09/15/20 12:35	1
13C3 HFPO-DA	68		25 - 150				09/14/20 18:44	09/15/20 12:35	1

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Date Received: 09/05/20 14:55

13C3 HFPO-DA

Client Sample ID: MW-1-40 Lab Sample ID: 320-64368-5 Date Collected: 08/31/20 16:59

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.73	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorohexanesulfonic acid (PFHxS)	0.32	JB	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:44	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 12:44	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 12:44	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 12:44	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 12:44	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 12:44	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		09/14/20 18:44	09/15/20 12:44	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C4 PFHpA	85		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C4 PFOA	84		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C5 PFNA	91		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C2 PFDA	76		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C2 PFUnA	77		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C2 PFDoA	75		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C2 PFTeDA	88		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C3 PFBS	85		25 - 150				09/14/20 18:44	09/15/20 12:44	1
1802 PFHxS	90		25 - 150				09/14/20 18:44	09/15/20 12:44	1
13C4 PFOS	83		25 - 150					09/15/20 12:44	1
d3-NMeFOSAA	62		25 - 150					09/15/20 12:44	1
d5-NEtFOSAA	67		25 - 150					09/15/20 12:44	1

09/14/20 18:44 09/15/20 12:44

25 - 150

73

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Date Received: 09/05/20 14:55

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: MW-3-15 Lab Sample ID: 320-64368-6 Date Collected: 09/01/20 19:11

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.0	J	1.7	0.50	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluoroheptanoic acid (PFHpA)	0.44	J	1.7	0.22	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorobutanesulfonic acid (PFBS)	0.57	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorohexanesulfonic acid (PFHxS)	4.5	В	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 12:53	1
Perfluorooctanesulfonic acid (PFOS)	6.7		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 12:53	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17		ng/L		09/14/20 18:44	09/15/20 12:53	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17		ng/L		09/14/20 18:44	09/15/20 12:53	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 12:53	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5		ng/L		09/14/20 18:44	09/15/20 12:53	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7		ng/L		09/14/20 18:44	09/15/20 12:53	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.16	ng/L		09/14/20 18:44	09/15/20 12:53	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	82		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C4 PFHpA	82		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C4 PFOA	76		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C5 PFNA	83		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C2 PFDA	83		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C2 PFUnA	78		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C2 PFDoA	68		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C2 PFTeDA	85		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C3 PFBS	82		25 - 150				09/14/20 18:44	09/15/20 12:53	1
1802 PFHxS	84		25 - 150				09/14/20 18:44	09/15/20 12:53	1
13C4 PFOS	79		25 - 150				09/14/20 18:44	09/15/20 12:53	1
d3-NMeFOSAA	60		25 - 150				09/14/20 18:44	09/15/20 12:53	1

09/14/20 18:44 09/15/20 12:53

09/14/20 18:44 09/15/20 12:53

25 - 150

25 - 150

65

76

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

13C3 HFPO-DA

Date Received: 09/05/20 14:55

Client Sample ID: MW-10-20 Lab Sample ID: 320-64368-7 Date Collected: 09/01/20 11:54

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	11		1.7	0.49	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluoroheptanoic acid (PFHpA)	4.5		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorooctanoic acid (PFOA)	2.6		1.7	0.72	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorononanoic acid (PFNA)	0.42	J	1.7	0.23	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorobutanesulfonic acid (PFBS)	0.64	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorohexanesulfonic acid (PFHxS)	13	В	1.7	0.14	ng/L		09/14/20 18:44	09/15/20 13:02	1
Perfluorooctanesulfonic acid (PFOS)	140		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 13:02	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.6	ng/L		09/14/20 18:44	09/15/20 13:02	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 13:02	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		09/14/20 18:44	09/15/20 13:02	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 13:02	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 13:02	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 13:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	81		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C4 PFHpA	78		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C4 PFOA	76		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C5 PFNA	83		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C2 PFDA	89		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C2 PFUnA	70		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C2 PFDoA	88		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C2 PFTeDA	89		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C3 PFBS	80		25 - 150				09/14/20 18:44	09/15/20 13:02	1
1802 PFHxS	84		25 - 150				09/14/20 18:44	09/15/20 13:02	1
13C4 PFOS	77		25 - 150					09/15/20 13:02	1
d3-NMeFOSAA	63		25 ₋ 150					09/15/20 13:02	
d5-NEtFOSAA	66		25 - 150					09/15/20 13:02	1
	30								,

09/14/20 18:44 09/15/20 13:02

25 - 150

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-8-120 Lab Sample ID: 320-64368-8

Date Collected: 09/01/20 09:33 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.49	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluorooctanoic acid (PFOA)	ND		1.7	0.72	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluorotetradecanoic acid (PFTeA)	0.50	J	1.7	0.25	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 13:30	
Perfluorohexanesulfonic acid (PFHxS)	0.32	JB	1.7	0.14	ng/L		09/14/20 18:44	09/15/20 13:30	•
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 13:30	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.6	ng/L		09/14/20 18:44	09/15/20 13:30	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 13:30	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		09/14/20 18:44	09/15/20 13:30	•
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 13:30	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 13:30	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 13:30	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	95		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C4 PFHpA	101		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C4 PFOA	92		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C5 PFNA	103		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C2 PFDA	89		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C2 PFUnA	96		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C2 PFDoA	102		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C2 PFTeDA	99		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C3 PFBS	91		25 - 150				09/14/20 18:44	09/15/20 13:30	
1802 PFHxS	96		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C4 PFOS	88		25 - 150				09/14/20 18:44	09/15/20 13:30	
d3-NMeFOSAA	69		25 - 150				09/14/20 18:44	09/15/20 13:30	
d5-NEtFOSAA	72		25 - 150				09/14/20 18:44	09/15/20 13:30	
13C3 HFPO-DA	86		25 - 150				09/14/20 18:44	09/15/20 13:30	

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-9-30 Lab Sample ID: 320-64368-9

Date Collected: 09/01/20 14:25 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	16		1.7	0.50	ng/L		09/14/20 18:44	09/15/20 13:39	-
Perfluoroheptanoic acid (PFHpA)	6.0		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluorooctanoic acid (PFOA)	2.3		1.7	0.73	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluorobutanesulfonic acid (PFBS)	1.6	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 13:39	
Perfluorohexanesulfonic acid (PFHxS)	23	В	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 13:39	•
Perfluorooctanesulfonic acid (PFOS)	88		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 13:39	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 13:39	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 13:39	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 13:39	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4		ng/L		09/14/20 18:44	09/15/20 13:39	,
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 13:39	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 13:39	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	83		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C4 PFHpA	86		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C4 PFOA	81		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C5 PFNA	92		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C2 PFDA	85		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C2 PFUnA	82		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C2 PFDoA	73		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C2 PFTeDA	72		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C3 PFBS	86		25 - 150				09/14/20 18:44	09/15/20 13:39	
1802 PFHxS	90		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C4 PFOS	83		25 - 150				09/14/20 18:44	09/15/20 13:39	
d3-NMeFOSAA	64		25 - 150					09/15/20 13:39	
d5-NEtFOSAA	65		25 - 150				09/14/20 18:44	09/15/20 13:39	
13C3 HFPO-DA	80		25 - 150				09/14/20 18:44	09/15/20 13:39	

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-3-40 Lab Sample ID: 320-64368-10

Matrix: Water

Date Collected: 09/01/20 18:42 Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.9		1.7	0.49	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluoroheptanoic acid (PFHpA)	0.63	J	1.7	0.21	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorooctanoic acid (PFOA)	2.2		1.7	0.72	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorobutanesulfonic acid (PFBS)	1.9		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorohexanesulfonic acid (PFHxS)	19	В	1.7	0.14	ng/L		09/14/20 18:44	09/15/20 13:48	1
Perfluorooctanesulfonic acid (PFOS)	12		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 13:48	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.6	ng/L		09/14/20 18:44	09/15/20 13:48	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 13:48	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		09/14/20 18:44	09/15/20 13:48	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 13:48	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 13:48	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 13:48	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	82		25 - 150				09/14/20 18:44		

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	82	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C4 PFHpA	87	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C4 PFOA	81	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C5 PFNA	81	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C2 PFDA	83	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C2 PFUnA	79	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C2 PFDoA	87	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C2 PFTeDA	86	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C3 PFBS	81	25 - 150	09/14/20 18:44	09/15/20 13:48	1
1802 PFHxS	86	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C4 PFOS	82	25 - 150	09/14/20 18:44	09/15/20 13:48	1
d3-NMeFOSAA	63	25 - 150	09/14/20 18:44	09/15/20 13:48	1
d5-NEtFOSAA	65	25 - 150	09/14/20 18:44	09/15/20 13:48	1
13C3 HFPO-DA	76	25 - 150	09/14/20 18:44	09/15/20 13:48	1

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-8-20 Lab Sample ID: 320-64368-11

Date Collected: 09/01/20 09:43 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.49	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.72	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.24	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorohexanesulfonic acid (PFHxS)	0.33	JB	1.7	0.14	ng/L		09/14/20 18:44	09/15/20 13:57	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 13:57	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.6	ng/L		09/14/20 18:44	09/15/20 13:57	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 13:57	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		09/14/20 18:44	09/15/20 13:57	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 13:57	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 13:57	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 13:57	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	69		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C4 PFHpA	76		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C4 PFOA	69		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C5 PFNA	70		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C2 PFDA	71		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C2 PFUnA	72		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C2 PFDoA	66		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C2 PFTeDA	80		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C3 PFBS	72		25 - 150				09/14/20 18:44	09/15/20 13:57	1
1802 PFHxS	75		25 - 150				09/14/20 18:44	09/15/20 13:57	1
13C4 PFOS	71		25 - 150					09/15/20 13:57	1
d3-NMeFOSAA	54		25 - 150					09/15/20 13:57	1
d5-NEtFOSAA	56		25 - 150					09/15/20 13:57	1
13C3 HFPO-DA	67		25 - 150					09/15/20 13:57	1

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-5-20 Lab Sample ID: 320-64368-12 Date Collected: 09/02/20 09:03

Matrix: Water

Method: 537 (modified) - Fluor Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	0.76		1.7		ng/L			09/15/20 14:06	1 Dil Fac
Perfluorohexanoic acid (PFHxA)					-				1
Perfluoroheptanoic acid (PFHpA)	0.22 ND	J	1.7		ng/L			09/15/20 14:06	1 1
Perfluorooctanoic acid (PFOA)			1.7		ng/L			09/15/20 14:06	· ·
Perfluorononanoic acid (PFNA)	ND		1.7		ng/L			09/15/20 14:06	1
Perfluorodecanoic acid (PFDA)	ND		1.7		ng/L			09/15/20 14:06	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.92				09/15/20 14:06	1
Perfluorododecanoic acid (PFDoA)	ND		1.7		ng/L			09/15/20 14:06	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 14:06	1
Perfluorotetradecanoic acid (PFTeA)	0.41	J	1.7	0.24	ng/L		09/14/20 18:44	09/15/20 14:06	1
Perfluorobutanesulfonic acid (PFBS)	0.29	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 14:06	1
Perfluorohexanesulfonic acid (PFHxS)	1.6	JB	1.7	0.14	ng/L		09/14/20 18:44	09/15/20 14:06	1
Perfluorooctanesulfonic acid (PFOS)	2.0		1.7	0.45	ng/L		09/14/20 18:44	09/15/20 14:06	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.6	ng/L		09/14/20 18:44	09/15/20 14:06	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 14:06	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		09/14/20 18:44	09/15/20 14:06	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 14:06	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 14:06	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 14:06	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	94		25 - 150				09/14/20 18:44	09/15/20 14:06	1
13C4 PFHpA	103		25 - 150				09/14/20 18:44	09/15/20 14:06	1
13C4 PFOA	89		25 - 150				09/14/20 18:44	09/15/20 14:06	1

Isotope Dilution 13C2 PFHxA 13C4 PFHpA 13C4 PFOA 13C5 PFNA 13C2 PFDA 13C2 PFDA 13C2 PFDOA 13C2 PFEDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS				
Isotope Dilution	%Recovery Qualif	ier Limits	Prepared Ana	alyzed Dil Fac
13C2 PFHxA	94	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C4 PFHpA	103	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C4 PFOA	89	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C5 PFNA	92	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C2 PFDA	107	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C2 PFUnA	93	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C2 PFDoA	87	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C2 PFTeDA	88	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C3 PFBS	93	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
1802 PFHxS	97	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C4 PFOS	90	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
d3-NMeFOSAA	70	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
d5-NEtFOSAA	73	25 - 150	09/14/20 18:44 09/15/	20 14:06 1
13C3 HFPO-DA	84	25 - 150	09/14/20 18:44 09/15/	20 14:06 1

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-7-20 Lab Sample ID: 320-64368-13

Date Collected: 09/02/20 10:43 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.2	J	1.7	0.51	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluoroheptanoic acid (PFHpA)	0.84	J	1.7	0.22	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluorooctanoic acid (PFOA)	2.7		1.7	0.74	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluorobutanesulfonic acid (PFBS)	0.45	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 14:15	
Perfluorohexanesulfonic acid (PFHxS)	0.76	JB	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 14:15	•
Perfluorooctanesulfonic acid (PFOS)	3.9		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 14:15	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 14:15	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.7	ng/L		09/14/20 18:44	09/15/20 14:15	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 14:15	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		09/14/20 18:44	09/15/20 14:15	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		09/14/20 18:44	09/15/20 14:15	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.16	ng/L		09/14/20 18:44	09/15/20 14:15	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	76		25 - 150					09/15/20 14:15	
13C4 PFHpA	77		25 - 150				09/14/20 18:44	09/15/20 14:15	
13C4 PFOA	75		25 - 150				09/14/20 18:44	09/15/20 14:15	
13C5 PFNA	73		25 - 150				09/14/20 18:44	09/15/20 14:15	
13C2 PFDA	75		25 - 150				09/14/20 18:44	09/15/20 14:15	
13C2 PFUnA	76		25 - 150				09/14/20 18:44	09/15/20 14:15	
13C2 PFDoA	61		25 - 150				09/14/20 18:44	09/15/20 14:15	
13C2 PFTeDA	67		25 - 150				09/14/20 18:44	09/15/20 14:15	
13C3 PFBS	76		25 - 150				09/14/20 18:44	09/15/20 14:15	
1802 PFHxS	79		25 - 150				09/14/20 18:44	09/15/20 14:15	
13C4 PFOS	75		25 - 150				09/14/20 18:44	09/15/20 14:15	
d3-NMeFOSAA	56		25 - 150					09/15/20 14:15	
d5-NEtFOSAA	58		25 - 150					09/15/20 14:15	
13C3 HFPO-DA	69		25 - 150					09/15/20 14:15	

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

13C2 PFUnA

13C2 PFDoA

13C2 PFTeDA

13C3 PFBS

1802 PFHxS

13C4 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Date Received: 09/05/20 14:55

Client Sample ID: MW-6-20 Lab Sample ID: 320-64368-14 Date Collected: 09/02/20 16:12

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.73	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorotetradecanoic acid (PFTeA)	0.34	J	1.7	0.25	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorobutanesulfonic acid (PFBS)	0.30	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorohexanesulfonic acid (PFHxS)	1.8	В	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 14:24	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 14:24	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 14:24	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 14:24	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 14:24	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 14:24	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		09/14/20 18:44	09/15/20 14:24	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 14:24	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	87		25 - 150				09/14/20 18:44	09/15/20 14:24	1
13C4 PFHpA	88		25 - 150				09/14/20 18:44	09/15/20 14:24	1
13C4 PFOA	85		25 - 150				09/14/20 18:44	09/15/20 14:24	1
13C5 PFNA	90		25 - 150				09/14/20 18:44	09/15/20 14:24	1
13C2 PFDA	93		25 - 150				00/14/20 18:44	09/15/20 14:24	1

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

79

91

90

84

91

82

65

68

78

09/14/20 18:44 09/15/20 14:24

09/14/20 18:44 09/15/20 14:24

09/14/20 18:44 09/15/20 14:24

09/14/20 18:44 09/15/20 14:24

09/14/20 18:44 09/15/20 14:24

09/14/20 18:44 09/15/20 14:24

09/14/20 18:44 09/15/20 14:24

09/14/20 18:44 09/15/20 14:24

09/14/20 18:44 09/15/20 14:24

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: MW-12-10 Lab Sample ID: 320-64368-15

Matrix: Water

Date Collected: 09/02/20 14:09 Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	17		1.7	0.51	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluoroheptanoic acid (PFHpA)	15		1.7	0.22	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorooctanoic acid (PFOA)	9.8		1.7	0.74	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorononanoic acid (PFNA)	0.97	J	1.7	0.24	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorobutanesulfonic acid (PFBS)	1.8		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorohexanesulfonic acid (PFHxS)	52	В	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 14:33	1
Perfluorooctanesulfonic acid (PFOS)	210		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 14:33	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17		ng/L		09/14/20 18:44	09/15/20 14:33	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.7	ng/L		09/14/20 18:44	09/15/20 14:33	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7		ng/L		09/14/20 18:44	09/15/20 14:33	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		09/14/20 18:44	09/15/20 14:33	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7		ng/L		09/14/20 18:44	09/15/20 14:33	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.16	ng/L		09/14/20 18:44	09/15/20 14:33	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	90		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C4 PFHpA	91		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C4 PFOA	86		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C5 PFNA	95		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C2 PFDA	96		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C2 PFUnA	82		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C2 PFDoA	87		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C2 PFTeDA	89		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C3 PFBS	88		25 - 150				09/14/20 18:44	09/15/20 14:33	1
1802 PFHxS	94		25 - 150				09/14/20 18:44	09/15/20 14:33	1
13C4 PFOS	86		25 - 150				09/14/20 18:44	09/15/20 14:33	1
d3-NMeFOSAA	70		25 - 150				09/14/20 18:44	09/15/20 14:33	1
/= NE/E0044							00/44/00 46 11	00/45/00 44 55	

09/14/20 18:44 09/15/20 14:33

09/14/20 18:44 09/15/20 14:33

25 - 150

25 - 150

74

82

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-6-120 Lab Sample ID: 320-64368-16

Date Collected: 09/02/20 16:02 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.49	ng/L		09/14/20 18:44	09/15/20 14:42	
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 14:42	•
Perfluorooctanoic acid (PFOA)	ND		1.7	0.72	ng/L		09/14/20 18:44	09/15/20 14:42	•
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 14:42	
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		09/14/20 18:44	09/15/20 14:42	•
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		09/14/20 18:44	09/15/20 14:42	•
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 14:42	
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 14:42	•
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 14:42	
Perfluorobutanesulfonic acid (PFBS)	0.28	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 14:42	
Perfluorohexanesulfonic acid (PFHxS)	1.8	В	1.7	0.14	ng/L		09/14/20 18:44	09/15/20 14:42	•
Perfluorooctanesulfonic acid (PFOS)	0.91	J	1.7	0.46	ng/L		09/14/20 18:44	09/15/20 14:42	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.6	ng/L		09/14/20 18:44	09/15/20 14:42	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 14:42	,
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		09/14/20 18:44	09/15/20 14:42	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 14:42	,
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 14:42	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 14:42	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	76		25 - 150				09/14/20 18:44	09/15/20 14:42	-
13C4 PFHpA	79		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C4 PFOA	83		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C5 PFNA	90		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C2 PFDA	86		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C2 PFUnA	80		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C2 PFDoA	83		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C2 PFTeDA	80		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C3 PFBS	81		25 - 150				09/14/20 18:44	09/15/20 14:42	
1802 PFHxS	86		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C4 PFOS	80		25 - 150				09/14/20 18:44	09/15/20 14:42	-
d3-NMeFOSAA	65		25 - 150				09/14/20 18:44	09/15/20 14:42	-
d5-NEtFOSAA	66		25 - 150				09/14/20 18:44	09/15/20 14:42	
13C3 HFPO-DA	74		25 - 150				09/14/20 18:44	09/15/20 14:42	

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Date Received: 09/05/20 14:55

13C3 HFPO-DA

Client Sample ID: MW-4-20 Lab Sample ID: 320-64368-17 Date Collected: 09/02/20 17:48

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluoroheptanoic acid (PFHpA)	0.28	J	1.7	0.22	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorotetradecanoic acid (PFTeA)	0.40	J	1.7	0.25	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorobutanesulfonic acid (PFBS)	0.32	J	1.7	0.17	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorohexanesulfonic acid (PFHxS)	0.71	JB	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 14:51	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 14:51	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 14:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 14:51	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 14:51	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		09/14/20 18:44	09/15/20 14:51	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		09/14/20 18:44	09/15/20 14:51	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.16	ng/L		09/14/20 18:44	09/15/20 14:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	79		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C4 PFHpA	84		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C4 PFOA	86		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C5 PFNA	89		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C2 PFDA	96		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C2 PFUnA	94		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C2 PFDoA	82		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C2 PFTeDA	83		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C3 PFBS	81		25 - 150				09/14/20 18:44	09/15/20 14:51	1
1802 PFHxS	88		25 - 150				09/14/20 18:44	09/15/20 14:51	1
13C4 PFOS	86		25 - 150				09/14/20 18:44	09/15/20 14:51	1
d3-NMeFOSAA	66		25 - 150				09/14/20 18:44	09/15/20 14:51	1
d5-NEtFOSAA	72		25 - 150				09/14/20 18:44	09/15/20 14:51	1

09/14/20 18:44 09/15/20 14:51

25 - 150

73

9/16/2020

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: EB-11-15 Lab Sample ID: 320-64368-18

Date Collected: 09/02/20 12:40 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.51	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorohexanesulfonic acid (PFHxS)	0.28	JB	1.7	0.15	ng/L		09/14/20 18:44	09/15/20 15:19	1
Perfluorooctanesulfonic acid (PFOS)	0.48	J	1.7	0.47	ng/L		09/14/20 18:44	09/15/20 15:19	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	2.7	ng/L		09/14/20 18:44	09/15/20 15:19	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.7	ng/L		09/14/20 18:44	09/15/20 15:19	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 15:19	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		09/14/20 18:44	09/15/20 15:19	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		09/14/20 18:44	09/15/20 15:19	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.16	ng/L		09/14/20 18:44	09/15/20 15:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		25 - 150				09/14/20 18:44	09/15/20 15:19	1
13C4 PFHpA	88		25 - 150				09/14/20 18:44	09/15/20 15:19	1
13C4 PFOA	91		25 - 150				09/14/20 18:44	09/15/20 15:19	1
13C5 PFNA	97		25 - 150				09/14/20 18:44	09/15/20 15:19	1
13C2 PFDA	91		25 - 150				09/14/20 18:44	09/15/20 15:19	1
13C2 PFUnA	87		25 - 150				09/14/20 18:44	09/15/20 15:19	1
13C2 PFDoA	76		25 - 150				09/14/20 18:44	09/15/20 15:19	1
13C2 PFTeDA	86		25 - 150				09/14/20 18:44	09/15/20 15:19	1
13C3 PFBS	84		25 - 150					09/15/20 15:19	1
1802 PFHxS	87		25 - 150					09/15/20 15:19	1
13C4 PFOS	86		25 - 150					09/15/20 15:19	1
d3-NMeFOSAA	64		25 ₋ 150					09/15/20 15:19	
d5-NEtFOSAA	77		25 - 150					09/15/20 15:19	1
13C3 HFPO-DA	76		25 - 150					09/15/20 15:19	1

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Lab Sample ID: 320-64368-19 **Client Sample ID: MW-11-15**

Date Collected: 09/02/20 12:04 **Matrix: Water** Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	27		1.7	0.49	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluoroheptanoic acid (PFHpA)	7.0		1.7	0.21	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorooctanoic acid (PFOA)	2.4		1.7	0.72	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorononanoic acid (PFNA)	1.4	J	1.7	0.23	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorodecanoic acid (PFDA)	1.1	J	1.7	0.26	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorobutanesulfonic acid (PFBS)	2.2		1.7	0.17	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorohexanesulfonic acid (PFHxS)	15	В	1.7	0.14	ng/L		09/14/20 18:44	09/15/20 15:28	1
Perfluorooctanesulfonic acid (PFOS)	76		1.7	0.46	ng/L		09/14/20 18:44	09/15/20 15:28	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17		ng/L		09/14/20 18:44	09/15/20 15:28	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	1.6	ng/L		09/14/20 18:44	09/15/20 15:28	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		09/14/20 18:44	09/15/20 15:28	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		09/14/20 18:44	09/15/20 15:28	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		09/14/20 18:44	09/15/20 15:28	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.15	ng/L		09/14/20 18:44	09/15/20 15:28	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	65		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C4 PFHpA	72		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C4 PFOA	72		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C5 PFNA	72		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C2 PFDA	74		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C2 PFUnA	71		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C2 PFDoA	66		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C2 PFTeDA	65		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C3 PFBS	68		25 - 150				09/14/20 18:44	09/15/20 15:28	1
1802 PFHxS	73		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C4 PFOS	69		25 - 150				09/14/20 18:44	09/15/20 15:28	1
d3-NMeFOSAA	56		25 - 150				09/14/20 18:44	09/15/20 15:28	1
d5-NEtFOSAA	57		25 - 150				09/14/20 18:44	09/15/20 15:28	1
13C3 HFPO-DA	60		25 - 150				09/14/20 18:44	09/15/20 15:28	1

Job ID: 320-64368-1

Client: Shannon & Wilson, Inc

Project/Site: GUSMW

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150
320-64368-1	MW-1-140	74	74	71	69	73	71	71	76
320-64368-2	MW-2-20	81	81	75	80	96	79	97	92
320-64368-3	MW-1-15	76	79	76	77	91	71	79	85
320-64368-4	MW-2-30	75	79	76	81	78	75	89	81
320-64368-5	MW-1-40	83	85	84	91	76	77	75	88
320-64368-6	MW-3-15	82	82	76	83	83	78	68	85
320-64368-7	MW-10-20	81	78	76	83	89	70	88	89
320-64368-8	MW-8-120	95	101	92	103	89	96	102	99
320-64368-9	MW-9-30	83	86	81	92	85	82	73	72
320-64368-10	MW-3-40	82	87	81	81	83	79	87	86
320-64368-11	MW-8-20	69	76	69	70	71	72	66	80
320-64368-12	MW-5-20	94	103	89	92	107	93	87	88
320-64368-13	MW-7-20	76	77	75	73	75	76	61	67
320-64368-14	MW-6-20	87	88	85	90	93	79	91	90
320-64368-15	MW-12-10	90	91	86	95	96	82	87	89
320-64368-16	MW-6-120	76	79	83	90	86	80	83	80
320-64368-17	MW-4-20	79	84	86	89	96	94	82	83
320-64368-18	EB-11-15	86	88	91	97	91	87	76	86
320-64368-19	MW-11-15	65	72	72	72	74	71	66	65
LCS 320-412145/2-A	Lab Control Sample	75	82	78	78	81	82	85	71
LCSD 320-412145/3-A	Lab Control Sample Dup	82	84	80	87	88	83	106	84
MB 320-412145/1-A	Method Blank	69	70	66	67	73	77	84	79
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	

C3PFBS **PFHxS PFOS** d3NMFOS d5NEFOS HFPODA (25-150) (25-150) (25-150)(25-150)(25-150)(25-150)Client Sample ID Lab Sample ID 320-64368-1 MW-1-140 320-64368-2 MW-2-20 320-64368-3 MW-1-15 320-64368-4 MW-2-30 320-64368-5 MW-1-40 320-64368-6 MW-3-15 320-64368-7 MW-10-20 320-64368-8 MW-8-120 320-64368-9 MW-9-30 320-64368-10 MW-3-40 320-64368-11 MW-8-20 320-64368-12 MW-5-20 320-64368-13 MW-7-20 320-64368-14 MW-6-20 320-64368-15 MW-12-10 320-64368-16 MW-6-120 320-64368-17 MW-4-20 320-64368-18 EB-11-15 320-64368-19 MW-11-15 LCS 320-412145/2-A Lab Control Sample

Surrogate Legend

LCSD 320-412145/3-A

MB 320-412145/1-A

PFHxA = 13C2 PFHxA

Lab Control Sample Dup

Method Blank

Eurofins TestAmerica, Sacramento

Page 27 of 43

Isotope Dilution Summary

Client: Shannon & Wilson, Inc

Project/Site: GUSMW

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 1802 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Job ID: 320-64368-1

3

Л

7

ŏ

11

14

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Method: 537 (modified) - Fluorinated Alkyl Substances

MR MR

Lab Sample ID: MB 320-412145/1-A

Matrix: Water

Analysis Batch: 412177

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 412145

	INIB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorohexanesulfonic acid (PFHxS)	0.295	J	2.0	0.17	ng/L		09/14/20 18:44	09/15/20 11:40	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		09/14/20 18:44	09/15/20 11:40	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20	3.1	ng/L		09/14/20 18:44	09/15/20 11:40	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20	1.9	ng/L		09/14/20 18:44	09/15/20 11:40	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		09/14/20 18:44	09/15/20 11:40	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		09/14/20 18:44	09/15/20 11:40	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		09/14/20 18:44	09/15/20 11:40	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.18	ng/L		09/14/20 18:44	09/15/20 11:40	1
	440	440							

MB MB

	IVIB	IVIB			
Isotope Dilution	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	69	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C4 PFHpA	70	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C4 PFOA	66	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C5 PFNA	67	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C2 PFDA	73	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C2 PFUnA	77	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C2 PFDoA	84	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C2 PFTeDA	79	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C3 PFBS	71	25 - 150	09/14/20 18:44	09/15/20 11:40	1
1802 PFHxS	73	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C4 PFOS	71	25 - 150	09/14/20 18:44	09/15/20 11:40	1
d3-NMeFOSAA	58	25 - 150	09/14/20 18:44	09/15/20 11:40	1
d5-NEtFOSAA	60	25 - 150	09/14/20 18:44	09/15/20 11:40	1
13C3 HFPO-DA	62	25 - 150	09/14/20 18:44	09/15/20 11:40	1

Lab Sample ID: LCS 320-412145/2-A

Matrix: Water

Analysis Batch: 412177

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 412145

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	41.0		ng/L		102	73 - 133	
Perfluoroheptanoic acid (PFHpA)	40.0	37.0		ng/L		92	72 - 132	
Perfluorooctanoic acid (PFOA)	40.0	36.7		ng/L		92	70 - 130	
Perfluorononanoic acid (PFNA)	40.0	43.9		ng/L		110	75 - 135	

Eurofins TestAmerica, Sacramento

Page 29 of 43

3

4

6

8

10

11

13

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-412145/2-A

Matrix: Water

Analysis Batch: 412177

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 412145

Analysis Batch. 412177	Cmiles	1.00	1.00				Prep Datcii. 412145
Ameliate	Spike Added		LCS	Unit	D	0/ Dag	%Rec. Limits
Analyte			Qualifier			%Rec	
Perfluorodecanoic acid (PFDA)	40.0	38.4		ng/L		96	76 ₋ 136
Perfluoroundecanoic acid	40.0	39.1		ng/L		98	68 - 128
(PFUnA)							
Perfluorododecanoic acid	40.0	35.0		ng/L		87	71 ₋ 131
(PFDoA)							
Perfluorotridecanoic acid	40.0	37.4		ng/L		94	71 ₋ 131
(PFTriA)							
Perfluorotetradecanoic acid	40.0	47.6		ng/L		119	70 ₋ 130
(PFTeA)							
Perfluorobutanesulfonic acid	35.4	34.4		ng/L		97	67 ₋ 127
(PFBS)							
Perfluorohexanesulfonic acid	36.4	33.8		ng/L		93	59 ₋ 119
(PFHxS)							
Perfluorooctanesulfonic acid	37.1	39.2		ng/L		106	70 ₋ 130
(PFOS)							
9-Chlorohexadecafluoro-3-oxan	37.3	36.6		ng/L		98	75 ₋ 135
onane-1-sulfonic acid							
Hexafluoropropylene Oxide	40.0	39.5		ng/L		99	51 ₋ 173
Dimer Acid (HFPO-DA)							
11-Chloroeicosafluoro-3-oxaund	37.7	32.9		ng/L		87	54 ₋ 114
ecane-1-sulfonic acid							
4,8-Dioxa-3H-perfluorononanoic	37.7	36.5		ng/L		97	79 ₋ 139
acid (ADONA)							

LCS LCS

Isotope Dilution	%Recovery Qualifier	Limits
13C2 PFHxA	75	25 - 150
13C4 PFHpA	82	25 - 150
13C4 PFOA	78	25 - 150
13C5 PFNA	78	25 - 150
13C2 PFDA	81	25 - 150
13C2 PFUnA	82	25 - 150
13C2 PFDoA	85	25 - 150
13C2 PFTeDA	71	25 - 150
13C3 PFBS	76	25 - 150
1802 PFHxS	79	25 - 150
13C4 PFOS	77	25 - 150
d3-NMeFOSAA	63	25 - 150
d5-NEtFOSAA	64	25 - 150
13C3 HFPO-DA	69	25 - 150

Lab Sample ID: LCSD 320-412145/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA Analysis Batch: 412177 Prep Batch: 412145

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	39.1		ng/L		98	73 - 133	5	30
Perfluoroheptanoic acid (PFHpA)	40.0	41.6		ng/L		104	72 - 132	12	30
Perfluorooctanoic acid (PFOA)	40.0	43.2		ng/L		108	70 - 130	16	30
Perfluorononanoic acid (PFNA)	40.0	41.4		ng/L		104	75 - 135	6	30
Perfluorodecanoic acid (PFDA)	40.0	33.1		ng/L		83	76 - 136	15	30
Perfluoroundecanoic acid	40.0	40.2		ng/L		101	68 - 128	3	30
(PFUnA)									

Eurofins TestAmerica, Sacramento

Page 30 of 43

9

3

4

8

40

12

13

16

1

9/16/2020

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

₋ab Samp	le ID:	LCSD	320-4121	45/3-A
----------	--------	------	----------	--------

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 412177							Prep Ba	2145	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorododecanoic acid (PFDoA)	40.0	32.0		ng/L		80	71 - 131	9	30
Perfluorotridecanoic acid (PFTriA)	40.0	32.4		ng/L		81	71 - 131	14	30
Perfluorotetradecanoic acid (PFTeA)	40.0	47.0		ng/L		118	70 - 130	1	30
Perfluorobutanesulfonic acid (PFBS)	35.4	34.6		ng/L		98	67 - 127	1	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	34.6		ng/L		95	59 - 119	2	30
Perfluorooctanesulfonic acid (PFOS)	37.1	39.7		ng/L		107	70 - 130	1	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	38.3		ng/L		103	75 - 135	4	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	41.6		ng/L		104	51 - 173	5	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	37.7	34.6		ng/L		92	54 - 114	5	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	38.5		ng/L		102	79 - 139	5	30

LCSD	LCSD
------	------

	LUUD	LUUD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	82		25 - 150
13C4 PFHpA	84		25 - 150
13C4 PFOA	80		25 - 150
13C5 PFNA	87		25 - 150
13C2 PFDA	88		25 - 150
13C2 PFUnA	83		25 - 150
13C2 PFDoA	106		25 - 150
13C2 PFTeDA	84		25 - 150
13C3 PFBS	83		25 - 150
1802 PFHxS	84		25 - 150
13C4 PFOS	80		25 - 150
d3-NMeFOSAA	69		25 - 150
d5-NEtFOSAA	70		25 - 150
13C3 HFPO-DA	71		25 - 150

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

LCMS

Prep Batch: 412145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64368-1	MW-1-140	Total/NA	Water	3535	
320-64368-2	MW-2-20	Total/NA	Water	3535	
320-64368-3	MW-1-15	Total/NA	Water	3535	
320-64368-4	MW-2-30	Total/NA	Water	3535	
320-64368-5	MW-1-40	Total/NA	Water	3535	
320-64368-6	MW-3-15	Total/NA	Water	3535	
320-64368-7	MW-10-20	Total/NA	Water	3535	
320-64368-8	MW-8-120	Total/NA	Water	3535	
320-64368-9	MW-9-30	Total/NA	Water	3535	
320-64368-10	MW-3-40	Total/NA	Water	3535	
320-64368-11	MW-8-20	Total/NA	Water	3535	
320-64368-12	MW-5-20	Total/NA	Water	3535	
320-64368-13	MW-7-20	Total/NA	Water	3535	
320-64368-14	MW-6-20	Total/NA	Water	3535	
320-64368-15	MW-12-10	Total/NA	Water	3535	
320-64368-16	MW-6-120	Total/NA	Water	3535	
320-64368-17	MW-4-20	Total/NA	Water	3535	
320-64368-18	EB-11-15	Total/NA	Water	3535	
320-64368-19	MW-11-15	Total/NA	Water	3535	
MB 320-412145/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-412145/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-412145/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 412177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64368-1	MW-1-140	Total/NA	Water	537 (modified)	412145
320-64368-2	MW-2-20	Total/NA	Water	537 (modified)	412145
320-64368-3	MW-1-15	Total/NA	Water	537 (modified)	412145
320-64368-4	MW-2-30	Total/NA	Water	537 (modified)	412145
320-64368-5	MW-1-40	Total/NA	Water	537 (modified)	412145
320-64368-6	MW-3-15	Total/NA	Water	537 (modified)	412145
320-64368-7	MW-10-20	Total/NA	Water	537 (modified)	412145
320-64368-8	MW-8-120	Total/NA	Water	537 (modified)	412145
320-64368-9	MW-9-30	Total/NA	Water	537 (modified)	412145
320-64368-10	MW-3-40	Total/NA	Water	537 (modified)	412145
320-64368-11	MW-8-20	Total/NA	Water	537 (modified)	412145
320-64368-12	MW-5-20	Total/NA	Water	537 (modified)	412145
320-64368-13	MW-7-20	Total/NA	Water	537 (modified)	412145
320-64368-14	MW-6-20	Total/NA	Water	537 (modified)	412145
320-64368-15	MW-12-10	Total/NA	Water	537 (modified)	412145
320-64368-16	MW-6-120	Total/NA	Water	537 (modified)	412145
320-64368-17	MW-4-20	Total/NA	Water	537 (modified)	412145
320-64368-18	EB-11-15	Total/NA	Water	537 (modified)	412145
320-64368-19	MW-11-15	Total/NA	Water	537 (modified)	412145
MB 320-412145/1-A	Method Blank	Total/NA	Water	537 (modified)	412145
LCS 320-412145/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	412145
LCSD 320-412145/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	412145

Page 32 of 43

Client: Shannon & Wilson, Inc Project/Site: GUSMW

Client Sample ID: MW-1-140

Lab Sample ID: 320-64368-1 Date Collected: 08/31/20 16:49

Matrix: Water

Matrix: Water

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			293.5 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 12:08	KJP	TAL SAC

Client Sample ID: MW-2-20 Lab Sample ID: 320-64368-2

Date Collected: 09/01/20 16:20 **Matrix: Water**

Date Received: 09/05/20 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			291.7 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 12:17	KJP	TAL SAC

Client Sample ID: MW-1-15 Lab Sample ID: 320-64368-3

Date Collected: 08/31/20 18:12

Date Received: 09/05/20 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			290.1 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 12:26	KJP	TAL SAC

Client Sample ID: MW-2-30 Lab Sample ID: 320-64368-4 Date Collected: 09/01/20 15:49 **Matrix: Water**

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			290.6 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 12:35	KJP	TAL SAC

Lab Sample ID: 320-64368-5 Client Sample ID: MW-1-40 Date Collected: 08/31/20 16:59 **Matrix: Water**

Date Received: 09/05/20 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535	_		290.6 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 12:44	KJP	TAL SAC

Lab Sample ID: 320-64368-6 Client Sample ID: MW-3-15 Date Collected: 09/01/20 19:11 **Matrix: Water**

Date Received: 09/05/20 14:55

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			288.7 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 12:53	K ID	TAL SAC

Client: Shannon & Wilson, Inc Project/Site: GUSMW

Project/Site. GOSIVIVI

Client Sample ID: MW-10-20

Date Collected: 09/01/20 11:54 Date Received: 09/05/20 14:55 Lab Sample ID: 320-64368-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			293.3 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 13:02	KJP	TAL SAC

Client Sample ID: MW-8-120

Date Collected: 09/01/20 09:33

Lab Sample ID: 320-64368-8

Matrix: Water

Date Collected: 09/01/20 09:33 Date Received: 09/05/20 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			294.6 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 13:30	KJP	TAL SAC

Client Sample ID: MW-9-30

Date Collected: 09/01/20 14:25

Lab Sample ID: 320-64368-9

Matrix: Water

Date Collected: 09/01/20 14:25 Date Received: 09/05/20 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			291.1 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 13:39	KJP	TAL SAC

Client Sample ID: MW-3-40

Date Collected: 09/01/20 18:42

Lab Sample ID: 320-64368-10

Matrix: Water

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			295.7 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 13:48	KJP	TAL SAC

Client Sample ID: MW-8-20

Date Collected: 09/01/20 09:43

Lab Sample ID: 320-64368-11

Matrix: Water

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			296.2 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 13:57	KJP	TAL SAC

Client Sample ID: MW-5-20

Lab Sample ID: 320-64368-12

Date Collected: 09/02/20 09:03

Matrix: Water

Date Received: 09/05/20 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep	3535	— Kuli	Factor	298.3 mL	10.00 mL	412145	09/14/20 18:44	. ,	TAL SAC
Total/NA	Analysis	537 (modified)		1	200.0 1112	10.00 1112	412177	09/15/20 14:06		TAL SAC

Client: Shannon & Wilson, Inc Project/Site: GUSMW

Client Sample ID: MW-7-20

Date Collected: 09/02/20 10:43 Date Received: 09/05/20 14:55

Lab Sample ID: 320-64368-13

Lab Sample ID: 320-64368-16

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			287.1 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 14:15	KJP	TAL SAC

Client Sample ID: MW-6-20 Lab Sample ID: 320-64368-14

Date Collected: 09/02/20 16:12 Date Received: 09/05/20 14:55

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type Factor Amount** Amount Number or Analyzed Type Run Analyst Lab Total/NA Prep 3535 290.9 mL 10.00 mL 412145 09/14/20 18:44 PV TAL SAC 09/15/20 14:24 KJP Total/NA 412177 Analysis 537 (modified) TAL SAC 1

Client Sample ID: MW-12-10 Lab Sample ID: 320-64368-15

Date Collected: 09/02/20 14:09 Date Received: 09/05/20 14:55

Batch Batch Dil Initial Final Batch **Prepared** Number Prep Type Type Method Run **Factor Amount Amount** or Analyzed Analyst Lab Total/NA Prep 3535 287.1 mL 10.00 mL 412145 09/14/20 18:44 PV TAL SAC Total/NA Analysis 537 (modified) 412177 09/15/20 14:33 KJP TAL SAC 1

Client Sample ID: MW-6-120

Date Collected: 09/02/20 16:02

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			295.1 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 14:42	KJP	TAL SAC

Client Sample ID: MW-4-20 Lab Sample ID: 320-64368-17 Date Collected: 09/02/20 17:48 **Matrix: Water**

Date Received: 09/05/20 14:55

	Batch	Batch		Dil Initial		Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			288 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 14:51	KJP	TAL SAC

Client Sample ID: EB-11-15 Lab Sample ID: 320-64368-18 Date Collected: 09/02/20 12:40 **Matrix: Water**

Date Received: 09/05/20 14:55

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3535 285.9 mL 10.00 mL 412145 09/14/20 18:44 PV TAL SAC Total/NA Analysis 537 (modified) 412177 09/15/20 15:19 KJP TAL SAC

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-64368-1

Project/Site: GUSMW

Client Sample ID: MW-11-15 Lab Sample ID: 320-64368-19

Date Collected: 09/02/20 12:04 Matrix: Water

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			293.5 mL	10.00 mL	412145	09/14/20 18:44	PV	TAL SAC
Total/NA	Analysis	537 (modified)		1			412177	09/15/20 15:28	KJP	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

4

6

9

4 4

12

14

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-64368-1 Project/Site: GUSMW

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	10-31-20
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-1	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid.}$

Eurofins TestAmerica, Sacramento

Method Summary

Client: Shannon & Wilson, Inc

Project/Site: GUSMW

Job ID: 320-64368-1

Method	Method Description	Protocol	Laboratory
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

5

4

5

7

8

11

16

14

Sample Summary

Client: Shannon & Wilson, Inc

Project/Site: GUSMW

Job ID: 320-64368-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-64368-1	MW-1-140	Water	08/31/20 16:49	09/05/20 14:55
320-64368-2	MW-2-20	Water	09/01/20 16:20	09/05/20 14:55
320-64368-3	MW-1-15	Water	08/31/20 18:12	09/05/20 14:55
320-64368-4	MW-2-30	Water	09/01/20 15:49	09/05/20 14:55
320-64368-5	MW-1-40	Water	08/31/20 16:59	09/05/20 14:55
320-64368-6	MW-3-15	Water	09/01/20 19:11	09/05/20 14:55
20-64368-7	MW-10-20	Water	09/01/20 11:54	09/05/20 14:55
320-64368-8	MW-8-120	Water	09/01/20 09:33	09/05/20 14:55
320-64368-9	MW-9-30	Water	09/01/20 14:25	09/05/20 14:55
320-64368-10	MW-3-40	Water	09/01/20 18:42	09/05/20 14:55
20-64368-11	MW-8-20	Water	09/01/20 09:43	09/05/20 14:55
20-64368-12	MW-5-20	Water	09/02/20 09:03	09/05/20 14:55
320-64368-13	MW-7-20	Water	09/02/20 10:43	09/05/20 14:55
320-64368-14	MW-6-20	Water	09/02/20 16:12	09/05/20 14:55
320-64368-15	MW-12-10	Water	09/02/20 14:09	09/05/20 14:55
320-64368-16	MW-6-120	Water	09/02/20 16:02	09/05/20 14:55
320-64368-17	MW-4-20	Water	09/02/20 17:48	09/05/20 14:55
320-64368-18	EB-11-15	Water	09/02/20 12:40	09/05/20 14:55
320-64368-19	MW-11-15	Water	09/02/20 12:04	09/05/20 14:55

4

-+

10

11

13

14

(2
-	_
į	_
į	_
•	

SHANNON Geotechnical and	I & WILSON, INC. Environmental Consultants		-OF-CU	STODY	RECOR	RD	Labora Attn:	D. All tuck	Page of of service
	2043 Westport Center Drive St. Louis, MO 63146-3564 (314) 699-9660	303 Wellsian Way Richland, WA 99352 (509) 946-6309		Α	nalysis Parame	eters/Sample (Container D		
Fairbanks, AK 99709	5430 Fairbanks Street, Suite 3 Anchorage, AK 99518 (907) 561-2120		/	///.46	/ /		/ /	///	7
Portland, OR 97201-2498 (503) 223-6147	1200 17th Street, Suite 1024 Denver, Co 80202 (303) 825-3800	Date	18/8	ZKAS KIS		/ /		ZO CO BA	
Sample Identity	Lab No.	Time Sample	10/0/	X	/_/_		/ /	_	emarks/Matrix
MW-1-140		1649 8/31/	20 /	×					inducate
-MW-2-20		1620 9/1/2	0	×				2	I
MW-1-15		1812 8/31/	20	×1	na po Jene. Omnostrations		700	2	
mw-2-30		1549 9/1/2	0	×				2	
-MW-1-40		1659 8/31/		×				2	
1mw-3-15			0	320-6	4368 Chain of C	ustody		2	
mw-10-20		1154 9/16	2	×	T	1 1	F	2	
MW-8-120			20	×				2	1
mw-9-30)	1425 9/1/2		>				2	
		1900 111				-		2	_
· MW-3-40		1842 9/1/2		X				7	
Project Informa	tion Sam	ole Receipt		ished By: 1		quished E			ished By: 3.
Project Number: 10259		of Containers	Signature:	Time: = 900	Signature:	Time	2:	Signature:	Time:
Project Name: Gus Mk		tact? Y/N/NA	Printed Name:	Date: 9/4/	20 Printed Nam	e: Date):	Printed Name:	Date:
Contact: KRF Ongoing Project? Yes		od Cond./Cold	A.Ma	stos					
Sampler: 1	(attach shipping		Company	ion tuilson	Company:			Company:	
	Instructions		Receive		Rece	ived By:	2.	Receive	d By: 3.
Requested Turnaround Ti			Signature:	Time: 145		Time		Signature:	Time:
Special Instructions:			Saluda on Printed Name: Saluada	Date: (1)5)	Printed Nam	e: Date	2:	Printed Name:	Date:
Distribution: White - w/shipme Yellow - w/shipm Pink - Shannon 8	ent - returned to Shannon & V nent - for consignee files & Wilson - Job File	/ilson w/ laboratory report	Company:		Company:			Company:	

1 1 1 1 0 9 8 N

No. 30643

SHANNON & WILSON, Geotechnical and Environmental Con-	sultants	-OF-CUSTODY R	ECORD Labor	atory Test America
400 N. 34th Street, Suite 100 Seattle, WA 98103 St. Louis, MO 63146 (206) 632-8020 (314) 699-9660		Ana	lysis Parameters/Sample Container D	Description
2355 Hill Road 5430 Fairbanks Stree Fairbanks, AK 99709 Anchorage, AK 9951 (907) 479-0600 (907) 561-2120		///5/	/ / / / / / /	///
2255 S.W. Canyon Road Portland, OR 97201-2498 Denver, Co 80202 (503) 223-6147 (303) 825-3800	Date	a local de ANEST LA	////	
Sample Identity Lab N	No. Time Sampled	a Significant of the state of t		Remarks/Matrix
MW-9-30	1425 9/1/2	20 X		2 groundwater
1mw-8-20	0943 9/172	20 1		
mw 10-20	1154 9/1/2	0		
MW-5-20	0903 9/2/	20 X		
1mw-7-20	1:110 01 1	Zu X		
1mw-6-20	1612 9/2/2			
1 MW-12-10	1409 9/2/2			
-MW-6-120	1602 9/2/2			
MW-4-20	1748 9/2/	20 ×		
MW-12-10	1148 1191			2
Project Information	Sample Receipt	Relinquished By: 1.	Relinquished By: 2.	Relinquished By: 3.
Project Number: Total 1	Number of Containers	Signature: Time:	Signature: Time:	Signature: Time:
	Seals/Intact? Y/N/NA	Printed Name: Date:	Printed Name: Date:	Printed Name: Date:
	ived Good Cond./Cold ery Method:	1		
Origonia roject: Tes El No El		Company:	Company:	Company:
	n shipping bill, if any)	6		
Instruction	0 1/40	Received By: 1.	Received By: 2. Signature: Time:	Received By: 3. Signature: Time:
Requested Turnaround Time: Special Instructions:		& 0 -	- Similar	
appoint motionion	×	Printed Name Date: 91316	Printed Name: Date:	Printed Name: Date:
Distribution: White - w/shipment - returned to Sha Yellow - w/shipment - for consignee Pink - Shannon & Wilson - Job File	annon & Wilson w/ laboratory report files	Company: ErD Face	Company:	Company:

1 2 1 1 0

F-19-91/UR

No.30644

9
-
ì
7
Ċ

Project Information Project Information Project Number: Projec	Remarks/Matrix
Project Information Sample Receipt Project Number: Total Number of Containers Project Name: CoC Seals/Intact? Y/N/NA Printed Name: Date: Dat	
Project Information Project Number: Project Nu	
Project Information Project Number Total Number of Containers Project Name: COC Seals/Intact? Y/N/NA Relinquished By: 1. Relinquished By: 2. Relinquished By: 2. Signature: Signature: Time: Signature: Signature: Printed Name: Date: Printed Name: Date: Printed Name: Date: Printed Name: Printed Name: Date: Printed Name: Printed Name: Date: Printed Name: Date: Printed Name: Printed Name: Date: Printed Name: Date: Printed Name: Date: Printed Name: Date: Printed Name: Printed Name: Date: Printed Name: Date: Printed Name: Printed Name: Date: Printed Name: Date: Printed Name: Date: Printed Name: Printed Name: Date: Date: Date: Date: Date: Date: Date: Date: Date: D	
Project Number: Total Number of Containers Project Name: Signature: Time: Signature: Time: Signature: Printed Name: Date: Pri	
Project Number: Total Number of Containers Project Name: Signature: Time: Signature: Time: Signature: Printed Name: Date: Prin	
Project Number: Total Number of Containers Project Name: Signature: Time: Signature: Time: Signature: Printed Name: Date: Prin	
Project Number: Total Number of Containers Project Name: Signature: Time: Signature: Time: Signature: Printed Name: Date: Prin	
Project Number: Total Number of Containers Project Name: COC Seals/Intact? Y/N/NA Signature: Time: Signature: Printed Name: Date: Printed Name: Printed Name: Date: Printed Name:	uished By: 3.
Printed Name: Date: Printed Name: Date: Printed Name: Date: Printed Name: Printed Name: Date: Printed Name: Printed Name: Date: Printed Name: Date: Printed Name: Date	Time:
Timed reality.	Date:
Contact: Received Good Cond./Cold	Bato.
Ongoing Project? Yes No Delivery Method: Company: Company:	
Sampler: (attach shipping bill, if lany) Received By: 1. Received By: 2. Received By: 2.	ved By: 3.
Requested Turnaround Time: Signature: Time: Signature: Signature:	Time:
Special Instructions: Printed Name: Date: 4is/w Printed Name: Date: Printed Name: Printed Name: Printed Name: Printed N	Date:
Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - Job File Salurdur report Company: Company: Find: Company:	

CHAIN-OF-CUSTODY RECORD

Laboratory_ Attn:

Client: Shannon & Wilson, Inc Job Number: 320-64368-1

Login Number: 64368 List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Thompson, Sarah W

Creator. Thompson, Saran W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1094973
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	gel packs
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	COC not relinquished.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:
Amber Masters
Γitle:
Environmental Scientist
Date:
September 22, 2020
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-64368-1
Laboratory Report Date:
September 16, 2020
CS Site Name:
DOT&PF Gustavus Airport Statewide PFAS
ADEC File Number:
2569.38.033
Hazard Identification Number:
26981

	320-04308-1
Labo	oratory Report Date:
1	Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>I</u>	<u>Laboratory</u>
	a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?
	Yes \boxtimes No \square N/A \square Comments:
	The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes \square No \square N/A \boxtimes Comments:
	The requested analyses were conducted by TestAmerica of West Sacramento, CA.
2. <u>c</u>	Chain of Custody (CoC)
	a. CoC information completed, signed, and dated (including released/received by)?
	Yes⊠ No□ N/A□ Comments: The laboratory notes the COC was not relinquished. The first page was signed and pages 2 and 3
	reference the first. The sample results are not affected by this discrepancy.
	b. Correct analyses requested?
	Yes⊠ No□ N/A□ Comments:
3. <u>I</u>	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes⊠ No□ N/A□ Comments:
	TOSE TWEE COMMINENCS.
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	$Yes \square No \square N/A \boxtimes Comments:$
	Samples do not require preservation other than temperature.
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
	Yes⊠ No□ N/A□ Comments:
	The sample receipt form notes that the samples were received in good condition.

320-64368-1
Laboratory Report Date:
 d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? Yes⊠ No□ N/A□ Comments:
See 2.a. above.
e. Data quality or usability affected?
Comments:
The data quality and/or usability was not affected; see above.
4. <u>Case Narrative</u>
a. Present and understandable?
Yes \boxtimes No \square N/A \square Comments:
b. Discrepancies, errors, or QC failures identified by the lab? Yes⊠ No□ N/A□ Comments:
The case narrative indicates the following:
The continuing calibration verification (CCV) associated with batch 320-412177 recovered above the upper control limit for Perfluorotridecanoic acid (PFTriA or PFTrDA). The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported.
The following samples were light yellow after extraction/final volume: MW-1-40, MW-3-15, MW-10-20, MW-8-120, MW-9-3, MW-3-40, MW-12-10 and MW-4-20.
The following samples were observed to have contain a thin layer of sediment at the bottom of the bottles: MW-1-140, MW-2-20, MW-1-40, MW-10-20, MW-9-30, MW-3-40, MW-12-10, and MW-4-20.
The following samples contain floating particulates in the bottles prior to extraction: <i>MW-3-15</i> , <i>MW-8-120</i> , <i>MW-8-20</i> , <i>MW-5-20</i> , <i>MW-7-20</i> , <i>MW-6-20</i> , <i>MW-6-120</i> , and <i>MW-4-20</i> .
The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. The second two pages of the COC was not relinquished.
The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 6.0 ° C upon arrival at the laboratory.
There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batches 320-412145.

320-64368-1	
aboratory Report Date:	
c. Were all corrective actions	s documented?
Yes⊠ No□ N/A□	Comments:
See above.	
d. What is the effect on data of	quality/usability according to the case narrative?
	Comments:
The case narrative indicates da	ata quality and/or usability are not affected.
Samples Results	
a. Correct analyses performed	d/reported as requested on COC?
Yes⊠ No□ N/A□	Comments:
1002 1102 11112	Comments.
b. All applicable holding time	es met?
Yes⊠ No□ N/A□	Comments:
c. All soils reported on a dry	weight basis?
Yes□ No□ N/A⊠	Comments:
Soil samples were not submitt	ed with this work order.
d. Are the reported LOQs less the project?	s than the Cleanup Level or the minimum required detection level for
Yes⊠ No□ N/A□	Comments:
The reporting limit (RL) is les	s than the applicable DEC regulatory limit for the project.
e. Data quality or usability af	fected?
The data quality and/or usabili	ity was not affected; see above.
QC Samples	
a. Method Blank	
i. One method blank rep	oorted per matrix, analysis and 20 samples?
Yes⊠ No□ N/A□	Comments:

boratory Report Date:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?Yes⊠ No□ N/A□ Comments:
There were no detections above LOQ in the method blank; however, PFHxS was detected below the LOQ in the method blank associated with preparation batch 412145.
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
The PFHxS result for the following samples are affected: <i>MW-1-140</i> , <i>MW-1-15</i> , <i>MW-2-30</i> , <i>MW-1-40</i> , <i>MW-4-20</i> , <i>MW-8-20</i> , <i>MW-8-120</i> , <i>MW-5-20</i> , <i>MW-6-120</i> , <i>MW-6-20</i> , and <i>MW-7-20</i> .
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes⊠ No□ N/A□ Comments: PFHxS in the following samples are considered not detected due to sample contamination identified in a blank and have been flagged 'UB' at the LOQ or detected concentration (whichever is greater) in the analytical tables: <i>EB-11-15</i> , <i>MW-1-140</i> , <i>MW-1-15</i> , <i>MW-2-30</i> , <i>MW-1-40</i> , <i>MW-4-20</i> , <i>MW-8-20</i> , <i>MW-8-120</i> , <i>MW-5-20</i> , <i>MW-6-120</i> , <i>MW-6-20</i> , and <i>MW-7-20</i> .
v. Data quality or usability affected? Comments:
Yes; see above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes⊠ No□ N/A□ Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:

320-64368-1

	320-64368-1
Lał	poratory Report Date:
	 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes ⋈ No ⋈ N/A ⋈ Comments:
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
	NA; analytical accuracy and precision were demonstrated to be within acceptable limits.
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments:
	Qualification of the data was not required; see above.
	vii. Data quality or usability affected? (Use comment box to explain.) Comments:
	The data quality and/or usability was not affected; see above.
	 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No⊠ N/A□ Comments:
	Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batches. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and precision.
	ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?Yes□ No□ N/A⊠ Comments:
	Metals and/or inorganics were not analyzed as part of this work order.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
	Yes No N/A Comments:
	MS and MSD samples were not analyzed for this work order.

Laboratory Report Date:
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
$Yes \square No \square N/A \boxtimes Comments:$
MS and MSD samples were not analyzed for this work order.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
NA; MS and MSD samples were not analyzed for this work order.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments:
MS and MSD samples were not analyzed for this work order.
Wis and Wish samples were not analyzed for this work order.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality and/or usability was not affected; see above.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes \boxtimes No \square N/A \square Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
$Yes \boxtimes No \square N/A \square$ Comments:
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
There were no IDA recovery failures associated with this work order.
iv. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.

320-64368-1

3	20-64368-1
Labo	ratory Report Date:
	e. Trip Blanks
	 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
	Yes \square No \square N/A \boxtimes Comments:
	PFAS are not volatile compounds. A trip blank is not required for the requested analysis.
	ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
	Yes \square No \square N/A \boxtimes Comments:
	A trip blank is not required for the requested analysis.
	iii. All results less than LOQ and project specified objectives?
	Yes \square No \square N/A \boxtimes Comments:
	A trip blank is not required for the requested analysis.
	iv. If above LOQ or project specified objectives, what samples are affected? Comments:
	NA; a trip blank is not required for the requested analysis.
	v. Data quality or usability affected? Comments:
	The data quality and/or usability was not affected; see above.

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes⊠ No□ N/A□ Comments:

ii. Submitted blind to lab?

Yes \boxtimes No \square N/A \square Comments:

Field duplicate pairs *MW-1-40/MW-1-140*, *MW-8-20/MW-8-120*, and *MW-6-20/MW-6-120* were submitted with this work order.

	320-64368-1
Lab	poratory Report Date:
	iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil)
	Yes⊠ No□ N/A□ Comments:
	iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
	The data quality and/or usability was not affected; see above.
	g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
	$Yes \boxtimes No \square N/A \square$ Comments:
	 i. All results less than LOQ and project specified objectives? Yes⊠ No□ N/A□ Comments: Results are less than the LOQ, however, PFHxS and PFOS were detected in the equipment blank below the reporting limit. The equipment blank is associated with samples MW-11-15 and MW-12-10.
	ii. If above LOQ or project specified objectives, what samples are affected? Comments:
	The PFHxS result for the equipment blank is considered not detected due to method blank detection. See item 6.a. above. PFOS results in the associated project samples were greater than 10 times the equipment blank
	detections. The results are not affected. iii. Data quality or usability affected? Comments:
	No; see above.
7.	Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	Yes⊠ No□ N/A⊠ Comments:

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-64370-1 Client Project/Site: Gust. PFAS POE

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamin Oltiman

Authorized for release by: 9/14/2020 10:51:46 AM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

7

8

9

1 1

12

М

Client: Shannon & Wilson, Inc Project/Site: Gust. PFAS POE Laboratory Job ID: 320-64370-1

Table of Contents

Cover Page
Table of Contents
Definitions/Glossary
Case Narrative
Detection Summary
Client Sample Results 6
Surrogate Summary
QC Sample Results
QC Association Summary
Lab Chronicle
Certification Summary
Method Summary
Sample Summary
Chain of Custody
Receipt Checklists

Definitions/Glossary

Client: Shannon & Wilson, Inc
Project/Site: Gust. PFAS POE

Job ID: 320-64370-1

0 110

Qualifiers

LCMS

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Appreviation	i nese commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

4

5

6

Ö

10

11

13

14

Case Narrative

Client: Shannon & Wilson, Inc
Project/Site: Gust. PFAS POE

Job ID: 320-64370-1

Job ID: 320-64370-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-64370-1

Receipt

The samples were received on $9/5/2020\ 2:55\ PM$; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was $4.5^{\circ}\ C$.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-410696.

Method 537.1 DW: The following sample contains floating particulates in the bottle prior to extraction: PW-200 (320-64370-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

ID 000 04070 4

2

3

4

_

6

8

4.6

11

46

14

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-64370-1

Project/Site: Gust. PFAS POE

Client Sample ID: PW-200-Sink Lab Sample ID: 320-64370-1

No Detections.

Client Sample ID: PW-200-C Port Composite Lab Sample ID: 320-64370-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	0.60 J	1.8	0.46 ng/L		537.1 DW	Total/NA

Client Sample ID: PW-200 Lab Sample ID: 320-64370-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	12	1.9	0.48	ng/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	5.2	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	2.0	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.6 J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	25	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	98	1.9	0.48	na/L	1		537.1 DW	Total/NA

9/14/2020

3

4

5

7

8

40

11

40

14

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-64370-1 Project/Site: Gust. PFAS POE

Client Sample ID: PW-200-Sink

Lab Sample ID: 320-64370-1 Date Collected: 08/31/20 10:35

Matrix: Water

Date Received: 09/05/20 14:55							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		09/09/20 11:42	09/10/20 14:08	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		70 - 130	09/09/20 11:42	09/10/20 14:08	1
13C2 PFDA	83		70 - 130	09/09/20 11:42	09/10/20 14:08	1
d5-NEtFOSAA	86		70 - 130	09/09/20 11:42	09/10/20 14:08	1
13C3 HFPO-DA	77		70 - 130	09/09/20 11:42	09/10/20 14:08	1

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-64370-1 Project/Site: Gust. PFAS POE

Client Sample ID: PW-200-C Port Composite

Lab Sample ID: 320-64370-2 Date Collected: 08/31/20 11:00

Matrix: Water

Date Received: 09/05/20 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorooctanoic acid (PFOA)	0.60	J	1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.46	ng/L		09/09/20 11:42	09/10/20 14:16	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Surroyate	/orecovery Qualifier	Lillits		DII Fac
13C2 PFHxA	88	70 - 130	09/09/20 11:42 09/10/20 14:16	1
13C2 PFDA	87	70 - 130	09/09/20 11:42 09/10/20 14:16	1
d5-NEtFOSAA	91	70 - 130	09/09/20 11:42 09/10/20 14:16	1
13C3 HFPO-DA	80	70 - 130	09/09/20 11:42 09/10/20 14:16	1

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-64370-1 Project/Site: Gust. PFAS POE

Client Sample ID: PW-200

Date Received: 09/05/20 14:55

e-1-sulfonic acid (11CI-PF Hexafluoropropylene Oxide Dimer

4,8-Dioxa-3H-perfluorononanoic acid

Acid (HFPO-DA)

(ADONA)

Lab Sample ID: 320-64370-3 Date Collected: 08/31/20 11:06

Matrix: Water

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) Analyte Result Qualifier Dil Fac RL **MDL** Unit Prepared Analyzed Perfluorohexanoic acid (PFHxA) 12 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 Perfluoroheptanoic acid (PFHpA) 5.2 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 Perfluorooctanoic acid (PFOA) 2.0 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 Perfluorononanoic acid (PFNA) ND 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 1.9 Perfluorodecanoic acid (PFDA) ND 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 Perfluoroundecanoic acid (PFUnA) ND 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 Perfluorododecanoic acid (PFDoA) ND 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 Perfluorotridecanoic acid (PFTriA) ND 1.9 09/09/20 11:42 09/10/20 14:24 0.48 ng/L Perfluorotetradecanoic acid (PFTeA) ND 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 Perfluorobutanesulfonic acid 1.6 J 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 (PFBS) 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 Perfluorohexanesulfonic acid 25 1.9 (PFHxS) Perfluorooctanesulfonic acid 98 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 (PFOS) ND 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 N-methylperfluorooctanesulfonamidoa 1.9 cetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonamidoac ND 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan ND 0.48 ng/L 09/09/20 11:42 09/10/20 14:24 1.9 e-1-sulfonic acid (9CI-PF3O 11-Chloroeicosafluoro-3-oxaundecan ND 1.9 0.48 ng/L 09/09/20 11:42 09/10/20 14:24

Surrogate	%Recovery Q	Qualifier Limits		Prepared	Analyzed	Dil Fac
13C2 PFHxA	106	70 - 130	<u> </u>	09/09/20 11:42	09/10/20 14:24	1
13C2 PFDA	102	70 - 130)	09/09/20 11:42	09/10/20 14:24	1
d5-NEtFOSAA	105	70 - 130)	09/09/20 11:42	09/10/20 14:24	1
13C3 HEPO-DA	95	70 130		09/09/20 11:42	09/10/20 14:24	1

1.9

1.9

0.48 ng/L

0.48 ng/L

ND

ND

09/09/20 11:42 09/10/20 14:24

09/09/20 11:42 09/10/20 14:24

Surrogate Summary

Client: Shannon & Wilson, Inc Job ID: 320-64370-1 Project/Site: Gust. PFAS POE

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limit				
		PFHxA	PFDA	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)		
320-64370-1	PW-200-Sink	83	83	86	77		
320-64370-2	PW-200-C Port Composite	88	87	91	80		
320-64370-3	PW-200	106	102	105	95		
LCS 320-410696/2-A	Lab Control Sample	99	98	98	91		
LCSD 320-410696/3-A	Lab Control Sample Dup	92	94	91	83		
MB 320-410696/1-A	Method Blank	99	102	100	92		

PFHxA = 13C2 PFHxA PFDA = 13C2 PFDA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA

Page 9 of 19

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-64370-1

Project/Site: Gust. PFAS POE

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sam	ple ID:	MB 32	20-410696	/1-A
---------	---------	--------------	-----------	------

Matrix: Water

Analysis Batch: 411159

Client Sam	ple ID:	Metho	d Blank
	Prep 7	Type: T	otal/NA

Prep Batch: 410696

7							1 10p = 4.00m 110000			
	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Perflu orohexanoic acid (PFHxA)	ND		2. 0	0. 5	0 ng/L		09/09/20 11:42	2 09/10/20 13:5	3	
Perflu oroheptanoic acid (PfHpA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orooctanoic acid (PFOA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orononanoic acid (PfNA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orod ecanoic acid (PFDA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orou ndecanoic acid (PfUnA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orod odecanoic acid (PfDoA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orotrid ecanoic acid (PFTriA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orotetrad ecanoic acid (PFIeA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orobutanesu Ifonic acid (PBS)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orohexanesulfonic acid (PFHxS)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Perflu orooctanesulfonic acid (PfOS)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Nmethylperfluorooctanesu Ifonamidoa cetic acid (NMeFOSAA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Nethy Iperflu orooctanesu Ifonamidoac etic acid (NEtFCSAA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
9-Chlorohexad ecaflu oro-3-oxanonan e-1-sulfonic acid (9Cl-PF3O	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
11-Chloroeicosafluoro-3-oxau ndecan e-1-sulfonic acid (11Cl-PF	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
Hexaflu oropropy Iene Oxid e Dimer Acid (HFPODA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	
4,8-Dioxa-3H-perflu orononanoic acid (ADONA)	ND		2. 0	0. 50	ng/L		09/09/20 11:42	09/10/20 13:53	1	

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed Di	il Fac
13C2 PFHxA	99	70 - 130	09/09/20 11:42 09/10/20 13:53	
13C2 PFDA	102	70 - 130	09/09/20 11:42 09/10/20 13:53	1
d5-NEtFOSAA	100	70 - 130	09/09/20 11:42 09/10/20 13:53	1
13C3 HFPO-DA	92	70 - 130	09/09/20 11:42 09/10/20 13:53	1

Lab Sample ID: LCS 320-410696/2-A

Matrix: Water

Analysis Batch: 411159

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 410696

Alialysis Datcii. 411133					Fiep Datcii. 410030
	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
Perflu orohexanoic acid (PFlxA)	80. 0	73. 7	ng/L	92	70 30
Perflu oroheptanoic acid (PfHpA)	80. 0	82. 6	ng/L	103	7030
Perflu orooctanoic acid (PFOA)	80. 0	78. 7	ng/L	98	70 30
Perflu orononanoic acid (PfNA)	80. 0	83. 2	ng/L	104	7.0130
Perflu orod ecanoic acid (PFDA)	80. 0	81. 9	ng/L	10	2 - 79 0
Perflu orou ndecanoic acid (PFUhA)	80.0	80. 5	ng/L	101	70 130
Perflu orod odecanoic acid (PFDoA)	80.0	77. 7	ng/L	97	70 130
Perflu orotrid ecanoic acid (PFTriA)	80.0	81. 9	ng/L	102	70 130
Perflu orotetrad ecanoic acid (PFTeA)	80.0	80. 6	ng/L	101	70 130
Perflu orobutanesu Ifonic acid (PFBS)	70.7	75. 7	ng/L	107	70 130

Page 10 of 19

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-64370-1 Project/Site: Gust. PFAS POE

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Matrix: Water

acid (ADOMA)

Matrix: Water

Analysis Batch: 411159

Lab Sample ID: LCS 320-410696/2-A

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 410696

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Perflu orohexanesulfonic acid 72.8 78.0 ng/L 107 70 - 130 (PFHs) Perflu orooctanesulfonic acid 74.2 78. 2 105 70 130 ng/L (PFCS) Nmethylperfluorooctanesu Ifona 80.0 75. 3 ng/L 94 70 130 midoacetic acid (NMeFOSAA) Nethy Iperflu orooctanesu Ifonami 80.0 74. 3 ng/L 93 70 130 doacetic acid (NEtFOSAA) 74.6 79. 1 106 70 130 9-Chlorohexad ecaflu oro-3-oxan ng/L onane-1-sulfonic acid (9CI-PF3O 75.4 76. 5 102 70 130 11-Chloroeicosafluoro-3-oxau nd ng/L ecane-1-sulfonic acid (11CI-PF Hexaflu oropropy lene Oxid e 0.08 71. 9 ng/L 90 70 130 Dimer Acid (HIPO-DA) 4,8-Diox a-3H-perflu orononanoic 75.4 76. 3 ng/L 101 70 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	99		70 - 130
13C2 PFDA	98		70 - 130
d5-NEtFOSAA	98		70 - 130
13C3 HFPO-DA	91		70 - 130

Lab Sample ID: LCSD 320-410696/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

matrix viator								
Analysis Batch: 411159						Prep Ba	atch: 41	10696
	Spike	LCSD LCSD				%Rec.		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perflu orohexanoic acid (PFIxA)	80. 0	71. 1	ng/L		89	70 30	4	30
Perflu oroheptanoic acid (PfHpA)	80. 0	77. 0	ng/L		96	70130	7	30
Perflu orooctanoic acid (PFOA)	80. 0	73. 7	ng/L		92	70 30	7	30
Perflu orononanoic acid (PfNA)	80. 0	76. 6	ng/L		96	7.0130	8	30
Perflu orod ecanoic acid (PFDA)	80. 0	76. 9	ng/L		96	5 - 73 0	6	30
Perflu orou ndecanoic acid (PFUhA)	80.0	75. 5	ng/L		94	70 130	6	30
Perflu orod odecanoic acid (PFDoA)	80.0	73. 6	ng/L		92	70 130	5	30
Perflu orotrid ecanoic acid (PFTriA)	80.0	73. 7	ng/L		92	70 130	11	30
Perflu orotetrad ecanoic acid (PFTeA)	80.0	75. 5	ng/L		94	70 130	6	30
Perflu orobutanesu Ifonic acid (PFBS)	70.7	75. 0	ng/L		106	70 130	1	30
Perflu orohexanesulfonic acid (PFHxS)	72.8	74. 5	ng/L		102	70 130	5	30
Perflu orooctanesulfonic acid (PFCS)	74.2	75. 1	ng/L		101	70 130	4	30
Nmethylperfluorooctanesu lfona midoacetic acid (NMFCSAA)	80.0	72. 2	ng/L		90	70 130	4	30
Nethy Iperflu orooctanesu Ifonami doacetic acid (NEtFOSAA)	80.0	70. 6	ng/L		88	70 130	5	30
9-Chlorohexad ecaflu oro-3-oxan onane-1-sulfonic acid (9Cl-PF3O	74.6	75. 9	ng/L		102	70 130	4	30

Eu rofins TestAmerica, Sacramento

Page 11 of 19

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-64370-1

Project/Site: Gust. PFAS POE

13C3 HFPO-DA

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

83

Lab Sample ID: LCSD 320 Matrix: Water Analysis Batch: 411159	-410696/3-A	\			(Client Sa	mple	ID: Lab	Control Prep Ty Prep Ba	pe: Tot	al/NA
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
11-Chloroeicosafluoro-3-oxau nd ecane-1-su Ifonic acid (11CI-PF			75.4	75.9		ng/L		101	70 - 130	1	30
Hexaflu oropropy lene Oxid e Dimer Acid (HIPO-DA)			80.0	66.	3	ng/L		83	70 130	8	30
4,8-Dioxa-3H-perflu orononanoic acid (ADOM)			75.4	71. 9	9	ng/L		95	70 130	6	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
13C2 PFHxA	92		70 - 130								
13C2 PFDA	94		70 - 130								
d5-NEtFOSAA	91		70 - 130								

70 - 130

3

4

R

9

4 4

12

4.4

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: Gust. PFAS POE

Job ID: 320-64370-1

LCMS

Prep Batch: 410696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64370-1	PW-200-Sink	Total/NA	Water	537.1 DW	
320-64370-2	PW-200-C Port Composite	Total/NA	Water	537.1 DW	
320-64370-3	PW-200	Total/NA	Water	537.1 DW	
MB 320-410696/1-A	Method Blank	Total/NA	Water	537.1 DW	
LCS 320-410696/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	
LCSD 320-410696/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	

Analysis Batch: 411159

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-64370-1	PW-200-Sink	Total/NA	Water	537.1 DW	410696
320-64370-2	PW-200-C Port Composite	Total/NA	Water	537.1 DW	410696
320-64370-3	PW-200	Total/NA	Water	537.1 DW	410696
MB 320-410696/1-A	Method Blank	Total/NA	Water	537.1 DW	410696
LCS 320-410696/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	410696
LCSD 320-410696/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	410696

3

4

6

7

0

40

11

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-64370-1 Project/Site: Gust. PFAS POE

Client Sample ID: PW-200-Sink

Lab Sample ID: 320-64370-1

Date Collected: 08/31/20 10:35 **Matrix: Water** Date Received: 09/05/20 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			258 mL	1.00 mL	410696	09/09/20 11:42	LA	TAL SAC
Total/NA	Analysis	537.1 DW		1			411159	09/10/20 14:08	SK	TAL SAC

Lab Sample ID: 320-64370-2 Client Sample ID: PW-200-C Port Composite

Date Collected: 08/31/20 11:00 **Matrix: Water**

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			271 mL	1.00 mL	410696	09/09/20 11:42	LA	TAL SAC
Total/NA	Analysis	537.1 DW		1			411159	09/10/20 14:16	SK	TAL SAC

Client Sample ID: PW-200 Lab Sample ID: 320-64370-3

Date Collected: 08/31/20 11:06 **Matrix: Water**

Date Received: 09/05/20 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			263.1 mL	1.00 mL	410696	09/09/20 11:42	LA	TAL SAC
Total/NA	Analysis	537.1 DW		1			411159	09/10/20 14:24	SK	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-64370-1 Project/Site: Gust. PFAS POE

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	10-31-20
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-1	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid.}$

Method Summary

Client: Shannon & Wilson, Inc Project/Site: Gust. PFAS POE Job ID: 320-64370-1

Method	Method Description	Protocol	Laboratory
537.1 DW	Perfluorinated Alkyl Acids (LC/MS)	EPA	TAL SAC
537.1 DW	Extraction of Perfluorinated Alkyl Acids	EPA	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

G

4

5

6

9

10

15

13

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: Gust. PFAS POE Job ID: 320-64370-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
320-64370-1	PW-200-Sink	Water	08/31/20 10:35	09/05/20 14:55	
320-64370-2	PW-200-C Port Composite	Water	08/31/20 11:00	09/05/20 14:55	
320-64370-3	PW-200	Water	08/31/20 11:06	09/05/20 14:55	

-

4

7

O

10

11

13

14

9/14/2020

No. 36050

Client: Shannon & Wilson, Inc Job Number: 320-64370-1

List Source: Eurofins TestAmerica, Sacramento Login Number: 64370

List Number: 1

Creator: Thompson, Sarah W

Creator: Thompson, Saran W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1094973
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	GEL PACKS
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:
Amber Masters
Title:
Environmental Scientist
Date:
September 16, 2020
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-643670-1
Laboratory Report Date:
September 15, 2020
CS Site Name:
DOT&PF Gustavus Airport Statewide PFAS
ADEC File Number:
2569.38.033
Hazard Identification Number:
26981

May 2020 Page 1

	320-643670-1				
La	boratory Report Date:				
	Note: Any N/A or No box checked must have an explanation in the comments box.				
1.	Laboratory				
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?				
	Yes \boxtimes No \square N/A \square Comments:				
	The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.				
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?				
	$Yes \square No \square N/A \boxtimes Comments:$				
	The requested analyses were conducted by TestAmerica of West Sacramento, CA.				
2.	Chain of Custody (CoC)				
	a. CoC information completed, signed, and dated (including released/received by)?				
	Yes \boxtimes No \square N/A \square Comments:				
	Tese Not IV/Att Comments.				
	b. Correct analyses requested?				
	$Yes \boxtimes No \square N/A \square$ Comments:				
3.	Laboratory Sample Receipt Documentation				
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?				
	$Yes \boxtimes No \square N/A \square$ Comments:				
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?				
	$Yes \boxtimes No \square N/A \square$ Comments:				
	Samples were preserved with Trizma.				
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?				
	$Yes \boxtimes No \square N/A \square$ Comments:				
	The sample receipt form notes that the samples were received in good condition.				

Laboratory Report Date:				
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?				
$Yes \square No \square N/A \boxtimes Comments:$				
e. Data quality or usability affected?				
Comments:				
The data quality and/or usability was not affected; see above.				
4. <u>Case Narrative</u>				
a. Present and understandable?				
Yes \boxtimes No \square N/A \square Comments:				
b. Discrepancies, errors, or QC failures identified by the lab?				
Yes⊠ No□ N/A□ Comments:				
The case narrative indicates the following:				
Sample PW-200 contained floating particulates prior to extraction.				
The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 4.5° C upon arrival at the laboratory.				
There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batch 320-410696.				
c. Were all corrective actions documented?				
$Yes \square No \square N/A \boxtimes Comments:$				
Corrective actions were not required.				
d. What is the effect on data quality/usability according to the case narrative?				
Comments:				
The case narrative does not identify an effect on the data quality and/or usability.				

320-643670-1

Lal	ora	atory Report Date:			
5.	5. <u>Samples Results</u>				
		a. Correct analyses performed/reported as requested on COC?			
	Г	Yes⊠ No□ N/A□ Comments:			
		b. All applicable holding times met?			
	Ī	Yes \boxtimes No \square N/A \square Comments:			
	Ĺ				
		c. All soils reported on a dry weight basis?			
	Γ	Yes□ No□ N/A⊠ Comments:			
		Soil samples were not submitted with this work order.			
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?					
	г	Yes \boxtimes No \square N/A \square Comments:			
		The reporting limit (RL) is less than the applicable DEC regulatory limit for the project.			
e. Data quality or usability affected?					
		The data quality and/or usability was not affected; see above.			
6.	QC	<u>C Samples</u>			
		a. Method Blank			
		i. One method blank reported per matrix, analysis and 20 samples?			
	_	Yes \boxtimes No \square N/A \square Comments:			
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?				
Yes⊠ No□ N/A□ Comments:					
iii. If above LOQ or project specified objectives, what samples are affected? Comments:					
		There were no detections in the method blanks.			
	L				

320-643670-1

320-643670-1	

Laboratory Report Date:

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?			
Yes \square No \square N/A \boxtimes Comments:			
Qualification of the data was not required. See above.			
v. Data quality or usability affected? Comments:			
Results are not affected. See above.			
b. Laboratory Control Sample/Duplicate (LCS/LCSD)			
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) 			
$Yes \boxtimes No \square N/A \square$ Comments:			
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?			
$Yes \square No \square N/A \boxtimes Comments:$			
Metals and/or inorganics were not analyzed as part of this work order.			
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)			
$Yes \boxtimes No \square N/A \square$ Comments:			
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes ⋈ No □ N/A□ Comments:			
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:			
NA; analytical accuracy and precision were demonstrated to be within acceptable limits.			
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?			
$Yes \square No \square N/A \boxtimes Comments:$			
Qualification of the data was not required; see above.			

May 2020 Page 5

320-643670-1			
Laboratory Report Date:			
vii. Data quality or usability affected? (Use comment box to explain.)			
Comments:			
The data quality and/or usability was not affected; see above.			
c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)			
Note: Leave blank if not required for project			
i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?			
Yes □ No ⋈ N/A □ Comments: Insufficient sample volume was available to perform a MS/MSD with the associated preparatory			
batch. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and			
precision.			
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?			
Yes \square No \square N/A \boxtimes Comments:			
Metals and/or inorganics were not analyzed as part of this work order.			
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?			
Yes \square No \square N/A \boxtimes Comments:			
MS and MSD samples were not analyzed for this work order.			
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.			
Yes \square No \square N/A \boxtimes Comments:			
MS and MSD samples were not analyzed for this work order.			
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:			
NA; MS and MSD samples were not analyzed for this work order.			
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?			
Yes \square No \square N/A \boxtimes Comments:			
MS and MSD samples were not analyzed for this work order.			

320-643670-1	

Laboratory Report Date:

vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? $Yes \boxtimes No \square N/A \square$ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \boxtimes No \square N/A \square$ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? $Yes \square No \square N/A \boxtimes$ Comments: There were no IDA recovery failures associated with this work order. iv. Data quality or usability affected? Comments: The data quality and/or usability was not affected; see above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) $Yes \square No \square N/A \boxtimes$ Comments: PFAS are not volatile compounds. A trip blank is not required for the requested analysis. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: A trip blank is not required for the requested analysis. iii. All results less than LOQ and project specified objectives? Yes \square No \square N/A \boxtimes Comments: A trip blank is not required for the requested analysis.

May 2020 Page 7

20-643	670-1		
atory	Report Date:		
	iv. If above LOQ or project specified objectives, what samples are affected? Comments:		
NA;	a trip blank is not required for the requested analysis.		
v. Data quality or usability affected? Comments:			
The	data quality and/or usability was not affected; see above.		
f. Field Duplicate			
	i. One field duplicate submitted per matrix, analysis and 10 project samples?		
Yes \square No \square N/A \boxtimes Comments:			
	ii. Submitted blind to lab?		
	Yes \square No \square N/A \boxtimes Comments:		
	iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration		
	Yes□ No□ N/A⊠ Comments:		
	iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:		
NA; a field duplicate is not required for this work order.			
_	Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?		
	Yes \square No \square N/A \boxtimes Comments:		
Dec	ontamination or equipment blank were not required for this project.		

 $Yes \square \quad No \square \quad N/A \boxtimes$

i. All results less than LOQ and project specified objectives?

Decontamination or equipment blank were not required for this project.

Comments:

320	0-643670-1
Labora	tory Report Date:
_	ii. If above LOQ or project specified objectives, what samples are affected?Comments:
	Decontamination or equipment blank were not required for this project.
_	iii. Data quality or usability affected? Comments:
	The data quality and/or usability was not affected; see above.
7. <u>Oth</u>	ner Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
_	Yes \square No \square N/A \boxtimes Comments:

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-68519-1

Client Project/Site: ADOT+PF GUSTAVUS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamil Oltima

Authorized for release by: 1/8/2021 2:08:33 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

4

5

6

Q

9

11

12

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS Laboratory Job ID: 320-68519-1

Table of Contents

Cover Page	
Table of Contents	<u>)</u>
Definitions/Glossary	}
Case Narrative	ŀ
Detection Summary	;
Client Sample Results	}
Isotope Dilution Summary	26
QC Sample Results	28
QC Association Summary	31
Lab Chronicle	32
Certification Summary	35
Method Summary	36
Sample Summary	37
Chain of Custody	38
Receipt Checklists	łC

3

4

5

9

10

12

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Qualifiers

	_		_
	r	NЛ	ĸ
_	·	IVI	ю

PQL

QC

RL

RER

RPD

TEF

TEQ TNTC

PRES

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive

Quality Control

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
1	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

J	Result is less than the RE but greater than or equal to the MDE and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present

Case Narrative

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS Job ID: 320-68519-1

Job ID: 320-68519-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-68519-1

Receipt

The samples were received on 1/5/2021 5:20 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.7° C.

Receipt Exceptions

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): MW-9-20 (320-68519-14). Sample #14- Client label IDs is listed as MW-9-30 for 2 of 2 while the COC is listed as MW-9-20. Logged in according to the COC.

LCMS

Method 537 (modified): The transition mass ratio for the indicated analytes were outside of the established ratio limits. The qualitative identification of the analytes have some degree of uncertainty. However, analyst judgment was used to positively identify the analytes: MW-1-40 (320-68519-2), MW-3-40 (320-68519-6), MW-4-20 (320-68519-7), MW-6-20 (320-68519-9) and MW-106-20 (320-68519-10).

Method 537 (modified): The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 320-448909 and analytical batch 320-449115 recovered outside control limits for the following analyte: 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid. This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 537 (modified): Results for sample MW-11-15 (320-68519-16) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-448909 and 320-448909.

Method 3535: The following samples contain floating particulates in the sample bottle prior to extraction: MW-1-40 (320-68519-2), MW-3-15 (320-68519-5), MW-3-40 (320-68519-6), MW-4-20 (320-68519-7), MW-5-20 (320-68519-8), MW-6-20 (320-68519-9), MW-106-20 (320-68519-10), MW-7-20 (320-68519-11), MW-107-20 (320-68519-12), MW-8-20 (320-68519-13), MW-9-20 (320-68519-14), MW-10-20 (320-68519-15), MW-12-10 (320-68519-17) and MW-112-10 (320-68519-18).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

6

7

10

11

13

14

Client: Shannon & Wilson, Inc Job ID: 320-68519-1 Project/Site: ADOT+PF GUSTAVUS **Client Sample ID: MW-1-15** Lab Sample ID: 320-68519-1 Result Qualifier RL Dil Fac D Method **MDL** Unit **Prep Type**

1.8

0.18 ng/L

Client Sample ID: MW-1-40 Lab Sample ID: 320-68519-2

0.20 J

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	1.1	J	1.8	0.52	ng/L	1	_	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.56	JI	1.8	0.50	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-2-20 Lab Sample ID: 320-68519-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	63		1.8	0.51	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	54		1.8	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	67		1.8	0.75	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	4.0		1.8	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.34	J	1.8	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	9.5		1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	64		1.8	0.50	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	250		1.8	0.48	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-2-30 Lab Sample ID: 320-68519-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	0.70	J	1.8	0.22	ng/L	1	_	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.4	J	1.8	0.76	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	0.48	J	1.8	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.4	J	1.8	0.18	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-3-15 Lab Sample ID: 320-68519-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	5.1		1.8	0.53	ng/L		_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.7		1.8	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	0.94	J	1.8	0.77	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.6		1.8	0.52	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	5.1		1.8	0.49	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-3-40 Lab Sample ID: 320-68519-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.6	J	1.8	0.53	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.43	J	1.8	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.3	J	1.8	0.77	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	14		1.8	0.52	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	13	1	1.8	0.49	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-4-20 Lab Sample ID: 320-68519-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	0.46 JI	1.8	0.18 ng/L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.65 J	1.8	0.51 ng/L	1	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Perfluorobutanesulfonic acid (PFBS)

Eurofins TestAmerica, Sacramento

Page 5 of 40

537 (modified)

Total/NA

1/8/2021

Client: Shannon & Wilson, Inc

Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-5-20				Lab Sa	ample ID: 32	20-68519-8
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	1.0 J	1.8	0.77 ng/L		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.44 J	1.8	0.18 na/L	1	537 (modified)	Total/NA

Analyte	Result	Qualifier	KL	MDL	Unit	DII Fac	ט	Method	Prep Type
Perfluorooctanoic acid (PFOA)	1.0	J	1.8	0.77	ng/L	1	_	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.44	J	1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.8	0.51	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.7	J	1.8	0.49	ng/L	1		537 (modified)	Total/NA
_									

Client Sample ID: MW-6-20 Lab Sample ID: 320-68519-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	0.32 J	1.8	0.18 ng/L		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.8	1.8	0.51 ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.2 JI	1.8	0.49 ng/L	1	537 (modified)	Total/NA

Client Sample ID: MW-106-20 Lab Sample ID: 320-68519-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	0.29	JI	1.7	0.22	ng/L	1	_	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.37	J	1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.6		1.7	0.49	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.3	JI	1.7	0.47	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-7-20 Lab Sample ID: 320-68519-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.2		1.8	0.52	ng/L		_ 5	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.91	J	1.8	0.22	ng/L	1	5	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.1	J	1.8	0.76	ng/L	1	5	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.43	J	1.8	0.18	ng/L	1	5	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.0	J	1.8	0.51	ng/L	1	5	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	4.8		1.8	0.48	ng/L	1	5	537 (modified)	Total/NA

Client Sample ID: MW-107-20 Lab Sample ID: 320-68519-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	0.56	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.89	J	1.9	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.3	J	1.9	0.82	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.1	J	1.9	0.55	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	4.5		1.9	0.52	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-8-20 Lab Sample ID: 320-68519-13

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.62 J	1.7	0.50 ng/L		537 (modified)	Total/NA

Client Sample ID: MW-9-20 Lab Sample ID: 320-68519-14

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.6		1.8	0.52	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.0		1.8	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	1.0	J	1.8	0.76	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.66	J	1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	11		1.8	0.51	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	92		1.8	0.49	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Page 6 of 40 1/8/2021

3

4

_

7

0

10

12

11

. -

Detection Summary

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-10-20

Client Sample ID: MW-11-15

Job ID: 320-68519-1

Lab Sample ID: 320-68519-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	5.3		1.8	0.53	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.8		1.8	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.42	J	1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.4		1.8	0.52	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	39		1.8	0.49	ng/L	1		537 (modified)	Total/NA

Lab Sample ID: 320-68519-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	180		1.7	0.50	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	19		1.7	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	92		1.7	0.74	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.2		1.7	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	1.3	J	1.7	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	35		1.7	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS) - DL	830		35	9.9	ng/L	20		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS) - DL	6100		35	9.4	ng/L	20		537 (modified)	Total/NA

Client Sample ID: MW-12-10 Lab Sample ID: 320-68519-17

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	13	1.8	0.51	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	15	1.8	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	9.5	1.8	0.75	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.6	1.8	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.51 J	1.8	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.68 J	1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	31	1.8	0.50	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	100	1.8	0.47	ng/L	1		537 (modified)	Total/NA

Client Sample ID: MW-112-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	13		1.8	0.54	ng/L	1	_	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	15		1.8	0.23	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	8.8		1.8	0.79	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.5		1.8	0.25	ng/L	1		537 (modified)	Total/NA
Perfluorodecanoic acid (PFDA)	0.65	J	1.8	0.29	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.71	J	1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	29		1.8	0.53	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	100		1.8	0.50	ng/L	1		537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 320-68519-18

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Lab Sample ID: 320-68519-1 **Client Sample ID: MW-1-15** Date Collected: 12/30/20 12:19 **Matrix: Water**

Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.77	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorobutanesulfonic acid (PFBS)	0.20	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 02:54	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 02:54	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 02:54	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		01/06/21 11:16	01/07/21 02:54	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 02:54	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		01/06/21 11:16	01/07/21 02:54	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 02:54	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 02:54	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	109		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C4 PFHpA	116		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C4 PFOA	116		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C5 PFNA	118		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C2 PFDA	113		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C2 PFUnA	115		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C2 PFDoA	106		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C2 PFTeDA	127		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C3 PFBS	106		25 - 150					01/07/21 02:54	1
1802 PFHxS	113		25 - 150				01/06/21 11:16	01/07/21 02:54	1
13C4 PFOS	108		25 - 150					01/07/21 02:54	1
d3-NMeFOSAA	94		25 - 150					01/07/21 02:54	1
d5-NEtFOSAA	106		25 - 150				01/06/21 11:16	01/07/21 02:54	1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Date Received: 01/05/21 17:20

13C3 HFPO-DA

Client Sample ID: MW-1-40 Lab Sample ID: 320-68519-2 Date Collected: 12/30/20 11:44

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.78	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.29	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.51	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorohexanesulfonic acid (PFHxS)	1.1	J	1.8	0.52	ng/L		01/06/21 11:16	01/07/21 03:03	1
Perfluorooctanesulfonic acid (PFOS)	0.56	JI	1.8	0.50	ng/L		01/06/21 11:16	01/07/21 03:03	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		01/06/21 11:16	01/07/21 03:03	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		01/06/21 11:16	01/07/21 03:03	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 03:03	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		01/06/21 11:16	01/07/21 03:03	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 03:03	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		01/06/21 11:16	01/07/21 03:03	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	96		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C4 PFHpA	101		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C4 PFOA	103		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C5 PFNA	106		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C2 PFDA	94		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C2 PFUnA	107		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C2 PFDoA	97		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C2 PFTeDA	108		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C3 PFBS	95		25 - 150				01/06/21 11:16	01/07/21 03:03	1
1802 PFHxS	102		25 - 150				01/06/21 11:16	01/07/21 03:03	1
13C4 PFOS	98		25 - 150				01/06/21 11:16	01/07/21 03:03	1
d3-NMeFOSAA	87		25 - 150				01/06/21 11:16	01/07/21 03:03	1
d5-NEtFOSAA	92		25 - 150				01/06/21 11:16	01/07/21 03:03	1
									_

1/8/2021

01/06/21 11:16 01/07/21 03:03

25 - 150

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-2-20 Lab Sample ID: 320-68519-3

Date Collected: 12/31/20 15:16 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	63		1.8	0.51	ng/L		01/06/21 11:16	01/07/21 03:13	
Perfluoroheptanoic acid (PFHpA)	54		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 03:13	•
Perfluorooctanoic acid (PFOA)	67		1.8	0.75	ng/L		01/06/21 11:16	01/07/21 03:13	•
Perfluorononanoic acid (PFNA)	4.0		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 03:13	
Perfluorodecanoic acid (PFDA)	0.34	J	1.8	0.27	ng/L		01/06/21 11:16	01/07/21 03:13	•
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		01/06/21 11:16	01/07/21 03:13	•
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 03:13	
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 03:13	•
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		01/06/21 11:16	01/07/21 03:13	•
Perfluorobutanesulfonic acid (PFBS)	9.5		1.8	0.18	ng/L		01/06/21 11:16	01/07/21 03:13	,
Perfluorohexanesulfonic acid (PFHxS)	64		1.8	0.50	ng/L		01/06/21 11:16	01/07/21 03:13	•
Perfluorooctanesulfonic acid (PFOS)	250		1.8	0.48	ng/L		01/06/21 11:16	01/07/21 03:13	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4		ng/L		01/06/21 11:16	01/07/21 03:13	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.2	ng/L		01/06/21 11:16	01/07/21 03:13	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		01/06/21 11:16	01/07/21 03:13	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		01/06/21 11:16	01/07/21 03:13	,
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.28	ng/L		01/06/21 11:16	01/07/21 03:13	,
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		01/06/21 11:16	01/07/21 03:13	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	112		25 - 150				01/06/21 11:16	01/07/21 03:13	-
13C4 PFHpA	115		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C4 PFOA	116		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C5 PFNA	116		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C2 PFDA	115		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C2 PFUnA	122		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C2 PFDoA	82		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C2 PFTeDA	132		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C3 PFBS	102		25 - 150				01/06/21 11:16	01/07/21 03:13	
1802 PFHxS	114		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C4 PFOS	111		25 - 150				01/06/21 11:16	01/07/21 03:13	
d3-NMeFOSAA	107		25 - 150				01/06/21 11:16	01/07/21 03:13	
d5-NEtFOSAA	114		25 - 150				01/06/21 11:16	01/07/21 03:13	
13C3 HFPO-DA	110		25 - 150				01/06/21 11:16	01/07/21 03:13	

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Lab Sample ID: 320-68519-4 Client Sample ID: MW-2-30 Date Collected: 12/31/20 15:53 **Matrix: Water**

Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluoroheptanoic acid (PFHpA)	0.70	J	1.8	0.22	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorooctanoic acid (PFOA)	1.4	J	1.8	0.76	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorononanoic acid (PFNA)	0.48	J	1.8	0.24	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorobutanesulfonic acid (PFBS)	1.4	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.51	ng/L		01/06/21 11:16	01/07/21 03:22	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.48	ng/L		01/06/21 11:16	01/07/21 03:22	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 03:22	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		01/06/21 11:16	01/07/21 03:22	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		01/06/21 11:16	01/07/21 03:22	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		01/06/21 11:16	01/07/21 03:22	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 03:22	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 03:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	96		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C4 PFHpA	100		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C4 PFOA	100		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C5 PFNA	99		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C2 PFDA	99		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C2 PFUnA	101		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C2 PFDoA	98		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C2 PFTeDA	112		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C3 PFBS	92		25 - 150				01/06/21 11:16	01/07/21 03:22	1
1802 PFHxS	96		25 - 150				01/06/21 11:16	01/07/21 03:22	1
13C4 PFOS	100		25 - 150				01/06/21 11:16	01/07/21 03:22	1
d3-NMeFOSAA	88		25 - 150				01/06/21 11:16	01/07/21 03:22	1
d5-NEtFOSAA	94		25 - 150				01/06/21 11:16	01/07/21 03:22	1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-3-15 Lab Sample ID: 320-68519-5 Date Collected: 12/30/20 15:16 **Matrix: Water**

Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	5.1		1.8	0.53	ng/L		01/06/21 11:16	01/07/21 03:32	
Perfluoroheptanoic acid (PFHpA)	2.7		1.8	0.23	ng/L		01/06/21 11:16	01/07/21 03:32	
Perfluorooctanoic acid (PFOA)	0.94	J	1.8	0.77	ng/L		01/06/21 11:16	01/07/21 03:32	
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 03:32	
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 03:32	
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		01/06/21 11:16	01/07/21 03:32	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		01/06/21 11:16	01/07/21 03:32	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 03:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		01/06/21 11:16	01/07/21 03:32	1
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 03:32	1
Perfluorohexanesulfonic acid (PFHxS)	3.6		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 03:32	1
Perfluorooctanesulfonic acid (PFOS)	5.1		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 03:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 03:32	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		01/06/21 11:16	01/07/21 03:32	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 03:32	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		01/06/21 11:16	01/07/21 03:32	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 03:32	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 03:32	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	102		25 - 150					01/07/21 03:32	
13C4 PFHpA	102		25 - 150				01/06/21 11:16	01/07/21 03:32	1
13C4 PFOA	112		25 - 150				01/06/21 11:16	01/07/21 03:32	1
13C5 PFNA	113		25 - 150				01/06/21 11:16	01/07/21 03:32	1
13C2 PFDA	108		25 - 150				01/06/21 11:16	01/07/21 03:32	1
13C2 PFUnA	112		25 - 150				01/06/21 11:16	01/07/21 03:32	1
13C2 PFDoA	108		25 - 150				01/06/21 11:16	01/07/21 03:32	1
13C2 PFTeDA	119		25 - 150				01/06/21 11:16	01/07/21 03:32	1
13C3 PFBS	99		25 - 150				01/06/21 11:16	01/07/21 03:32	1
1802 PFHxS	104		25 - 150				01/06/21 11:16	01/07/21 03:32	1
13C4 PFOS	102		25 - 150					01/07/21 03:32	1
d3-NMeFOSAA	91		25 - 150					01/07/21 03:32	1
d5-NEtFOSAA	101		25 - 150					01/07/21 03:32	1
13C3 HFPO-DA	102		25 ₋ 150					01/07/21 03:32	1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-3-40

Lab Sample ID: 320-68519-6

Date Collected: 12/30/20 14:37
Date Received: 01/05/21 17:20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.6	J	1.8	0.53	ng/L		01/06/21 11:16	01/07/21 03:41	
Perfluoroheptanoic acid (PFHpA)	0.43	J	1.8	0.23	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorooctanoic acid (PFOA)	1.3	J	1.8	0.77	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorohexanesulfonic acid (PFHxS)	14		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 03:41	1
Perfluorooctanesulfonic acid (PFOS)	13	I	1.8	0.49	ng/L		01/06/21 11:16	01/07/21 03:41	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 03:41	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		01/06/21 11:16	01/07/21 03:41	,
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 03:41	,
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		01/06/21 11:16	01/07/21 03:41	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 03:41	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 03:41	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	104		25 - 150				01/06/21 11:16	01/07/21 03:41	
13C4 PFHpA	109		25 - 150				01/06/21 11:16	01/07/21 03:41	1
13C4 PFOA	110		25 - 150				01/06/21 11:16	01/07/21 03:41	1
13C5 PFNA	112		25 - 150				01/06/21 11:16	01/07/21 03:41	1
13C2 PFDA	106		25 - 150				01/06/21 11:16	01/07/21 03:41	1
13C2 PFUnA	105		25 - 150				01/06/21 11:16	01/07/21 03:41	1
13C2 PFDoA	103		25 - 150				01/06/21 11:16	01/07/21 03:41	1
13C2 PFTeDA	123		25 - 150				01/06/21 11:16	01/07/21 03:41	1
13C3 PFBS	102		25 - 150				01/06/21 11:16	01/07/21 03:41	1
1802 PFHxS	102		25 - 150				01/06/21 11:16	01/07/21 03:41	1
13C4 PFOS	104		25 - 150				01/06/21 11:16	01/07/21 03:41	-
d3-NMeFOSAA	91		25 - 150				01/06/21 11:16	01/07/21 03:41	1
d5-NEtFOSAA	99		25 - 150					01/07/21 03:41	
13C3 HFPO-DA	103		25 - 150				01/06/01 11:16	01/07/21 03:41	1

1/8/2021

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-4-20 Lab Sample ID: 320-68519-7 Date Collected: 12/31/20 13:08 **Matrix: Water**

Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.76	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorobutanesulfonic acid (PFBS)	0.46	JI	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorohexanesulfonic acid (PFHxS)	0.65	J	1.8	0.51	ng/L		01/06/21 11:16	01/07/21 03:50	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.48	ng/L		01/06/21 11:16	01/07/21 03:50	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 03:50	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		01/06/21 11:16	01/07/21 03:50	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 03:50	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		01/06/21 11:16	01/07/21 03:50	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 03:50	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 03:50	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	106		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C4 PFHpA	110		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C4 PFOA	116		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C5 PFNA	122		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C2 PFDA	118		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C2 PFUnA	114		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C2 PFDoA	104		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C2 PFTeDA	119		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C3 PFBS	101		25 - 150				01/06/21 11:16	01/07/21 03:50	1
1802 PFHxS	111		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C4 PFOS	110		25 - 150				01/06/21 11:16	01/07/21 03:50	1
d3-NMeFOSAA	100		25 - 150					01/07/21 03:50	1
d5-NEtFOSAA	99		25 - 150				01/06/21 11:16	01/07/21 03:50	1
13C3 HFPO-DA	110		25 - 150				01/06/21 11:16	01/07/21 03:50	1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-5-20 Lab Sample ID: 320-68519-8

Date Collected: 01/01/21 15:25 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorooctanoic acid (PFOA)	1.0	J	1.8	0.77	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorobutanesulfonic acid (PFBS)	0.44	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.8	0.51	ng/L		01/06/21 11:16	01/07/21 04:18	1
Perfluorooctanesulfonic acid (PFOS)	1.7	J	1.8	0.49	ng/L		01/06/21 11:16	01/07/21 04:18	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 04:18	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		01/06/21 11:16	01/07/21 04:18	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 04:18	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		01/06/21 11:16	01/07/21 04:18	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 04:18	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 04:18	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	96		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C4 PFHpA	109		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C4 PFOA	112		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C5 PFNA	111		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C2 PFDA	110		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C2 PFUnA	109		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C2 PFDoA	97		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C2 PFTeDA	114		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C3 PFBS	100		25 - 150				01/06/21 11:16	01/07/21 04:18	1
1802 PFHxS	105		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C4 PFOS	104		25 - 150				01/06/21 11:16	01/07/21 04:18	1
d3-NMeFOSAA	93		25 - 150				01/06/21 11:16	01/07/21 04:18	1
d5-NEtFOSAA	99		25 - 150				01/06/21 11:16	01/07/21 04:18	1
13C3 HFPO-DA	106		25 - 150				01/06/21 11:16	01/07/21 04:18	1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-6-20 Lab Sample ID: 320-68519-9 Date Collected: 01/01/21 11:32

Matrix: Water Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 04:28	•
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.76	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorobutanesulfonic acid (PFBS)	0.32	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorohexanesulfonic acid (PFHxS)	2.8		1.8	0.51	ng/L		01/06/21 11:16	01/07/21 04:28	1
Perfluorooctanesulfonic acid (PFOS)	1.2	JI	1.8		ng/L		01/06/21 11:16	01/07/21 04:28	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 04:28	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		01/06/21 11:16	01/07/21 04:28	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8		ng/L		01/06/21 11:16	01/07/21 04:28	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		01/06/21 11:16	01/07/21 04:28	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 04:28	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 04:28	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	109		25 - 150				01/06/21 11:16	01/07/21 04:28	
13C4 PFHpA	114		25 - 150				01/06/21 11:16	01/07/21 04:28	1
13C4 PFOA	118		25 - 150				01/06/21 11:16	01/07/21 04:28	1
13C5 PFNA	119		25 - 150				01/06/21 11:16	01/07/21 04:28	1
13C2 PFDA	107		25 - 150				01/06/21 11:16	01/07/21 04:28	1
13C2 PFUnA	119		25 - 150				01/06/21 11:16	01/07/21 04:28	1
13C2 PFDoA	115		25 - 150				01/06/21 11:16	01/07/21 04:28	1
13C2 PFTeDA	133		25 - 150				01/06/21 11:16	01/07/21 04:28	1
13C3 PFBS	107		25 - 150				01/06/21 11:16	01/07/21 04:28	1
1802 PFHxS	112		25 - 150				01/06/21 11:16	01/07/21 04:28	1
13C4 PFOS	111		25 - 150				01/06/21 11:16	01/07/21 04:28	1
d3-NMeFOSAA	96		25 - 150				01/06/21 11:16	01/07/21 04:28	1
d5-NEtFOSAA	111		25 - 150					01/07/21 04:28	1
13C3 HFPO-DA	109		25 - 150				01/06/21 11:16	01/07/21 04:28	1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1 Project/Site: ADOT+PF GUSTAVUS

Date Received: 01/05/21 17:20

13C3 HFPO-DA

Client Sample ID: MW-106-20 Lab Sample ID: 320-68519-10 Date Collected: 01/01/21 11:22

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluoroheptanoic acid (PFHpA)	0.29	JI	1.7	0.22	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.73	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.63	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluorobutanesulfonic acid	0.37	J	1.7		ng/L			01/07/21 04:37	1
(PFBS)	0.0.								
Perfluorohexanesulfonic acid (PFHxS)	2.6		1.7	0.49	ng/L		01/06/21 11:16	01/07/21 04:37	1
Perfluorooctanesulfonic acid (PFOS)	1.3	JI	1.7	0.47	ng/L		01/06/21 11:16	01/07/21 04:37	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		01/06/21 11:16	01/07/21 04:37	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		01/06/21 11:16	01/07/21 04:37	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		01/06/21 11:16	01/07/21 04:37	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		01/06/21 11:16	01/07/21 04:37	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.7	0.28	ng/L		01/06/21 11:16	01/07/21 04:37	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		01/06/21 11:16	01/07/21 04:37	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	101		25 - 150					01/07/21 04:37	1
13C4 PFHpA	106		25 - 150				01/06/21 11:16	01/07/21 04:37	1
13C4 PFOA	109		25 - 150				01/06/21 11:16	01/07/21 04:37	1
13C5 PFNA	110		25 - 150				01/06/21 11:16	01/07/21 04:37	1
13C2 PFDA	108		25 - 150					01/07/21 04:37	1
13C2 PFUnA	102		25 - 150					01/07/21 04:37	1
13C2 PFDoA	95		25 - 150 25 - 150					01/07/21 04:37	1
13C2 PFTeDA	121		25 - 150 25 - 150					01/07/21 04:37	1
13C3 PFBS	99		25 - 150 25 - 150					01/07/21 04:37	1
1802 PFHxS	104		25 - 150					01/07/21 04:37	1
13C4 PFOS	102		25 - 150					01/07/21 04:37	1
d3-NMeFOSAA	90		25 - 150					01/07/21 04:37	1
d5-NEtFOSAA	97		25 - 150				01/06/21 11:16	01/07/21 04:37	1

01/06/21 11:16 01/07/21 04:37

25 - 150

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-7-20 Lab Sample ID: 320-68519-11

Date Collected: 12/30/20 10:11 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.2	J	1.8	0.52	ng/L		01/06/21 11:16	01/07/21 04:46	•
Perfluoroheptanoic acid (PFHpA)	0.91	J	1.8	0.22	ng/L		01/06/21 11:16	01/07/21 04:46	•
Perfluorooctanoic acid (PFOA)	1.1	J	1.8	0.76	ng/L		01/06/21 11:16	01/07/21 04:46	•
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 04:46	
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 04:46	
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		01/06/21 11:16	01/07/21 04:46	
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 04:46	
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 04:46	
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		01/06/21 11:16	01/07/21 04:46	
Perfluorobutanesulfonic acid (PFBS)	0.43	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 04:46	
Perfluorohexanesulfonic acid (PFHxS)	1.0	J	1.8	0.51	ng/L		01/06/21 11:16	01/07/21 04:46	
Perfluorooctanesulfonic acid (PFOS)	4.8		1.8	0.48	ng/L		01/06/21 11:16	01/07/21 04:46	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 04:46	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5		ng/L		01/06/21 11:16	01/07/21 04:46	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		01/06/21 11:16	01/07/21 04:46	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		01/06/21 11:16	01/07/21 04:46	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 04:46	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 04:46	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	102		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C4 PFHpA	112		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C4 PFOA	113		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C5 PFNA	113		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C2 PFDA	113		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C2 PFUnA	113		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C2 PFDoA	103		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C2 PFTeDA	120		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C3 PFBS	99		25 - 150				01/06/21 11:16	01/07/21 04:46	
1802 PFHxS	107		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C4 PFOS	104		25 - 150				01/06/21 11:16	01/07/21 04:46	
d3-NMeFOSAA	93		25 - 150				01/06/21 11:16	01/07/21 04:46	
d5-NEtFOSAA	100		25 - 150				01/06/21 11:16	01/07/21 04:46	
13C3 HFPO-DA	107		25 - 150				01/06/21 11:16	01/07/21 04:46	

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Date Received: 01/05/21 17:20

Client Sample ID: MW-107-20 Lab Sample ID: 320-68519-12 Date Collected: 12/30/20 10:01

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	0.56	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluoroheptanoic acid (PFHpA)	0.89	J	1.9	0.24	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorooctanoic acid (PFOA)	1.3	J	1.9	0.82	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.70	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorohexanesulfonic acid (PFHxS)	1.1	J	1.9	0.55	ng/L		01/06/21 11:16	01/07/21 04:56	1
Perfluorooctanesulfonic acid (PFOS)	4.5		1.9	0.52	ng/L		01/06/21 11:16	01/07/21 04:56	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.2	ng/L		01/06/21 11:16	01/07/21 04:56	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.2	ng/L		01/06/21 11:16	01/07/21 04:56	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		01/06/21 11:16	01/07/21 04:56	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8	1.4	ng/L		01/06/21 11:16	01/07/21 04:56	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.9	0.31	ng/L		01/06/21 11:16	01/07/21 04:56	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		01/06/21 11:16	01/07/21 04:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	99	-	25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C4 PFHpA	106		25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C4 PFOA	104		25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C5 PFNA	110		25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C2 PFDA	101		25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C2 PFUnA	106		25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C2 PFDoA	103		25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C2 PFTeDA	119		25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C3 PFBS	94		25 - 150					01/07/21 04:56	1
1802 PFHxS	102		25 - 150				01/06/21 11:16	01/07/21 04:56	1
13C4 PFOS	99		25 - 150				01/06/21 11:16	01/07/21 04:56	1
d3-NMeFOSAA	93		25 - 150					01/07/21 04:56	1
d5-NEtFOSAA	95		25 - 150					01/07/21 04:56	1
13C3 HFPO-DA	99		25 - 150					01/07/21 04:56	1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Date Received: 01/05/21 17:20

Client Sample ID: MW-8-20 Lab Sample ID: 320-68519-13 Date Collected: 01/01/21 13:53

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.51	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.64	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorohexanesulfonic acid (PFHxS)	0.62	J	1.7	0.50	ng/L		01/06/21 11:16	01/07/21 05:05	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.47	ng/L		01/06/21 11:16	01/07/21 05:05	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.0	ng/L		01/06/21 11:16	01/07/21 05:05	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.1	ng/L		01/06/21 11:16	01/07/21 05:05	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		01/06/21 11:16	01/07/21 05:05	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		01/06/21 11:16	01/07/21 05:05	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.7	0.28	ng/L		01/06/21 11:16	01/07/21 05:05	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		01/06/21 11:16	01/07/21 05:05	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	106		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C4 PFHpA	111		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C4 PFOA	111		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C5 PFNA	117		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C2 PFDA	113		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C2 PFUnA	119		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C2 PFDoA	110		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C2 PFTeDA	132		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C3 PFBS	103		25 - 150				01/06/21 11:16	01/07/21 05:05	1
1802 PFHxS	104		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C4 PFOS	108		25 - 150				01/06/21 11:16	01/07/21 05:05	1
d3-NMeFOSAA	98		25 - 150				01/06/21 11:16	01/07/21 05:05	1
d5-NEtFOSAA	106		25 - 150				01/06/21 11:16	01/07/21 05:05	1
13C3 HFPO-DA	110		25 - 150				01/06/21 11:16	01/07/21 05:05	1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Date Received: 01/05/21 17:20

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-68519-14 **Client Sample ID: MW-9-20** Date Collected: 12/30/20 17:34

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.6		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluoroheptanoic acid (PFHpA)	2.0		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorooctanoic acid (PFOA)	1.0	J	1.8	0.76	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorobutanesulfonic acid (PFBS)	0.66	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorohexanesulfonic acid (PFHxS)	11		1.8	0.51	ng/L		01/06/21 11:16	01/07/21 05:14	1
Perfluorooctanesulfonic acid (PFOS)	92		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 05:14	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		01/06/21 11:16	01/07/21 05:14	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		01/06/21 11:16	01/07/21 05:14	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 05:14	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		01/06/21 11:16	01/07/21 05:14	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 05:14	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		01/06/21 11:16	01/07/21 05:14	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	109		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C4 PFHpA	113		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C4 PFOA	120		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C5 PFNA	122		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C2 PFDA	123		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C2 PFUnA	120		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C2 PFDoA	114		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C2 PFTeDA	119		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C3 PFBS	105		25 - 150				01/06/21 11:16	01/07/21 05:14	1
1802 PFHxS	109		25 - 150				01/06/21 11:16	01/07/21 05:14	1
13C4 PFOS	108		25 - 150				01/06/21 11:16	01/07/21 05:14	1

01/06/21 11:16 01/07/21 05:14

25 - 150

25 - 150

25 - 150

103

106

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-10-20 Lab Sample ID: 320-68519-15

Date Collected: 01/01/21 12:51 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	5.3		1.8	0.53	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluoroheptanoic acid (PFHpA)	1.8		1.8	0.23	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.78	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorobutanesulfonic acid (PFBS)	0.42	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorohexanesulfonic acid (PFHxS)	5.4		1.8	0.52	ng/L		01/06/21 11:16	01/07/21 05:24	1
Perfluorooctanesulfonic acid (PFOS)	39		1.8	0.49	ng/L		01/06/21 11:16	01/07/21 05:24	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		01/06/21 11:16	01/07/21 05:24	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		01/06/21 11:16	01/07/21 05:24	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 05:24	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		01/06/21 11:16	01/07/21 05:24	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		01/06/21 11:16	01/07/21 05:24	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		01/06/21 11:16	01/07/21 05:24	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	105		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C4 PFHpA	110		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C4 PFOA	119		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C5 PFNA	117		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C2 PFDA	106		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C2 PFUnA	115		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C2 PFDoA	101		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C2 PFTeDA	120		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C3 PFBS	101		25 - 150				01/06/21 11:16	01/07/21 05:24	1
1802 PFHxS	110		25 - 150				01/06/21 11:16	01/07/21 05:24	1
13C4 PFOS	107		25 - 150				01/06/21 11:16	01/07/21 05:24	1
d3-NMeFOSAA	97		25 - 150					01/07/21 05:24	1
d5-NEtFOSAA	105		25 - 150					01/07/21 05:24	1
13C3 HFPO-DA	109		25 - 150				01/06/21 11:16		1

Client: Shannon & Wilson, Inc Job ID: 320-68519-1

Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-11-15 Lab Sample ID: 320-68519-16

Date Collected: 12/31/20 11:06 **Matrix: Water** Date Received: 01/05/21 17:20

Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDOA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	180 19 92 2.2 1.3 ND ND ND ND ND	J	1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	0.48 1.1 0.63	ng/L ng/L ng/L ng/L ng/L ng/L		01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16	01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33	1 1 1 1
Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	92 2.2 1.3 ND ND ND ND ND	J	1.7 1.7 1.7 1.7 1.7 1.7 1.7	0.74 0.23 0.27 0.96 0.48 1.1 0.63	ng/L ng/L ng/L ng/L ng/L ng/L		01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16	01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33	1 1 1 1
Perfluorononanoic acid (PFNA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	2.2 1.3 ND ND ND ND ND	J	1.7 1.7 1.7 1.7 1.7 1.7	0.23 0.27 0.96 0.48 1.1 0.63	ng/L ng/L ng/L ng/L ng/L		01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16	01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33	1 1 1 1
Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	1.3 ND ND ND ND ND	J	1.7 1.7 1.7 1.7 1.7	0.27 0.96 0.48 1.1 0.63	ng/L ng/L ng/L ng/L ng/L		01/06/21 11:16 01/06/21 11:16 01/06/21 11:16 01/06/21 11:16	01/07/21 05:33 01/07/21 05:33 01/07/21 05:33 01/07/21 05:33	1 1 1 1
Perfluoroundecanoic acid (PFUnA) Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	ND ND ND ND	J	1.7 1.7 1.7 1.7	0.96 0.48 1.1 0.63	ng/L ng/L ng/L ng/L		01/06/21 11:16 01/06/21 11:16 01/06/21 11:16	01/07/21 05:33 01/07/21 05:33 01/07/21 05:33	1 1 1
Perfluorododecanoic acid (PFDoA) Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	ND ND ND		1.7 1.7 1.7 1.7	0.48 1.1 0.63	ng/L ng/L ng/L		01/06/21 11:16 01/06/21 11:16	01/07/21 05:33 01/07/21 05:33	1
Perfluorotridecanoic acid (PFTriA) Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	ND ND 35		1.7 1.7 1.7	1.1 0.63	ng/L ng/L		01/06/21 11:16	01/07/21 05:33	1
Perfluorotetradecanoic acid (PFTeA) Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	ND 35		1.7 1.7	0.63	ng/L				
Perfluorobutanesulfonic acid (PFBS) N-methylperfluorooctanesulfonamidoa	35		1.7				01/06/21 11:16	01/07/21 05:33	1
(PFBS) N-methylperfluorooctanesulfonamidoa				0.17	ng/L				I
	ND				•		01/06/21 11:16	01/07/21 05:33	1
cetic acid (NMeFOSAA)			4.3	1.0	ng/L		01/06/21 11:16	01/07/21 05:33	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3		ng/L		01/06/21 11:16	01/07/21 05:33	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21			01/06/21 11:16	01/07/21 05:33	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5		ng/L		01/06/21 11:16	01/07/21 05:33	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.7	0.28	ng/L		01/06/21 11:16	01/07/21 05:33	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		01/06/21 11:16	01/07/21 05:33	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	103		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C4 PFHpA	104		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C4 PFOA	110		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C5 PFNA	81		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C2 PFDA	106		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C2 PFUnA	112		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C2 PFDoA	109		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C2 PFTeDA	122		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C3 PFBS	105		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C4 PFOS	71		25 - 150				01/06/21 11:16	01/07/21 05:33	1
d3-NMeFOSAA	100		25 - 150				01/06/21 11:16	01/07/21 05:33	1
d5-NEtFOSAA	103		25 - 150				01/06/21 11:16	01/07/21 05:33	1
13C3 HFPO-DA	112		25 - 150				01/06/21 11:16	01/07/21 05:33	1
Method: 537 (modified) - Fluc	rinated Alky	/I Substan	ces - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 537 (modified) - Flu	orinated Alky	/I Substan	ces - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanesulfonic acid (PFHxS)	830		35	9.9	ng/L		01/06/21 11:16	01/07/21 19:53	20
Perfluorooctanesulfonic acid (PFOS)	6100		35	9.4	ng/L		01/06/21 11:16	01/07/21 19:53	20
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1802 PFHxS	103		25 - 150				01/06/21 11:16	01/07/21 19:53	20
13C4 PFOS	97		25 - 150				01/06/21 11:16	01/07/21 19:53	20

Page 23 of 40

Client: Shannon & Wilson, Inc Job ID: 320-68519-1 Project/Site: ADOT+PF GUSTAVUS

Date Received: 01/05/21 17:20

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-68519-17 **Client Sample ID: MW-12-10** Date Collected: 12/31/20 09:33

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	13		1.8	0.51	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluoroheptanoic acid (PFHpA)	15		1.8	0.22	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorooctanoic acid (PFOA)	9.5		1.8	0.75	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorononanoic acid (PFNA)	2.6		1.8	0.24	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorodecanoic acid (PFDA)	0.51	J	1.8	0.27	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.48	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.1	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.64	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorobutanesulfonic acid (PFBS)	0.68	J	1.8	0.18	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorohexanesulfonic acid (PFHxS)	31		1.8	0.50	ng/L		01/06/21 11:16	01/07/21 19:44	1
Perfluorooctanesulfonic acid (PFOS)	100		1.8	0.47	ng/L		01/06/21 11:16	01/07/21 19:44	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		01/06/21 11:16	01/07/21 19:44	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.1	ng/L		01/06/21 11:16	01/07/21 19:44	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		01/06/21 11:16	01/07/21 19:44	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		01/06/21 11:16	01/07/21 19:44	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8		ng/L		01/06/21 11:16	01/07/21 19:44	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		01/06/21 11:16	01/07/21 19:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	101		25 - 150				01/06/21 11:16	01/07/21 19:44	1
13C4 PFHpA	106		25 - 150				01/06/21 11:16	01/07/21 19:44	1
13C4 PFOA	107		25 - 150				01/06/21 11:16	01/07/21 19:44	1
13C5 PFNA	109		25 - 150				01/06/21 11:16	01/07/21 19:44	1
13C2 PFDA	110		25 - 150				01/06/21 11:16	01/07/21 19:44	1
13C2 PFUnA	99		25 - 150				01/06/21 11:16	01/07/21 19:44	1
13C2 PFDoA	89		25 - 150				01/06/21 11:16	01/07/21 19:44	1
13C2 PFTeDA	106		25 - 150					01/07/21 19:44	1
13C3 PFBS	99		25 - 150					01/07/21 19:44	1
1802 PFHxS	102		25 - 150					01/07/21 19:44	1
13C4 PFOS	101		25 - 150					01/07/21 19:44	1
d3-NMeFOSAA	92		25 - 150					01/07/21 19:44	1
	<u></u> .								

25 - 150

25 - 150

92

Client: Shannon & Wilson, Inc Job ID: 320-68519-1 Project/Site: ADOT+PF GUSTAVUS

Date Received: 01/05/21 17:20

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-68519-18 **Client Sample ID: MW-112-10** Date Collected: 12/31/20 09:23

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	13		1.8	0.54	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluoroheptanoic acid (PFHpA)	15		1.8	0.23	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluorooctanoic acid (PFOA)	8.8		1.8	0.79	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluorononanoic acid (PFNA)	2.5		1.8	0.25	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluorodecanoic acid (PFDA)	0.65	J	1.8	0.29	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.51	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluorobutanesulfonic acid (PFBS)	0.71	J	1.8	0.18	ng/L		01/06/21 11:34	01/07/21 06:10	1
Perfluorohexanesulfonic acid (PFHxS)	29		1.8	0.53	ng/L			01/07/21 06:10	1
Perfluorooctanesulfonic acid (PFOS)	100		1.8	0.50			01/06/21 11:34	01/07/21 06:10	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6		ng/L		01/06/21 11:34	01/07/21 06:10	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		01/06/21 11:34	01/07/21 06:10	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		01/06/21 11:34	01/07/21 06:10	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		01/06/21 11:34	01/07/21 06:10	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.30	ng/L		01/06/21 11:34	01/07/21 06:10	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		01/06/21 11:34	01/07/21 06:10	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	98		25 - 150				01/06/21 11:34	01/07/21 06:10	1
13C4 PFHpA	103		25 - 150				01/06/21 11:34	01/07/21 06:10	1
13C4 PFOA	102		25 - 150				01/06/21 11:34	01/07/21 06:10	1
13C5 PFNA	101		25 - 150				01/06/21 11:34	01/07/21 06:10	1
13C2 PFDA	101		25 - 150				01/06/21 11:34	01/07/21 06:10	1
13C2 PFUnA	101		25 - 150				01/06/21 11:34	01/07/21 06:10	1
13C2 PFDoA	98		25 - 150					01/07/21 06:10	1
13C2 PFTeDA	112		25 - 150				01/06/21 11:34	01/07/21 06:10	1
13C3 PFBS	93		25 - 150				01/06/21 11:34	01/07/21 06:10	1
1802 PFHxS	99		25 - 150					01/07/21 06:10	1
13C4 PFOS	94		25 - 150					01/07/21 06:10	1

01/06/21 11:34 01/07/21 06:10

01/06/21 11:34 01/07/21 06:10

25 - 150

25 - 150

103

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150
320-68519-1	MW-1-15	109	116	116	118	113	115	106	127
320-68519-2	MW-1-40	96	101	103	106	94	107	97	108
320-68519-3	MW-2-20	112	115	116	116	115	122	82	132
320-68519-4	MW-2-30	96	100	100	99	99	101	98	112
320-68519-5	MW-3-15	102	102	112	113	108	112	108	119
320-68519-6	MW-3-40	104	109	110	112	106	105	103	123
320-68519-7	MW-4-20	106	110	116	122	118	114	104	119
320-68519-8	MW-5-20	96	109	112	111	110	109	97	114
320-68519-9	MW-6-20	109	114	118	119	107	119	115	133
320-68519-10	MW-106-20	101	106	109	110	108	102	95	121
320-68519-11	MW-7-20	102	112	113	113	113	113	103	120
320-68519-12	MW-107-20	99	106	104	110	101	106	103	119
320-68519-13	MW-8-20	106	111	111	117	113	119	110	132
320-68519-14	MW-9-20	109	113	120	122	123	120	114	119
320-68519-15	MW-10-20	105	110	119	117	106	115	101	120
320-68519-16	MW-11-15	103	104	110	81	106	112	109	122
320-68519-16 - DL	MW-11-15								
320-68519-17	MW-12-10	101	106	107	109	110	99	89	106
320-68519-18	MW-112-10	98	103	102	101	101	101	98	112
LCS 320-448909/2-A	Lab Control Sample	96	105	102	102	106	107	106	112
LCSD 320-448909/3-A	Lab Control Sample Dup	95	103	109	107	102	105	103	119
MB 320-448909/1-A	Method Blank	101	110	111	112	107	107	104	119
			Dorce	nt leatona	Dilution Re	covery (Ac	centance I	imite\	

MB 320-448909/1-A	Method Blank	101	110	111	112	107	107	104	119
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance Lir	nits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)		
320-68519-1	MW-1-15	106	113	108	94	106	114		
320-68519-2	MW-1-40	95	102	98	87	92	102		
320-68519-3	MW-2-20	102	114	111	107	114	110		
320-68519-4	MW-2-30	92	96	100	88	94	96		
320-68519-5	MW-3-15	99	104	102	91	101	102		
320-68519-6	MW-3-40	102	102	104	91	99	103		
320-68519-7	MW-4-20	101	111	110	100	99	110		
320-68519-8	MW-5-20	100	105	104	93	99	106		
320-68519-9	MW-6-20	107	112	111	96	111	109		
320-68519-10	MW-106-20	99	104	102	90	97	100		
320-68519-11	MW-7-20	99	107	104	93	100	107		
320-68519-12	MW-107-20	94	102	99	93	95	99		
320-68519-13	MW-8-20	103	104	108	98	106	110		
320-68519-14	MW-9-20	105	109	108	103	106	111		
320-68519-15	MW-10-20	101	110	107	97	105	109		
320-68519-16	MW-11-15	105		71	100	103	112		
320-68519-16 - DL	MW-11-15		103	97					
320-68519-17	MW-12-10	99	102	101	92	92	101		
320-68519-18	MW-112-10	93	99	94	93	103	94		
LCS 320-448909/2-A	Lab Control Sample	98	99	99	91	94	107		
LCSD 320-448909/3-A	Lab Control Sample Dup	99	104	98	88	90	115		
MB 320-448909/1-A	Method Blank	106	106	102	92	95	113		

Surrogate Legend

PFHxA = 13C2 PFHxA

Eurofins TestAmerica, Sacramento

Page 26 of 40

Job ID: 320-68519-1

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS

PECV SILE: ADOT+PF G
C4PFHA = 13C4 PFHA
PFOA = 13C4 PFOA
PFNA = 13C5 PFNA
PFDA = 13C2 PFDA
PFUNA = 13C2 PFUNA
PFDOA = 13C2 PFDOA
PFTDA = 13C2 PFTEDA
C3PFBS = 13C3 PFBS
PFHXS = 18O2 PFHXS

PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA Job ID: 320-68519-1

3

4

5

_

Ė

9

a a

16

14

Client: Shannon & Wilson, Inc Job ID: 320-68519-1 Project/Site: ADOT+PF GUSTAVUS

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-448909/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 449115 **Prep Batch: 448909**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		01/06/21 11:16	01/07/21 02:26	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		01/06/21 11:16	01/07/21 02:26	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		01/06/21 11:16	01/07/21 02:26	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		01/06/21 11:16	01/07/21 02:26	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		01/06/21 11:16	01/07/21 02:26	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		01/06/21 11:16	01/07/21 02:26	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		01/06/21 11:16	01/07/21 02:26	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		01/06/21 11:16	01/07/21 02:26	1
	MD	MD							

· · /					
	MB M	1B			
Isotope Dilution	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	101	25 - 150	01/06/21 11: 16	01/0721 02: 26	1
13C4 PFHpA	110	25 - 150	01/06/21 11: 16	01/07/21 02: 26	1
13C4 PFOA	111	25 - 150	01/06/21 11: 16	01/07/21 02: 26	1
13C5 PFNA	112	25 - 150	01/06/21 11: 16	01/07/21 02: 26	1
13C2 PFDA	107	25 - 150	01/06/21 11: 16	01/07/21 02: 26	
13C2 PFUnA	107	25 - 150	01/06/21 11: 16	01/07/21 02: 26	
13C2 PFDoA	104	25 - 150	01/06/21 11: 16	01/07/21 02: 26	
13C2 PFTeDA	119	25 - 150	01/06/21 11: 16	01/07/21 02: 26	1
13C3 PFBS	106	25 - 150	01/06/21 11: 16	01/07/21 02: 26	
18O2 PFHxS	106	25 - 150	01/06/21 11: 16	01/07/21 02: 26	
13C4 PFOS	102	25 - 150	01/06/21 11: 16	01/07/21 02: 26	
d3-NMeFOSAA	92	25 - 150	01/06/21 11: 16	01/0721 02: 26	1
d5-NEtFOSAA	95	25 - 150	01/06/21 11: 16	01/0721 02: 26	1

25 - 150

113

Lab Sample ID: LCS 320-448909/2-A

Matrix: Water

13C3 HFPODA

Analysis Batch: 449115

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 448909
	%Rec.

01/06/21 11: 16 01/07/21 02: 26

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	43.1		ng/L		108	73 - 133	
Perfluoroheptanoic acid (PFHpA)	40.0	40.5		ng/L		101	72 - 132	
Perfluorooctanoic acid (PFOA)	40.0	41.7		ng/L		104	70 - 130	
Perfluorononanoic acid (PFNA)	40.0	40.0		ng/L		100	75 - 135	

1/8/2021

Page 28 of 40

son, Inc Job ID: 320-68519-1

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-448909/2-A

Matrix: Water

acid (ADONA)

Analysis Batch: 449115

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 448909

Analysis Batch: 449115							Prep Batch: 448909
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorodecanoic acid (PFDA)	40.0	41.9		ng/L		105	76 - 136
Perfluoroundecanoic acid	40.0	43.7		ng/L		109	68 - 128
(PFUnA)							
Perfluorododecanoic acid	40.0	43.9		ng/L		110	71 - 131
(PFDoA)							
Perfluorotridecanoic acid	40.0	43.0		ng/L		108	71 - 131
(PFTriA)							
Perfluorotetradecanoic acid	40.0	42.7		ng/L		107	70 - 130
(PFTeA)							
Perfluorobutanesulfonic acid	35.4	37.7		ng/L		107	67 ₋ 127
(PFBS)							
Perfluorohexanesulfonic acid	36.4	34.1		ng/L		94	59 - 119
(PFHxS)							
Perfluorooctanesulfonic acid	37.1	37.2		ng/L		100	70 - 130
(PFOS)							
9-Chlorohexadecafluoro-3-oxan	37.3	42.3		ng/L		113	75 - 135
onane-1-sulfonic acid	40.0	00.5		/1		00	54 470
Hexafluoropropylene Oxide	40.0	38.5		ng/L		96	51 - 173
Dimer Acid (HFPO-DA)	07.7	45.7	.	/1		404	F4 444
11-Chloroeicosafluoro-3-oxaund	37.7	45.7	" +	ng/L		121	54 - 114
ecane-1-sulfonic acid		40.0				440	70. 400
4,8-Dioxa-3H-perfluorononanoic	37.7	42.2		ng/L		112	79 - 139

LCS LCS

Isotope Dilution	%Recovery (Qualifier	Limits
13C2 PFHxA	96		25 - 150
13C4 PFHpA	105		25 - 150
13C4 PFOA	102		25 - 150
13C5 PFNA	102		25 - 150
13C2 PFDA	106		25 - 150
13C2 PFUnA	107		25 - 150
13C2 PFDoA	106		25 - 150
13C2 PFTeDA	112		25 - 150
13C3 PFBS	98		25 - 150
18O2 PFHxS	99		25 - 150
13C4 PFOS	99		25 - 150
d3-NMeFOSAA	91		25 - 150
d5-NEtFOSAA	94		25 - 150
13C3 HFPODA	107		25 - 150

Lab Sample ID: LCSD 320-448909/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Water
Analysis Batch: 449115

Prep Type: Total/NA Prep Batch: 448909

Perfluorohexanoic acid (PFHxA) Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) Perfluorononanoic acid (PFNA)									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	44.0		ng/L		110	73 - 133	2	30
Perfluoroheptanoic acid (PFHpA)	40.0	43.2		ng/L		108	72 - 132	6	30
Perfluorooctanoic acid (PFOA)	40.0	39.2		ng/L		98	70 - 130	6	30
Perfluorononanoic acid (PFNA)	40.0	37.6		ng/L		94	75 - 135	6	30
Perfluorodecanoic acid (PFDA)	40.0	45.1		ng/L		113	76 - 136	7	30
Perfluoroundecanoic acid	40.0	41.0		ng/L		103	68 - 128	6	30
(PFUnA)									

Eurofins TestAmerica, Sacramento

Page 29 of 40

6

3

4

6

8

9

11

12

14

13

1/8/2021

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-68519-1 Project/Site: ADOT+PF GUSTAVUS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320-448909/3-A

Matrix: Water

Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaund

ecane-1-sulfonic acid

acid (ADONA)

4,8-Dioxa-3H-perfluorononanoic

Analysis Batch: 449115

Client Sample ID: Lab Control Sample Dup

127

108

54 - 114

79 - 139

Prep Type: Total/NA Prep Batch: 448909

Analysis Batch: 449115							Prep Ba	aten: 44	10909
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorododecanoic acid (PFDoA)	40.0	42.9		ng/L		107	71 - 131	2	30
Perfluorotridecanoic acid (PFTriA)	40.0	49.9		ng/L		125	71 - 131	15	30
Perfluorotetradecanoic acid (PFTeA)	40.0	44.2		ng/L		110	70 - 130	3	30
Perfluorobutanesulfonic acid (PFBS)	35.4	38.0		ng/L		108	67 - 127	1	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	33.4		ng/L		92	59 - 119	2	30
Perfluorooctanesulfonic acid (PFOS)	37.1	37.1		ng/L		100	70 - 130	0	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	39.8		ng/L		107	75 - 135	6	30
Hexafluoropropylene Oxide	40.0	37.1		ng/L		93	51 - 173	4	30

37.7

37.7

47.8 *+

40.8

ng/L

ng/L

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	95		25 - 150
13C4 PFHpA	103		25 - 150
13C4 PFOA	109		25 - 150
13C5 PFNA	107		25 - 150
13C2 PFDA	102		25 - 150
13C2 PFUnA	105		25 - 150
13C2 PFDoA	103		25 - 150
13C2 PFTeDA	119		25 - 150
13C3 PFBS	99		25 - 150
1802 PFHxS	104		25 - 150
13C4 PFOS	98		25 - 150
d3-NMeFOSAA	88		25 - 150
d5-NEtFOSAA	90		25 - 150
13C3 HFPODA	115		25 - 150

30

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-68519-1 Project/Site: ADOT+PF GUSTAVUS

LCMS

Prep Batch: 448909

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
320-68519-1	MW-1-15	Total/NA	Water	3535	
320-68519-2	MW-1-40	Total/NA	Water	3535	
320-68519-3	MW-2-20	Total/NA	Water	3535	
320-68519-4	MW-2-30	Total/NA	Water	3535	
320-68519-5	MW-3-15	Total/NA	Water	3535	
320-68519-6	MW-3-40	Total/NA	Water	3535	
320-68519-7	MW-4-20	Total/NA	Water	3535	
320-68519-8	MW-5-20	Total/NA	Water	3535	
320-68519-9	MW-6-20	Total/NA	Water	3535	
320-68519-10	MW-106-20	Total/NA	Water	3535	
320-68519-11	MW-7-20	Total/NA	Water	3535	
320-68519-12	MW-107-20	Total/NA	Water	3535	
320-68519-13	MW-8-20	Total/NA	Water	3535	
320-68519-14	MW-9-20	Total/NA	Water	3535	
320-68519-15	MW-10-20	Total/NA	Water	3535	
320-68519-16	MW-11-15	Total/NA	Water	3535	
320-68519-16 - DL	MW-11-15	Total/NA	Water	3535	
320-68519-17	MW-12-10	Total/NA	Water	3535	
320-68519-18	MW-112-10	Total/NA	Water	3535	
MB 320-448909/1-A	Method Blank	Total/NA	Water	3535	
_CS 320-448909/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-448909/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 449115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68519-1	MW-1-15	Total/NA	Water	537 (modified)	448909
320-68519-2	MW-1-40	Total/NA	Water	537 (modified)	448909
320-68519-3	MW-2-20	Total/NA	Water	537 (modified)	448909
320-68519-4	MW-2-30	Total/NA	Water	537 (modified)	448909
320-68519-5	MW-3-15	Total/NA	Water	537 (modified)	448909
320-68519-6	MW-3-40	Total/NA	Water	537 (modified)	448909
320-68519-7	MW-4-20	Total/NA	Water	537 (modified)	448909
320-68519-8	MW-5-20	Total/NA	Water	537 (modified)	448909
320-68519-9	MW-6-20	Total/NA	Water	537 (modified)	448909
320-68519-10	MW-106-20	Total/NA	Water	537 (modified)	448909
320-68519-11	MW-7-20	Total/NA	Water	537 (modified)	448909
320-68519-12	MW-107-20	Total/NA	Water	537 (modified)	448909
320-68519-13	MW-8-20	Total/NA	Water	537 (modified)	448909
320-68519-14	MW-9-20	Total/NA	Water	537 (modified)	448909
320-68519-15	MW-10-20	Total/NA	Water	537 (modified)	448909
320-68519-16	MW-11-15	Total/NA	Water	537 (modified)	448909
320-68519-18	MW-112-10	Total/NA	Water	537 (modified)	448909
MB 320-448909/1-A	Method Blank	Total/NA	Water	537 (modified)	448909
LCS 320-448909/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	448909
LCSD 320-448909/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	448909

Analysis Batch: 449380

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68519-16 - DL	MW-11-15	Total/NA	Water	537 (modified)	448909
320-68519-17	MW-12-10	Total/NA	Water	537 (modified)	448909

Page 31 of 40

10

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-1-15 Date Collected: 12/30/20 12:19

Lab Sample ID: 320-68519-1

Matrix: Water

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			275.2 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 02:54	JY1	TAL SAC

Lab Sample ID: 320-68519-2 Client Sample ID: MW-1-40

Date Collected: 12/30/20 11:44 **Matrix: Water**

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			271.5 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 03:03	JY1	TAL SAC

Client Sample ID: MW-2-20 Lab Sample ID: 320-68519-3

Date Collected: 12/31/20 15:16 **Matrix: Water**

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			282.5 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 03:13	JY1	TAL SAC

Client Sample ID: MW-2-30 Lab Sample ID: 320-68519-4 **Matrix: Water**

Date Collected: 12/31/20 15:53 Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			279.1 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 03:22	JY1	TAL SAC

Client Sample ID: MW-3-15 Lab Sample ID: 320-68519-5 Date Collected: 12/30/20 15:16 **Matrix: Water**

Date Received: 01/05/21 17:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep	3535	_ Kuii	-actor	276 mL	10.0 mL	448909	01/06/21 11:16		TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 03:32	JY1	TAL SAC

Client Sample ID: MW-3-40 Lab Sample ID: 320-68519-6 Date Collected: 12/30/20 14:37 **Matrix: Water**

Date Received: 01/05/21 17:20

Analysis

537 (modified)

Total/NA

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3535 276.1 mL 10.0 mL 448909 01/06/21 11:16 CG TAL SAC

Eurofins TestAmerica, Sacramento

01/07/21 03:41 JY1

449115

TAL SAC

10

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-4-20

Lab Sample ID: 320-68519-7 Date Collected: 12/31/20 13:08

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 320-68519-10

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			278.9 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 03:50	JY1	TAL SAC

Client Sample ID: MW-5-20 Lab Sample ID: 320-68519-8

Date Collected: 01/01/21 15:25 **Matrix: Water**

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			276.8 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 04:18	JY1	TAL SAC

Lab Sample ID: 320-68519-9 **Client Sample ID: MW-6-20**

Date Collected: 01/01/21 11:32

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			278.3 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 04:28	JY1	TAL SAC

Client Sample ID: MW-106-20

Date Collected: 01/01/21 11:22

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			289.6 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 04:37	JY1	TAL SAC

Lab Sample ID: 320-68519-11 Client Sample ID: MW-7-20 Date Collected: 12/30/20 10:11 **Matrix: Water**

Date Received: 01/05/21 17:20

D T	Batch	Batch		Dil	Initial	Final	Batch	Prepared	A 1 4	1
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			280.7 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 04:46	JY1	TAL SAC

Lab Sample ID: 320-68519-12 Client Sample ID: MW-107-20 Date Collected: 12/30/20 10:01 **Matrix: Water**

Date Received: 01/05/21 17:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			260.7 mL	10.0 mL	448909	01/06/21 11:16		TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 04:56	.IY1	TAL SAC

Eurofins TestAmerica, Sacramento

Job ID: 320-68519-1

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS

Client Sample ID: MW-8-20

Lab Sample ID: 320-68519-13

Matrix: Water

Matrix: Water

Date Collected: 01/01/21 13:53 Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			286.5 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 05:05	JY1	TAL SAC

Client Sample ID: MW-9-20 Lab Sample ID: 320-68519-14

Date Collected: 12/30/20 17:34 **Matrix: Water**

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			277.9 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 05:14	JY1	TAL SAC

Client Sample ID: MW-10-20 Lab Sample ID: 320-68519-15

Date Collected: 01/01/21 12:51

Date Received: 01/05/21 17:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			273.7 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 05:24	JY1	TAL SAC

Client Sample ID: MW-11-15 Lab Sample ID: 320-68519-16 Date Collected: 12/31/20 11:06 **Matrix: Water**

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			287.5 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 05:33	JY1	TAL SAC
Total/NA	Prep	3535	DL		287.5 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)	DL	20			449380	01/07/21 19:53	S1M	TAL SAC

Client Sample ID: MW-12-10 Lab Sample ID: 320-68519-17 Date Collected: 12/31/20 09:33 **Matrix: Water**

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			284.8 mL	10.0 mL	448909	01/06/21 11:16	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449380	01/07/21 19:44	S1M	TAL SAC

Client Sample ID: MW-112-10 Lab Sample ID: 320-68519-18

Date Collected: 12/31/20 09:23 Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			270.4 mL	10.0 mL	448909	01/06/21 11:34	CG	TAL SAC
Total/NA	Analysis	537 (modified)		1			449115	01/07/21 06:10	JY1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Sacramento

Page 34 of 40

1/8/2021

Matrix: Water

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-68519-1 Project/Site: ADOT+PF GUSTAVUS

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	02-01-21
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-2	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
√irginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20 *
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid.}$

Method Summary

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS

MethodMethod DescriptionProtocolLaboratory537 (modified)Fluorinated Alkyl SubstancesEPATAL SAC3535Solid-Phase Extraction (SPE)SW846TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-68519-1

__

-

4

5

6

9

10

12

IR

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: ADOT+PF GUSTAVUS Job ID: 320-68519-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-68519-1	MW-1-15	Water	12/30/20 12:19	01/05/21 17:20
320-68519-2	MW-1-40	Water	12/30/20 11:44	01/05/21 17:20
320-68519-3	MW-2-20	Water	12/31/20 15:16	01/05/21 17:20
320-68519-4	MW-2-30	Water	12/31/20 15:53	01/05/21 17:20
20-68519-5	MW-3-15	Water	12/30/20 15:16	01/05/21 17:20
20-68519-6	MW-3-40	Water	12/30/20 14:37	01/05/21 17:20
20-68519-7	MW-4-20	Water	12/31/20 13:08	01/05/21 17:20
0-68519-8	MW-5-20	Water	01/01/21 15:25	01/05/21 17:20
20-68519-9	MW-6-20	Water	01/01/21 11:32	01/05/21 17:20
20-68519-10	MW-106-20	Water	01/01/21 11:22	01/05/21 17:20
0-68519-11	MW-7-20	Water	12/30/20 10:11	01/05/21 17:20
20-68519-12	MW-107-20	Water	12/30/20 10:01	01/05/21 17:20
20-68519-13	MW-8-20	Water	01/01/21 13:53	01/05/21 17:20
20-68519-14	MW-9-20	Water	12/30/20 17:34	01/05/21 17:20
20-68519-15	MW-10-20	Water	01/01/21 12:51	01/05/21 17:20
20-68519-16	MW-11-15	Water	12/31/20 11:06	01/05/21 17:20
20-68519-17	MW-12-10	Water	12/31/20 09:33	01/05/21 17:20
20-68519-18	MW-112-10	Water	12/31/20 09:23	01/05/21 17:20

4

5

7

ŏ

40

11

14

14

:	_
9	Ì
1	
	<u>`</u>
1	\

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709	ON, INC. CHAIL	N-OF-CUSTODY	RECORD La	Page 1 of 2 boratory TEST AMERICA
(907) 479-0600 www.shannonwilson.cor	n		Analytical Methods (include preserva	tive if used)
Turn Around Time: Normal Rush	Quote No:			Remarks/Matrix Composition/Grab? Sample Containers
Please Specify	J	ate		Remarks/Matrix Composition/Grab?
Sample Identity		npled		Sample Containers
MW-1-15	1219 12/	30/20 X		2 Groundwater
MW-1-40	1144 12/	30/20 1		1
MW-2-20	1516 12/	31/20		
MW-Z-30		B1/20		
MW-3-15		30/20		
MW-3-40		30/20		
mw-4-20		320-68519 Cha	n of Custody	
MW - 5 - 20		1/21		
Mw-6-20		1/21		
mw-106-20		1/2)		
Project Information	Sample Receipt	Reliquished By: 1.	Reliquished By: 2.	Reliquished By: 3.
Number: 102599-011	Total No. of Containers:	Signature: Time: 6900	Signature: Time:	Signature: Time:
Name: ADOT+PF GUSTAV49		many from		
Contact: KRF	Received Good Cond./Cold	Printed Name: Date: 4444 She Ruchel Wills	Printed Name: Date:	Printed Name: Date:
Ongoing Project? Yes 📉 No	Temp 3.7%	Company:	Company:	Company:
Sampler. 12 - VO	Delivery Method:	Shannon+Wison		Joseph J.
No	tes:	Received By: 1.	Received By: 2.	Received By: 3.
		Signature: The: 1720	Signature: Time:	Signature: Time:
		Printed Name: Date: 1/5/21	Printed Name: Date:	Printed Name: Date:
Distribution: White - w/shipment - returner Yellow - w/shipment - for con Pink - Shannon & Wilson - jo	signee files	Company: ETA WSac	Company:	Company:

No. 36339

တ

G

4 | r

ယ ဂ

د | د

-	-
2	2
ć	Ž
1	
(_
1	Š
-	_

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL AND ENVIRONMENTAL CONTROL OF THE PROPERTY OF TH	ON, INC.	CHAII	N-OF-CL	JSTODY	RECO	ORD	Laboratory 15	Page 2 of 2 STAMERICA
Fairbanks, AK 99709 (907) 479-0600					Analytical Me	thods (include pr		
Turn Around Time: Normal Rush	Quote No:	es No]	7,20			Total Hunder of	Join Contract of the Contract
Please Specify	İ		Date O				Muri /	Remarks/Matrix
Sample Identity	Lab No.		Date mpled	* / /			1/20/	Composition/Grab? Sample Containers
MW-7-20			30/20 X				/ /	purdwater
MW-107-20			30/20 1					DW WICHCE
MW-8-20	13		1/21					
MW-9-20			30/20					
MW-10-20			1/21					
MW-11-15			31/20					
MW-12-10	C		131/20					
MW-112-10		723 12/	131/20					
Project Information	Sample Re	ceipt	Reliquish	ed By: 1.	Reliqu	ished By:	2. Reli	iquished By: 3.
Number: 102599-011	Total No. of Containers:	2	Signature:	Time: 1/4/10	Signature:	Time:_	Signature:	Time:
Name: ADOT+PF GUSTAVUS	COC Seals/Intact? Y/N/N	NA Y	there is					
Contact: KRF	Received Good Cond./Co	old	Printed Name:	Date: 1/4/21	Printed Name:	Date:_	Printed Nam	e: Date:
Ongoing Project? Yes No	Temp:	3.7 €	Rachel WY	11 5	Company:		Company:	
Sampler: RLW	Delivery Method:		Shannon+	wilson	Company.		Company.	
No	tes:		Receive		Rece	eived By: 2.	Re	eceived By: 3.
			Signature:) Time: 1710	Signature:	Time:_	Signature:	Time:
			Printed Name:	Date: 1/5/2	Printed Name:	Date:_	Printed Nam	e: Date:
Distribution: White - w/shipment - returned Yellow - w/shipment - for con Pink - Shannon & Wilson - jo	isignee files	aboratory repor	Company:		Company:		Company:	
· 10 Wn- 0-30	for 20	740	TU 1	15/21				No. 36201

No. 36201

Client: Shannon & Wilson, Inc

Job Number: 320-68519-1

Login Number: 68519

List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Her, David A

Creator: Her, David A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1469155/1469154
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Sacramento

Page 40 of 40

1/8/2021

Laboratory Data Review Checklist

Completed By:
Amber Masters
Title:
Environmental Scientist
Date:
January 8, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-68519-1
Laboratory Report Date:
January 8, 2021
CS Site Name:
DOT&PF Gustavus Airport Statewide PFAS
ADEC File Number:
2569.38.033
Hazard Identification Number:
26981

May 2020 Page 1

Laboratory Report Date:
Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
Yes⊠ No□ N/A□ Comments:
The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
The requested analyses were conducted by TestAmerica of West Sacramento, CA.
2. Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
•
$Yes \boxtimes No \square N/A \square$ Comments:
b. Correct analyses requested?
Yes⊠ No□ N/A□ Comments:
Testa IVII comments.
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
$Yes \square No \square N/A \boxtimes Comments:$
Samples do not require preservation other than temperature.
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
$Yes \boxtimes No \square N/A \square$ Comments:
The sample receipt form notes that the samples were received in good condition.

320-68519-1

	320-68519-1			
Lal	Laboratory Report Date:			
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?			
	$Yes \boxtimes No \square N/A \square$ Comments:			
	The sample receipt form indicates a discrepancy between the COC and a container label. This is detailed in the case narrative; see section 4.b.			
	e. Data quality or usability affected?			
	Comments:			
	The data quality and/or usability was not affected; see above.			
	4. <u>Case Narrative</u>			
	a. Present and understandable?			
	Yes \boxtimes No \square N/A \square Comments:			

es No N/A narrative indicates the formarrative in good conditions with this shipment was 3 ainer label for well MW-1 as MW-9-20, per the Colin our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 i	dition and properly preserved. The temperature of the sample constraints of the sample constraints. -9-30 did not match the COC entry. The laboratory logged the OC. (note: this is incorrect, however, the sample has been property.)
es No N/A narrative indicates the formarrative in good conditions with this shipment was 3 ainer label for well MW-1 as MW-9-20, per the Colin our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 in our database as MW-9 i	Comments: ollowing: dition and properly preserved. The temperature of the sample comments: 3.7 ° C upon arrival at the laboratory. -9-30 did not match the COC entry. The laboratory logged the OC. (note: this is incorrect, however, the sample has been properties) on the sample of the established ratio limits. The laboratory logged the OC. (note: this is incorrect, however, the sample has been properties) allytes has some degree of uncertainty. However, analyst judgment analytes: MW-1-40, MW-3-40, MW-4-20, MW-6-20 and MW-4-20, MW-4-2
narrative indicates the formal poles arrived in good condition with this shipment was 3 ainer label for well MW-n as MW-9-20, per the Colin our database as MW-9 sition mass ratio for the inverse identification of the arrive identification of the arrive aboratory flagged these stratory control sample (Lo	dition and properly preserved. The temperature of the sample of 3.7 ° C upon arrival at the laboratory. -9-30 did not match the COC entry. The laboratory logged the OC. (note: this is incorrect, however, the sample has been properties) allytes has some degree of uncertainty. However, analyst judgree analytes: MW-1-40, MW-3-40, MW-4-20, MW-6-20 and MW-8-3-40, MW-4-20, MW-6-20 and MW-8-3-40. We have applied a "J" flag to denote the estimated research.
oles arrived in good cond with this shipment was 3 ainer label for well MW- n as MW-9-20, per the Co in our database as MW-9 sition mass ratio for the in we identification of the ar- to positively identify the aboratory flagged these statory control sample (Lo	dition and properly preserved. The temperature of the sample of 3.7 °C upon arrival at the laboratory. -9-30 did not match the COC entry. The laboratory logged the OC. (note: this is incorrect, however, the sample has been propose-30) Indicated analytes were outside of the established ratio limits. The nalytes has some degree of uncertainty. However, analyst judgme analytes: MW-1-40, MW-3-40, MW-4-20, MW-6-20 and MW-4-3-40, MW-4-20, MW-6-20 and MW-4-3-40. We have applied a "J" flag to denote the estimated research.
with this shipment was 3 ainer label for well MW-1 as MW-9-20, per the Coin our database as MW-9 sition mass ratio for the inverse identification of the art to positively identify the aboratory flagged these stratory control sample (Lo	3.7 ° C upon arrival at the laboratory. -9-30 did not match the COC entry. The laboratory logged the OC. (note: this is incorrect, however, the sample has been properties). ndicated analytes were outside of the established ratio limits. The nalytes has some degree of uncertainty. However, analyst judgme analytes: MW-1-40, MW-3-40, MW-4-20, MW-6-20 and MW-4-3-40, MW-4-20, MW-6-20 and MW-4-3-40. We have applied a "J" flag to denote the estimated research.
in as MW-9-20, per the Co in our database as MW-9 sition mass ratio for the in we identification of the arm to positively identify the aboratory flagged these statory control sample (Lo	OC. (note: this is incorrect, however, the sample has been properties). OC. (note: this is incorrect, however, the sample has been properties). Indicated analytes were outside of the established ratio limits. The nalytes has some degree of uncertainty. However, analyst judgme analytes: MW-1-40, MW-3-40, MW-4-20, MW-6-20 and MW-4-3-40, MW-4-20, MW-6-20 and MW-4-4-20. OC. (note: this is incorrect, however, the sample has been properties).
to positively identify the aboratory flagged these stratory control sample (Le	nalytes has some degree of uncertainty. However, analyst judgme analytes: <i>MW-1-40</i> , <i>MW-3-40</i> , <i>MW-4-20</i> , <i>MW-6-20</i> and <i>MW-samples</i> . We have applied a "J" flag to denote the estimated results.
• • • • • • • • • • • • • • • • • • • •	CS) and laboratory control sample duplicate (LCSD) for prepa
cane-1-sulfonic acid. Thi	ide control limits for the following analyte:11-Chloroeicosaflus analyte was biased high in the LCS, but was not detected in t
ation of the target analyte	ere reported from the analysis of a diluted extract due to high e in the analysis of the undiluted extract. The dilution factor wandard area counts and these area counts were within acceptance
Y-3-40, MW-4-20, MW-5-	oating particulates in the bottles prior to extraction: <i>MW-1-40</i> , 20, <i>MW-6-20</i> , <i>MW-106-20</i> , <i>MW-107-20</i> , <i>MW-7-20</i> , <i>MW-8-20</i> , 0, <i>MW-12-10</i> , and <i>MW-112-10</i> .
<u> </u>	lume available to perform a matrix spike (MS) and MS duplicaration batch 320-448909.
all corrective actions do	ocumented?
es⊠ No□ N/A□	Comments:
e.	
is the effect on data qua	lity/usability according to the case narrative?
1	Comments:
ower at the second of the seco	for sample MW - 11 - 15 we ration of the target analytic to the labeled internal state owing samples contain flux- 3 - 40 , MW - 4 - 20 , MW - 5 0*(* MW - 9 - 30) MW - 10 - 20 0 as insufficient sample voin conjunction with prepare all corrective actions downers. No \square N/A \square ve.

already flagged.

320-68519-1

Samp	amples Results		
a.	Correct analyses performed/reported as requested on COC?		
	Yes⊠ No□ N/A□ Comments:		
b.	All applicable holding times met?		
	Yes⊠ No□ N/A□ Comments:		
c.	All soils reported on a dry weight basis? Yes□ No□ N/A⊠ Comments:		
Sc	oil samples were not submitted with this work order.		
d.	Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?		
	Yes⊠ No□ N/A□ Comments:		
Tł	ne reporting limit (RL) is less than the applicable DEC regulatory limit for the project.		
e.	Data quality or usability affected?		
Tł	ne data quality and/or usability was not affected; see above.		
QC Sa	amples_		
a.	Method Blank		
a.	i. One method blank reported per matrix, analysis and 20 samples?		
	Yes⊠ No□ N/A□ Comments:		
	TOSE TWEE COMMINENCE.		
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives		
	Yes \boxtimes No \square N/A \square Comments:		
Tł	here were no detections in the method blank sample associated with these project samples.		
	iii. If above LOQ or project specified objectives, what samples are affected? Comments:		

320-68519-1

320-68519-1	
-------------	--

Laboratory Report Date:

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
v. Data quality or usability affected? Comments:
No; see above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes⊠ No□ N/A□ Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
Yes \square No \square N/A \boxtimes Comments:
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes \square No \boxtimes N/A \square Comments:
LCS and LCSD recovery for 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid is above laboratory limits.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes \boxtimes No \square N/A \square Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid was not detected in the project samples in the

May 2020 Page 6

associated preparatory batch.

320-68519-1		
Laboratory Report Date:		
Lucolately Report Date.		
vi. Do the affected sample((s) have data flags? If so, are the data flags clearly defined?	
Yes□ No⊠ N/A□	Comments:	
	e biased high; 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid ed project samples, therefore the data is not affected. Qualification of	
vii. Data quality or usability affected? (Use comment box to explain.) Comments:		
The data quality and/or usability was not affected; see above.		
c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?		
Yes□ No⊠ N/A□	Comments:	
	available to perform a MS/MSD with the associated preparatory y analyzed LCS and LCSD samples to assess laboratory accuracy and	
ii. Metals/Inorganics - one	e MS and one MSD reported per matrix, analysis and 20 samples?	
Yes \square No \square N/A \boxtimes	Comments:	
Metals and/or inorganics were n	not analyzed as part of this work order.	
project specified object		
Yes□ No□ N/A⊠	Comments:	
MS and MSD samples were not	analyzed for this work order.	
	percent differences (RPD) reported and less than method or laboratory fied objectives, if applicable? RPD reported from MS/MSD, and or e.	
Yes□ No□ N/A⊠	Comments:	
MS and MSD samples were not	analyzed for this work order.	
v. If %R or RPD is outside	e of acceptable limits, what samples are affected? Comments:	
NA; MS and MSD samples wer	e not analyzed for this work order.	
vi. Do the affected sample((s) have data flags? If so, are the data flags clearly defined?	
Yes□ No□ N/A⊠	Comments:	
MS and MSD samples were not	analyzed for this work order.	

320-68519-1	
-------------	--

Laboratory Report Date:

vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? $Yes \boxtimes No \square N/A \square$ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \boxtimes No \square N/A \square$ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? $Yes \square No \square N/A \boxtimes$ Comments: There were no IDA recovery failures associated with this work order. iv. Data quality or usability affected? Comments: The data quality and/or usability was not affected; see above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) $Yes \square No \square N/A \boxtimes$ Comments: PFAS are not volatile compounds. A trip blank is not required for the requested analysis. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: A trip blank is not required for the requested analysis. iii. All results less than LOQ and project specified objectives? Yes \square No \square N/A \boxtimes Comments: A trip blank is not required for the requested analysis.

May 2020 Page 8

320-68519-1	
poratory Report Date:	
iv. If above LOQ or project specified objectives, what samples are affected? Comments:	
NA; a trip blank is not required for the requested analysis.	
v. Data quality or usability affected? Comments:	
The data quality and/or usability was not affected; see above.	
f. Field Duplicate	
i. One field duplicate submitted per matrix, analysis and 10 project samples?	
Yes \boxtimes No \square N/A \square Comments:	
ii. Submitted blind to lab?	
Yes \boxtimes No \square N/A \square Comments:	
Field duplicate pairs MW-6-20/MW-106-20, MW-7-20/MW-107-20, and MW-12-10/MW-112-10 were submitted with this work order.	
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$	
Where $R_1 = $ Sample Concentration $R_2 = $ Field Duplicate Concentration	
$Yes \boxtimes No \square N/A \square$ Comments:	
RPDs were less than the DQO (30%), where calculable.	
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:	
The data quality and/or usability was not affected; see above.	
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?	
Yes□ No□ N/A⊠ Comments:	
Reusable equipment was not used for sample collection. Therefore, decontamination or equipment blank samples were not required. A peri-pump was used to collect the requested analytes.	
i. All results less than LOQ and project specified objectives?	
Yes□ No□ N/A⊠ Comments:	
See above.	

	320-68519-1	
La	boratory Report Date:	
	ii. If above LOQ or proje	ct specified objectives, what samples are affected? Comments:
	N/A; see above.	
	iii. Data quality or usabili	cy affected? Comments:
	No; see above.	
7.	Other Data Flags/Qualifiers (ACOI	E, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?	
	Yes□ No□ N/A⊠	Comments:

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-68521-1

Client Project/Site: DOT-DF GUS PFAS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamil Oltima

Authorized for release by: 1/13/2021 3:12:22 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

5

6

0

10

46

13

Client: Shannon & Wilson, Inc Project/Site: DOT-DF GUS PFAS Laboratory Job ID: 320-68521-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	25
QC Sample Results	26
QC Association Summary	31
Lab Chronicle	33
Certification Summary	36
Method Summary	37
Sample Summary	38
Chain of Custody	39
Receipt Checklists	41

6

8

9

11

12

14

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Qualifiers

LCMS

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Sacramento

Page 3 of 41

4

_

7

8

10

13

14

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-68521-1
Project/Site: DOT-DF GUS PFAS

Job ID: 320-68521-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-68521-1

Receipt

The samples were received on 1/5/2021 5:20 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.4° C.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-449087.

Method 537.1 DW: The following samples are yellow and contain a thin layer of sediment at the bottom of the bottle prior to extraction: PW-321 (320-68521-2), PW-466 (320-68521-3), PW-012 (320-68521-4), PW-039 (320-68521-6), PW-037 (320-68521-7), PW-221 (320-68521-8), PW-203 (320-68521-10), PW-016 (320-68521-11), PW-010 (320-68521-12), PW-059 (320-68521-13), PW-501 (320-68521-16), PW-218 (320-68521-17) and PW-401 (320-68521-18).

Method 537.1 DW: The following samples were observed to be light yellow prior to extraction: PW-321 (320-68521-2), PW-466 (320-68521-3), PW-012 (320-68521-4), PW-039 (320-68521-6), PW-037 (320-68521-7), PW-221 (320-68521-8), PW-203 (320-68521-10), PW-016 (320-68521-11), PW-010 (320-68521-12), PW-059 (320-68521-13), PW-501 (320-68521-16), PW-218 (320-68521-17) and PW-401 (320-68521-18).

Method 537.1 DW: The following samples are yellow after final voluming: PW-321 (320-68521-2), PW-466 (320-68521-3), PW-012 (320-68521-4), PW-039 (320-68521-6), PW-037 (320-68521-7), PW-221 (320-68521-8), PW-203 (320-68521-10), PW-016 (320-68521-11), PW-010 (320-68521-12), PW-059 (320-68521-13), PW-501 (320-68521-16), PW-218 (320-68521-17) and PW-401 (320-68521-18).

Method 537.1 DW: The following samples were observed to have floating particulates in the sample bottle prior to extraction: PW-211 (320-68521-15).

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-449972.

Method 537.1 DW: The following samples were light yellow after extraction and final voluming: PW-466 (320-68521-3), PW-012 (320-68521-4), PW-037 (320-68521-7), PW-016 (320-68521-11), PW-010 (320-68521-12) and PW-218 (320-68521-17).

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-450305.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

_

10

11

40

1 /

Client: Shannon & Wilson, Inc
Project/Site: DOT-DF GUS PFAS

Job ID: 320-68521-1

Client Sample ID: PW-038 Lab Sample ID: 320-68521-1

No Detections.

Client Sample ID: PW-321 Lab Sample ID: 320-68521-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.9	0.48	ng/L	1	_	537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.7	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-466 Lab Sample ID: 320-68521-3

No Detections.

Client Sample ID: PW-012 Lab Sample ID: 320-68521-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	3.3		1.8	0.45	ng/L		_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.8	0.45	ng/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.47	J	1.8	0.45	ng/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.59	J	1.8	0.45	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	8.5		1.8	0.45	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	12		1.8	0.45	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-138 Lab Sample ID: 320-68521-5

No Detections.

Client Sample ID: PW-039 Lab Sample ID: 320-68521-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.54 J	1.8	0.46 ng/L	1	Total/NA

Client Sample ID: PW-037 Lab Sample ID: 320-68521-7

No Detections.

Client Sample ID: PW-221 Lab Sample ID: 320-68521-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	1.2	J	2.0	0.49	ng/L	1	_	537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.6	J	2.0	0.49	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-040 Lab Sample ID: 320-68521-9

No Detections.

Client Sample ID: PW-203 Lab Sample ID: 320-68521-10

No Detections.

Client Sample ID: PW-016 Lab Sample ID: 320-68521-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	7.3		1.9	0.48	ng/L		_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.4		1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	8.6		1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PEOS)	0.69	J	19	0.48	na/l	1		537 1 DW	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Page 5 of 41

2

3

J

7

0

10

12

11

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-010 Lab Sample ID: 320-68521-12

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	0.46 J	1.8	0.46 ng/L	1 537.1 DW	Total/NA

Client Sample ID: PW-059 Lab Sample ID: 320-68521-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.55	J	1.9	0.48	ng/L		_	537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.70	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.72	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.6	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.0	J	1.9	0.48	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-235 Lab Sample ID: 320-68521-14

No Detections.

Client Sample ID: PW-211 Lab Sample ID: 320-68521-15

Analyte	Result Qua	lifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	0.60 J	1.9	0.48	ng/L	1	537.1 DW	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	1.9	1.9	0.48	ng/L	1	537.1 DW	Total/NA

Client Sample ID: PW-501 Lab Sample ID: 320-68521-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.8		2.0	0.49	ng/L	1		537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	2.0	0.49	ng/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	0.51	J	2.0	0.49	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	6.9		2.0	0.49	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	30		2.0	0.49	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-218 Lab Sample ID: 320-68521-17

No Detections.

Lab Sample ID: 320-68521-18 Client Sample ID: PW-401

– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.6		2.0	0.50	ng/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.0	J	2.0	0.50	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	6.6		2.0	0.50	ng/L	1		537.1 DW	Total/NA
Perfluoroctanesulfonic acid (PEOS)	28		2.0	0.50	na/l			537 1 DW	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

13C3 HFPO-DA

Client Sample ID: PW-038 Lab Sample ID: 320-68521-1

Date Collected: 12/31/20 13:29 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		01/11/21 04:54	01/11/21 14:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	90		70 - 130				01/11/21 04:54	01/11/21 14:30	1
13C2 PFDA	86		70 - 130				01/11/21 04:54	01/11/21 14:30	1
d5-NEtFOSAA	84		70 - 130				01/11/21 04:54	01/11/21 14:30	1

70 - 130

83

01/11/21 04:54 01/11/21 14:30

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-321 Lab Sample ID: 320-68521-2

Date Collected: 12/30/20 09:40 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Perfluorooctanesulfonic acid (PFOS)	1.7	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	Ü		01/09/21 05:11	01/09/21 14:25	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 14:25	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		70 - 130				01/09/21 05:11	01/09/21 14:25	1
13C2 PFDA	83		70 - 130				01/09/21 05:11	01/09/21 14:25	1

70 - 130

70 - 130

77

76

01/09/21 05:11 01/09/21 14:25

01/09/21 05:11 01/09/21 14:25

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

13C3 HFPO-DA

Client Sample ID: PW-466 Lab Sample ID: 320-68521-3 Date Collected: 01/01/21 11:29

Matrix: Water Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		70 - 130				01/09/21 05:11	01/09/21 14:32	1
13C2 PFDA	80		70 - 130				01/09/21 05:11	01/09/21 14:32	1
d5-NEtFOSAA	77		70 - 130				01/09/21 05:11	01/09/21 14:32	1

70 - 130

1/13/2021

01/09/21 05:11 01/09/21 14:32

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-012 Lab Sample ID: 320-68521-4

Date Collected: 01/02/21 13:11 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	3.3		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorooctanoic acid (PFOA)	0.47	J	1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorobutanesulfonic acid (PFBS)	0.59	J	1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorohexanesulfonic acid (PFHxS)	8.5		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Perfluorooctanesulfonic acid (PFOS)	12		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	88		70 - 130				01/09/21 05:11	01/09/21 14:40	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzo	ed Dil Fac
13C2 PFHxA	88	70 - 130	01/09/21 05:11 01/09/21 1	14:40 1
13C2 PFDA	83	70 - 130	01/09/21 05:11 01/09/21 1	14:40 1
d5-NEtFOSAA	79	70 - 130	01/09/21 05:11 01/09/21 1	14:40 1
13C3 HFPO-DA	78	70 - 130	01/09/21 05:11 01/09/21 1	14.40 1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

13C2 PFDA

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-138 Lab Sample ID: 320-68521-5

Date Collected: 12/31/20 13:19 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		70 - 130				01/09/21 05:11	01/09/21 14:48	1

70 - 130

70 - 130

70 - 130

84

81

74

01/09/21 05:11 01/09/21 14:48

01/09/21 05:11 01/09/21 14:48

01/09/21 05:11 01/09/21 14:48

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Lab Sample ID: 320-68521-6 Client Sample ID: PW-039 Date Collected: 12/31/20 14:28 **Matrix: Water**

Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.54	J	1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 14:55	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	91	70 - 130	01/09/21 05:11	01/09/21 14:55	1
13C2 PFDA	85	70 - 130	01/09/21 05:11	01/09/21 14:55	1
d5-NEtFOSAA	78	70 - 130	01/09/21 05:11	01/09/21 14:55	1
13C3 HFPO-DA	79	70 - 130	01/09/21 05:11	01/09/21 14:55	1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-037 Lab Sample ID: 320-68521-7 Date Collected: 12/31/20 14:00 **Matrix: Water**

Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11CI-PF	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 15:03	1
Surrogate	%Recovery	Qualifior	l imits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	89	70 - 130	01/09/21 05:11	01/09/21 15:03	1
13C2 PFDA	86	70 - 130	01/09/21 05:11	01/09/21 15:03	1
d5-NEtFOSAA	79	70 - 130	01/09/21 05:11	01/09/21 15:03	1
13C3 HFPO-DA	79	70 - 130	01/09/21 05:11	01/09/21 15:03	1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-221 Lab Sample ID: 320-68521-8

Matrix: Water

Date Collected: 12/30/20 09:50 Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorohexanesulfonic acid (PFHxS)	1.2	J	2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Perfluorooctanesulfonic acid (PFOS)	1.6	J	2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 15:49	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	83	70 - 130	01/09/21 05:11	01/09/21 15:49	1
13C2 PFDA	79	70 - 130	01/09/21 05:11	01/09/21 15:49	1
d5-NEtFOSAA	75	70 - 130	01/09/21 05:11	01/09/21 15:49	1
13C3 HFPO-DA	75	70 - 130	01/09/21 05:11	01/09/21 15:49	1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Lab Sample ID: 320-68521-9 **Client Sample ID: PW-040**

Date Collected: 12/31/20 14:55 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.45	ng/L		01/09/21 05:11	01/09/21 15:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		70 - 130				01/09/21 05:11	01/09/21 15:57	1
13C2 PFDA	83		70 - 130				01/09/21 05:11	01/09/21 15:57	1
d5-NEtFOSAA	77		70 - 130				01/09/21 05:11	01/09/21 15:57	1
13C3 HFPO-DA	77		70 - 130				01/09/21 05:11	01/09/21 15:57	1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-203 Lab Sample ID: 320-68521-10

Matrix: Water

Date Collected: 12/31/20 09:29 Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:05	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	84	70 - 130	01/09/21 05:11	01/09/21 16:05	1
13C2 PFDA	80	70 - 130	01/09/21 05:11	01/09/21 16:05	1
d5-NEtFOSAA	75	70 - 130	01/09/21 05:11	01/09/21 16:05	1
13C3 HFPO-DA	76	70 - 130	01/09/21 05:11	01/09/21 16:05	1

Eurofins TestAmerica, Sacramento

Page 16 of 41

2

Δ

6

Q

10

11

13

14

13

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-016

Lab Sample ID: 320-68521-11 Date Collected: 12/29/20 14:26 **Matrix: Water**

Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	7.3		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluoroheptanoic acid (PFHpA)	3.4		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorooctanoic acid (PFOA)	8.6		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Perfluorooctanesulfonic acid (PFOS)	0.69	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:13	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	89	70 - 130	01/09/21 05:11	01/09/21 16:13	1
13C2 PFDA	82	70 - 130	01/09/21 05:11	01/09/21 16:13	1
d5-NEtFOSAA	78	70 - 130	01/09/21 05:11	01/09/21 16:13	1
13C3 HFPO-DA	80	70 - 130	01/09/21 05:11	01/09/21 16:13	1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Lab Sample ID: 320-68521-12 **Client Sample ID: PW-010**

Matrix: Water

Date Collected: 12/30/20 10:29 Date Received: 01/05/21 17:20

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Perfluorooctanesulfonic acid (PFOS)	0.46 J		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.46	ng/L		01/09/21 05:11	01/09/21 16:20	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	86	70 - 130	01/09/21 05:11	01/09/21 16:20	1
13C2 PFDA	79	70 - 130	01/09/21 05:11	01/09/21 16:20	1
d5-NEtFOSAA	76	70 - 130	01/09/21 05:11	01/09/21 16:20	1
13C3 HFPO-DA	76	70 - 130	01/09/21 05:11	01/09/21 16:20	1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-059 Lab Sample ID: 320-68521-13

Date Collected: 12/30/20 14:38 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.55	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorooctanoic acid (PFOA)	0.70	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorobutanesulfonic acid (PFBS)	0.72	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorohexanesulfonic acid (PFHxS)	1.6	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Perfluorooctanesulfonic acid (PFOS)	1.0	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared An	alyzed Dil Fac
13C2 PFHxA	89	70 - 130	01/09/21 05:11 01/09	/21 16:28 1
13C2 PFDA	84	70 - 130	01/09/21 05:11 01/09	/21 16:28 1
d5-NEtFOSAA	79	70 - 130	01/09/21 05:11 01/09	/21 16:28 1
13C3 HFPO-DA	79	70 - 130	01/09/21 05:11 01/09	/21 16:28 1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Lab Sample ID: 320-68521-14 **Client Sample ID: PW-235**

Matrix: Water

Date Collected: 12/29/20 15:30 Date Received: 01/05/21 17:20

Method: 537.1 DW - Perfluorinat Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L		01/09/21 05:11	01/09/21 16:36	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9		ng/L		01/09/21 05:11	01/09/21 16:36	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9		ng/L		01/09/21 05:11	01/09/21 16:36	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:36	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	78		70 - 130	01/09/21 05:11	01/09/21 16:36	1
13C2 PFDA	76		70 - 130	01/09/21 05:11	01/09/21 16:36	1
d5-NEtFOSAA	77		70 - 130	01/09/21 05:11	01/09/21 16:36	1
13C3 HFPO-DA	70		70 - 130	01/09/21 05:11	01/09/21 16:36	1

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-211 Lab Sample ID: 320-68521-15

Date Collected: 12/30/20 13:49 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Perfluorooctanesulfonic acid (PFOS)	0.60	J	1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	1.9		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.48	ng/L		01/09/21 05:11	01/09/21 16:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		70 - 130				01/09/21 05:11	01/09/21 16:43	1
13C2 PFDA	80		70 - 130				01/09/21 05:11	01/09/21 16:43	1

70 - 130

70 - 130

72

76

d5-NEtFOSAA

13C3 HFPO-DA

01/09/21 05:11 01/09/21 16:43

01/09/21 05:11 01/09/21 16:43

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

d5-NEtFOSAA

13C3 HFPO-DA

Client Sample ID: PW-501 Lab Sample ID: 320-68521-16

Date Collected: 12/29/20 16:13 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.8		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluoroheptanoic acid (PFHpA)	1.1	J	2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorooctanoic acid (PFOA)	0.51	J	2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorohexanesulfonic acid (PFHxS)	6.9		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Perfluorooctanesulfonic acid (PFOS)	30		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		2.0	0.49			01/09/21 05:11	01/09/21 16:51	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.49	ng/L		01/09/21 05:11	01/09/21 16:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		70 - 130				01/09/21 05:11	01/09/21 16:51	1
13C2 PFDA	82		70 - 130				01/09/21 05:11	01/09/21 16:51	1

70 - 130

70 - 130

74

01/09/21 05:11 01/09/21 16:51

01/09/21 05:11 01/09/21 16:51

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Date Received: 01/05/21 17:20

e-1-sulfonic acid (11CI-PF

Acid (HFPO-DA)

(ADONA)

Hexafluoropropylene Oxide Dimer

4,8-Dioxa-3H-perfluorononanoic acid

Client Sample ID: PW-218 Lab Sample ID: 320-68521-17 Date Collected: 12/30/20 15:51

Matrix: Water

01/09/21 05:11 01/09/21 16:59

01/09/21 05:11 01/09/21 16:59

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorooctanoic acid (PFOA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorononanoic acid (PFNA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorodecanoic acid (PFDA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluoroundecanoic acid (PFUnA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorotridecanoic acid (PFTriA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1
11-Chloroeicosafluoro-3-oxaundecan	ND	1.9	0.47	ng/L		01/09/21 05:11	01/09/21 16:59	1

Surrogate	%Recovery Qual	ifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	89	70 - 130	01/09/21 05:11	01/09/21 16:59	1
13C2 PFDA	84	70 - 130	01/09/21 05:11	01/09/21 16:59	1
d5-NEtFOSAA	77	70 - 130	01/09/21 05:11	01/09/21 16:59	1
13C3 HFPO-DA	82	70 - 130	01/09/21 05:11	01/09/21 16:59	1

1.9

1.9

0.47 ng/L

0.47 ng/L

ND

ND

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Lab Sample ID: 320-68521-18 **Client Sample ID: PW-401 Matrix: Water**

Date Collected: 12/29/20 16:23 Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.6		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluoroheptanoic acid (PFHpA)	1.0	J	2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorohexanesulfonic acid (PFHxS)	6.6		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Perfluorooctanesulfonic acid (PFOS)	28		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.50	-		01/09/21 05:11	01/09/21 17:30	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.50	ng/L		01/09/21 05:11	01/09/21 17:30	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		70 - 130				01/09/21 05:11	01/09/21 17:30	1
13C2 PFDA	83		70 - 130				01/09/21 05:11	01/09/21 17:30	1

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	86	70 - 130	01/09/21 05:11	01/09/21 17:30	1
13C2 PFDA	83	70 - 130	01/09/21 05:11	01/09/21 17:30	1
d5-NEtFOSAA	79	70 - 130	01/09/21 05:11	01/09/21 17:30	1
13C3 HFPO-DA	79	70 - 130	01/09/21 05:11	01/09/21 17:30	1

Surrogate Summary

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Matrix: Water Prep Type: Total/NA

		PFHxA	PFDA	d5NEFOS	HFPODA
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)
320-68521-1	PW-038	90	86	84	83
320-68521-2	PW-321	86	83	77	76
320-68521-3	PW-466	84	80	77	77
320-68521-4	PW-012	88	83	79	78
320-68521-5	PW-138	83	84	81	74
320-68521-6	PW-039	91	85	78	79
320-68521-7	PW-037	89	86	79	79
320-68521-8	PW-221	83	79	75	75
320-68521-9	PW-040	86	83	77	77
320-68521-10	PW-203	84	80	75	76
320-68521-11	PW-016	89	82	78	80
320-68521-12	PW-010	86	79	76	76
320-68521-13	PW-059	89	84	79	79
320-68521-14	PW-235	78	76	77	70
320-68521-15	PW-211	86	80	72	76
320-68521-16	PW-501	83	82	78	74
320-68521-17	PW-218	89	84	77	82
320-68521-18	PW-401	86	83	79	79
LCS 320-450305/2-A	Lab Control Sample	88	84	84	83
LCSD 320-450305/3-A	Lab Control Sample Dup	86	84	81	81
LLCS 320-449972/2-A	Lab Control Sample	83	79	80	76
LLCSD 320-449972/3-A	Lab Control Sample Dup	92	85	85	85
MB 320-449972/1-A	Method Blank	89	80	82	82
MB 320-450305/1-A	Method Blank	88	84	83	79

Surrogate Legend

PFHxA = 13C2 PFHxA PFDA = 13C2 PFDA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sa	mple	ID: N	B 320	-44997	72/1-A
--------	------	-------	--------------	--------	--------

Matrix: Water

Analysis Batch: 450253

Client Sample ID: Method Blank
Prep Type: Total/NA
Pron Batch: 449972

7 .									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.50	ng/L		01/09/21 05:10	01/10/21 21:32	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		70 - 130	01/09/21 05:10	01/10/21 21:32	1
13C2 PFDA	80		70 - 130	01/ 09/21 05:10	01/10/21 21:32	1
d5-NEt FOSAA	82		70 ₋ 130	01/ 09/21 05:10	01/10/21 21:32	1
13C3 HFPO-DA	82		70 - 130	01/ 09/21 05:10	01/10/21 21:32	1

Lab Sample ID: LLCS 320-449972/2-A

Matrix: Water

Analysis Batch: 450253

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 449972

Alialysis Datcii. 430233							Fieb Datcii. 443312
	Spike	LLCS	LLCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	4.00	3.44		ng/L		86	50 - 150
Perfluoroheptanoic acid (PFHpA)	4.00	3.62		ng/L		90	50 - 150
Perfluorooctanoic acid (PFOA)	4.00	3.60		ng/L		90	50 - 150
Perfluorononanoic acid (PFNA)	4.00	3.47		ng/L		87	50 - 150
Perfluorodecanoic acid (PFDA)	4.00	3.41		ng/L		85	50 - 150
Perfluoroundecanoic acid (PFUnA)	4.00	3.34		ng/L		84	50 - 150
Perfluorododecanoic acid (PFDoA)	4.00	3.24		ng/L		81	50 - 150
Perfluorotridecanoic acid (PFTriA)	4.00	3.50		ng/L		88	50 - 150
Perfluorotetradecanoic acid (PFTeA)	4.00	3.28		ng/L		82	50 - 150
Perfluorobutanesulfonic acid (PFBS)	3.54	3.49		ng/L		99	50 - 150

Eurofins TestAmerica, Sacramento

Page 26 of 41

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

LLCS LLCS

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LLCS 320-449972/2-A **Matrix: Water**

Analysis Batch: 450253

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 449972 %Rec.

~ p						,	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
3.64	3.62		ng/L		99	50 - 150	
3.71	3.47		ng/L		94	50 - 150	
4.00	3.02		ng/L		76	50 - 150	
4.00	3.29		ng/L		82	50 - 150	
3.73	3.46		ng/L		93	50 - 150	
3.77	3.69		ng/L		98	50 - 150	
4.00	3.63		ng/L		91	50 - 150	
3.77	3.48		ng/L		92	50 - 150	
-	Added 3.64 3.71 4.00 4.00 3.73 3.77	Added Result 3.64 3.62 3.71 3.47 4.00 3.02 4.00 3.29 3.73 3.46 3.77 3.69 4.00 3.63	Added Result Qualifier 3.64 3.62 3.71 3.47 4.00 3.02 4.00 3.29 3.73 3.46 3.77 3.69 4.00 3.63	Added Result Qualifier Unit 3.64 3.62 ng/L 3.71 3.47 ng/L 4.00 3.02 ng/L 4.00 3.29 ng/L 3.73 3.46 ng/L 3.77 3.69 ng/L 4.00 3.63 ng/L	Added Result Qualifier Unit D 3.64 3.62 ng/L 3.71 3.47 ng/L 4.00 3.02 ng/L 4.00 3.29 ng/L 3.73 3.46 ng/L 3.77 3.69 ng/L 4.00 3.63 ng/L	Added Result Qualifier Unit D %Rec 3.64 3.62 ng/L 99 3.71 3.47 ng/L 94 4.00 3.02 ng/L 76 4.00 3.29 ng/L 82 3.73 3.46 ng/L 93 3.77 3.69 ng/L 98 4.00 3.63 ng/L 91	Added Result Qualifier Unit D %Rec Limits 3.64 3.62 ng/L 99 50 - 150 3.71 3.47 ng/L 94 50 - 150 4.00 3.02 ng/L 76 50 - 150 4.00 3.29 ng/L 82 50 - 150 3.73 3.46 ng/L 93 50 - 150 3.77 3.69 ng/L 98 50 - 150 4.00 3.63 ng/L 91 50 - 150

Spike

LLCS LLCS

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	83		70 - 130
13C2 PFDA	79		70 - 130
d5-NEt FOSAA	80		70_130
13C3 HFPO-DA	76		70 - 130

Lab Sample ID: LLCSD 320-449972/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 450253							Prep Ba	•		
, , , , , , , , , , , , , , , , , , , ,	Spike	LLCSD	LLCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Perfluorohexanoic acid (PFHxA)	4.00	3.71		ng/L		93	50 - 150	8	50	
Perfluoroheptanoic acid (PFHpA)	4.00	3.76		ng/L		94	50 - 150	4	50	
Perfluorooctanoic acid (PFOA)	4.00	3.91		ng/L		98	50 - 150	8	50	
Perfluorononanoic acid (PFNA)	4.00	3.86		ng/L		96	50 - 150	11	50	
Perfluorodecanoic acid (PFDA)	4.00	3.53		ng/L		88	50 - 150	4	50	
Perfluoroundecanoic acid (PFUnA)	4.00	3.61		ng/L		90	50 - 150	8	50	
Perfluorododecanoic acid (PFDoA)	4.00	3.15		ng/L		79	50 - 150	3	50	
Perfluorotridecanoic acid (PFTriA)	4.00	3.63		ng/L		91	50 - 150	4	50	
Perfluorotetradecanoic acid (PFTeA)	4.00	3.39		ng/L		85	50 - 150	3	50	
Perfluorobutanesulfonic acid (PFBS)	3.54	3.74		ng/L		106	50 - 150	7	50	
Perfluorohexanesulfonic acid (PFHxS)	3.64	3.85		ng/L		106	50 - 150	6	50	
Perfluorooctanesulfonic acid (PFOS)	3.71	3.76		ng/L		101	50 - 150	8	50	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	4.00	3.31		ng/L		83	50 - 150	9	50	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	4.00	3.63		ng/L		91	50 - 150	10	50	
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid (9CI-PF3O	3.73	3.62		ng/L		97	50 - 150	4	50	

Eurofins TestAmerica, Sacramento

Page 27 of 41

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Samp	le ID:	LLCSD	320-449972/3-A
----------	--------	-------	----------------

Matrix: Water

Analysis Batch: 450253

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 449972

	Spike	LLCSD	LLCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid (11Cl-PF	3.77	3.50		ng/L		93	50 - 150	5	50	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	4.00	3.68		ng/L		92	50 - 150	2	50	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	3.77	3.84		ng/L		102	50 - 150	10	50	

LLCSD LLCSD

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	92		70 - 130
13C2 PFDA	85		70 - 130
d5-NEt FOSAA	85		70-130
13C3 HFPO-DA	85		70 - 130

Lab Sample ID: MB 320-450305/1-A

Matrix: Water

Analysis Batch: 450504

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 450305

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.50	ng/L		01/11/21 04:54	01/11/21 14:22	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	88		70 - 130	01/11/ 21 04:54	01/11/21 14:22	1
13C2 PFDA	84		70 - 130	01/ 11/21 04:54	01/11/21 14:22	1
d5-NEt FOSAA	83		70 ₋ 130	01/ 11/21 04:54	01/11/21 14:22	1
13C3 HFPO-DA	79		70 - 130	01/11/21 04:54	01/11/21 14:22	1

Eurofins TestAmerica, Sacramento

Page 28 of 41

3

4

6

8

40

12

13

14

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCS 320-450305/2-A

Matrix: Water

Analysis Batch: 450504

Client Sample ID: Lak	Control Sample
Pre	p Type: Total/NA
Pre	en Batch: 450305

Analysis Batch. 430304	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Perfluorohexanoic acid (PFHxA)	160	149		ng/L	93	70 - 130
Perfluoroheptanoic acid (PFHpA)	160	155		ng/L	97	70 - 130
Perfluorooctanoic acid (PFOA)	160	148		ng/L	93	70 - 130
Perfluorononanoic acid (PFNA)	160	150		ng/L	94	70 - 130
Perfluorodecanoic acid (PFDA)	160	147		ng/L	92	70 - 130
Perfluoroundecanoic acid (PFUnA)	160	143		ng/L	89	70 - 130
Perfluorododecanoic acid (PFDoA)	160	149		ng/L	93	70 - 130
Perfluorotridecanoic acid (PFTriA)	160	155		ng/L	97	70 - 130
Perfluorotetradecanoic acid (PFTeA)	160	150		ng/L	94	70 - 130
Perfluorobutanesulfonic acid (PFBS)	141	143		ng/L	101	70 - 130
Perfluorohexanesulfonic acid (PFHxS)	146	152		ng/L	105	70 - 130
Perfluorooctanesulfonic acid (PFOS)	148	143		ng/L	96	70 - 130
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	160	137		ng/L	86	70 - 130
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	160	145		ng/L	90	70 - 130
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid (9CI-PF3O	149	147		ng/L	99	70 - 130
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid (11Cl-PF	151	149		ng/L	99	70 - 130
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	160	151		ng/L	94	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	88		70 - 130
13C2 PFDA	84		70 - 130
d5-NEt FOSAA	84		70-130
13C3 HFPO-DA	83		70 - 130

Lab Sample ID: LCSD 320-450305/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

151

147

ng/L

4,8-Dioxa-3H-perfluorononanoic

acid (ADONA)

Analysis Batch: 450504							Prep Ba	tch: 450305			
-	Spike	LCSD	LCSD				%Rec.		RPD		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Perfluorohexanoic acid (PFHxA)	160	149		ng/L		93	70 - 130	1	30		
Perfluoroheptanoic acid (PFHpA)	160	151		ng/L		94	70 - 130	2	30		
Perfluorooctanoic acid (PFOA)	160	145		ng/L		90	70 - 130	3	30		
Perfluorononanoic acid (PFNA)	160	152		ng/L		95	70 - 130	1	30		
Perfluorodecanoic acid (PFDA)	160	147		ng/L		92	70 - 130	0	30		
Perfluoroundecanoic acid (PFUnA)	160	146		ng/L		91	70 - 130	2	30		
Perfluorododecanoic acid (PFDoA)	160	144		ng/L		90	70 - 130	3	30		

Eurofins TestAmerica, Sacramento

70 - 130

Page 29 of 41

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-68521-1

Project/Site: DOT-DF GUS PFAS

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCSD 320-450305/3-A **Matrix: Water**

Analysis Batch: 450504

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 450305**

	Spike	LCSD	LCSD				%Rec.	C.				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Perfluorotridecanoic acid	160	147		ng/L		92	70 - 130	5	30			
(PFTriA)												
Perfluorotetradecanoic acid	160	148		ng/L		92	70 - 130	1	30			
(PFTeA)												
Perfluorobutanesulfonic acid	141	147		ng/L		104	70 - 130	3	30			
(PFBS)												
Perfluorohexanesulfonic acid	146	153		ng/L		105	70 - 130	0	30			
(PFHxS)												
Perfluorooctanesulfonic acid	148	150		ng/L		101	70 - 130	5	30			
(PFOS)												
N-methylperfluorooctanesulfona	160	139		ng/L		87	70 - 130	1	30			
midoacetic acid (NMeFOSAA)												
N-ethylperfluorooctanesulfonami	160	142		ng/L		89	70 - 130	2	30			
doacetic acid (NEtFOSAA)												
9-Chlorohexadecafluoro-3-oxan	149	154		ng/L		103	70 - 130	4	30			
onane-1-sulfonic acid (9CI-PF3O												
11-Chloroeicosafluoro-3-oxaund	151	154		ng/L		102	70 - 130	3	30			
ecane-1-sulfonic acid (11CI-PF												
Hexafluoropropylene Oxide	160	146		ng/L		92	70 - 130	3	30			
Dimer Acid (HFPO-DA)												
4,8-Dioxa-3H-perfluorononanoic	151	147		ng/L		97	70 - 130	0	30			
acid (ADONA)												

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	86		70 - 130
13C2 PFDA	84		70 - 130
d5-NEt FOSAA	81		70 ₋ 130
13C3 HFPO-DA	81		70 - 130

Job ID: 320-68521-1

Client: Shannon & Wilson, Inc Project/Site: DOT-DF GUS PFAS

LCMS

Prep Batch: 449972

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
320-68521-2	PW-321	Total/NA	Water	537.1 DW	
320-68521-3	PW-466	Total/NA	Water	537.1 DW	
320-68521-4	PW-012	Total/NA	Water	537.1 DW	
320-68521-5	PW-138	Total/NA	Water	537.1 DW	
320-68521-6	PW-039	Total/NA	Water	537.1 DW	
320-68521-7	PW-037	Total/NA	Water	537.1 DW	
320-68521-8	PW-221	Total/NA	Water	537.1 DW	
320-68521-9	PW-040	Total/NA	Water	537.1 DW	
320-68521-10	PW-203	Total/NA	Water	537.1 DW	
320-68521-11	PW-016	Total/NA	Water	537.1 DW	
320-68521-12	PW-010	Total/NA	Water	537.1 DW	
320-68521-13	PW-059	Total/NA	Water	537.1 DW	
320-68521-14	PW-235	Total/NA	Water	537.1 DW	
320-68521-15	PW-211	Total/NA	Water	537.1 DW	
320-68521-16	PW-501	Total/NA	Water	537.1 DW	
320-68521-17	PW-218	Total/NA	Water	537.1 DW	
320-68521-18	PW-401	Total/NA	Water	537.1 DW	
MB 320-449972/1-A	Method Blank	Total/NA	Water	537.1 DW	
LLCS 320-449972/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	
LLCSD 320-449972/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	

Analysis Batch: 450149

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68521-2	PW-321	Total/NA	Water	537.1 DW	449972
320-68521-3	PW-466	Total/NA	Water	537.1 DW	449972
320-68521-4	PW-012	Total/NA	Water	537.1 DW	449972
320-68521-5	PW-138	Total/NA	Water	537.1 DW	449972
320-68521-6	PW-039	Total/NA	Water	537.1 DW	449972
320-68521-7	PW-037	Total/NA	Water	537.1 DW	449972

Analysis Batch: 450151

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68521-8	PW-221	Total/NA	Water	537.1 DW	449972
320-68521-9	PW-040	Total/NA	Water	537.1 DW	449972
320-68521-10	PW-203	Total/NA	Water	537.1 DW	449972
320-68521-11	PW-016	Total/NA	Water	537.1 DW	449972
320-68521-12	PW-010	Total/NA	Water	537.1 DW	449972
320-68521-13	PW-059	Total/NA	Water	537.1 DW	449972
320-68521-14	PW-235	Total/NA	Water	537.1 DW	449972
320-68521-15	PW-211	Total/NA	Water	537.1 DW	449972
320-68521-16	PW-501	Total/NA	Water	537.1 DW	449972
320-68521-17	PW-218	Total/NA	Water	537.1 DW	449972

Analysis Batch: 450153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68521-18	PW-401	Total/NA	Water	537.1 DW	449972

Analysis Batch: 450253

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 320-449972/1-A	Method Blank	Total/NA	Water	537.1 DW	449972
LLCS 320-449972/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	449972

3

4

6

8

4 6

11

13

14

Eurofins TestAmerica, Sacramento

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: DOT-DF GUS PFAS

Job ID: 320-68521-1

LCMS (Continued)

Analysis Batch: 450253 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LLCSD 320-449972/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	449972

Prep Batch: 450305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68521-1	PW-038	Total/NA	Water	537.1 DW	
MB 320-450305/1-A	Method Blank	Total/NA	Water	537.1 DW	
LCS 320-450305/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	
LCSD 320-450305/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	

Analysis Batch: 450504

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68521-1	PW-038	Total/NA	Water	537.1 DW	450305
MB 320-450305/1-A	Method Blank	Total/NA	Water	537.1 DW	450305
LCS 320-450305/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	450305
LCSD 320-450305/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	450305

0524.4

3

Λ

Ä

6

7

9

12

13

14

15

Job ID: 320-68521-1

Client: Shannon & Wilson, Inc Project/Site: DOT-DF GUS PFAS

Lab Sample ID: 320-68521-1

Matrix: Water

Client Sample ID: PW-038 Date Collected: 12/31/20 13:29 Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			262.3 mL	1.0 mL	450305	01/11/21 04:54	HK	TAL SAC
Total/NA	Analysis	537.1 DW		1			450504	01/11/21 14:30	SK	TAL SAC

Lab Sample ID: 320-68521-2 Client Sample ID: PW-321 **Matrix: Water**

Date Collected: 12/30/20 09:40 Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			259.2 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450149	01/09/21 14:25	D1R	TAL SAC

Client Sample ID: PW-466 Lab Sample ID: 320-68521-3 **Matrix: Water**

Date Collected: 01/01/21 11:29 Date Received: 01/05/21 17:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			276.7 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450149	01/09/21 14:32	D1R	TAL SAC

Client Sample ID: PW-012 Lab Sample ID: 320-68521-4 Date Collected: 01/02/21 13:11 **Matrix: Water**

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			278.2 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450149	01/09/21 14:40	D1R	TAL SAC

Client Sample ID: PW-138 Lab Sample ID: 320-68521-5 **Matrix: Water**

Date Collected: 12/31/20 13:19 Date Received: 01/05/21 17:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			274.2 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450149	01/09/21 14:48	D1R	TAL SAC

Lab Sample ID: 320-68521-6 **Client Sample ID: PW-039** Date Collected: 12/31/20 14:28 **Matrix: Water**

Date Received: 01/05/21 17:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			272.7 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537 1 DW		1			450149	01/09/21 14:55	D1R	TAL SAC

Page 33 of 41

10

2

10

Job ID: 320-68521-1

Client: Shannon & Wilson, Inc Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-037

Date Collected: 12/31/20 14:00 Date Received: 01/05/21 17:20 Lab Sample ID: 320-68521-7

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			274.2 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450149	01/09/21 15:03	D1R	TAL SAC

Client Sample ID: PW-221 Lab Sample ID: 320-68521-8

Date Collected: 12/30/20 09:50 Matrix: Water

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			255 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 15:49	D1R	TAL SAC

Client Sample ID: PW-040 Lab Sample ID: 320-68521-9

Date Collected: 12/31/20 14:55 Matrix: Water

Date Received: 01/05/21 17:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW	· 		276.3 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 15:57	D1R	TAL SAC

Client Sample ID: PW-203 Lab Sample ID: 320-68521-10

Date Collected: 12/31/20 09:29 Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			258 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 16:05	D1R	TAL SAC

Client Sample ID: PW-016

Date Collected: 12/29/20 14:26

Lab Sample ID: 320-68521-11

Matrix: Water

Date Received: 01/05/21 17:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			261.5 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 16:13	D1R	TAL SAC

Client Sample ID: PW-010

Date Collected: 12/30/20 10:29

Lab Sample ID: 320-68521-12

Matrix: Water

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			270.3 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 16:20	D1R	TAL SAC

Eurofins TestAmerica, Sacramento

Job ID: 320-68521-1

Client: Shannon & Wilson, Inc Project/Site: DOT-DF GUS PFAS

Client Sample ID: PW-059 Lab Sample ID: 320-68521-13 Date Collected: 12/30/20 14:38

Matrix: Water

Matrix: Water

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			261.2 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 16:28	D1R	TAL SAC

Lab Sample ID: 320-68521-14 Client Sample ID: PW-235 Date Collected: 12/29/20 15:30

Matrix: Water

Date Received: 01/05/21 17:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			260.5 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 16:36	D1R	TAL SAC

Client Sample ID: PW-211 Lab Sample ID: 320-68521-15

Date Collected: 12/30/20 13:49 **Matrix: Water**

Date Received: 01/05/21 17:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			262.2 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 16:43	D1R	TAL SAC

Client Sample ID: PW-501 Lab Sample ID: 320-68521-16

Date Collected: 12/29/20 16:13

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			252.8 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 16:51	D1R	TAL SAC

Client Sample ID: PW-218 Lab Sample ID: 320-68521-17 Date Collected: 12/30/20 15:51 **Matrix: Water**

Date Received: 01/05/21 17:20

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			267.6 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450151	01/09/21 16:59	D1R	TAL SAC

Client Sample ID: PW-401 Lab Sample ID: 320-68521-18 Date Collected: 12/29/20 16:23 **Matrix: Water**

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			251.4 mL	1.00 mL	449972	01/09/21 05:11	NSS	TAL SAC
Total/NA	Analysis	537.1 DW		1			450153	01/09/21 17:30	D1R	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Sacramento

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-68521-1 Project/Site: DOT-DF GUS PFAS

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
Alaska (UST)	State	17-020	01-20-21		
ANAB	Dept. of Defense ELAP	L2468	01-20-21		
ANAB	Dept. of Energy	L2468.01	01-20-21		
ANAB	ISO/IEC 17025	L2468	01-20-21		
Arizona	State	AZ0708	08-11-21		
Arkansas DEQ	State	88-0691	06-17-21		
California	State	2897	01-31-22		
Colorado	State	CA0004	08-31-21		
Connecticut	State	PH-0691	06-30-21		
Florida	NELAP	E87570	06-30-21		
Georgia	State	4040	01-30-21		
Hawaii	State	<cert no.=""></cert>	01-29-21		
Illinois	NELAP	200060	03-17-21		
Kansas	NELAP	E-10375	02-01-21		
Louisiana	NELAP	01944	06-30-21		
Maine	State	CA00004	04-14-22		
Michigan	State	9947	08-03-23		
Nevada	State	CA000442021-2	07-31-21		
New Hampshire	NELAP	2997	04-18-21		
New Jersey	NELAP	CA005	06-30-21		
New York	NELAP	11666	04-01-21		
Oregon	NELAP	4040	01-29-21		
Pennsylvania	NELAP	68-01272	03-31-21		
Texas	NELAP	T104704399-19-13	06-01-21		
US Fish & Wildlife	US Federal Programs	58448	07-31-21		
USDA	US Federal Programs	P330-18-00239	07-31-21		
Utah	NELAP	CA000442019-01	02-28-21		
Vermont	State	VT-4040	04-16-21		
Virginia	NELAP	460278	03-14-21		
Washington	State	C581	05-05-21		
West Virginia (DW)	State	9930C	12-31-20 *		
Wisconsin	State	998204680	08-31-21		
Wyoming	State Program	8TMS-L	01-28-19 *		

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid.}$

Method Summary

Client: Shannon & Wilson, Inc Project/Site: DOT-DF GUS PFAS Job ID: 320-68521-1

Method	Method Description	Protocol	Laboratory
537.1 DW	Perfluorinated Alkyl Acids (LC/MS)	EPA	TAL SAC
537.1 DW	Extraction of Perfluorinated Alkyl Acids	EPA	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

4

5

6

8

9

11

10

14

15

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: DOT-DF GUS PFAS

320-68521-18

PW-401

Job ID: 320-68521-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
20-68521-1	PW-038	Water	12/31/20 13:29	01/05/21 17:20	
20-68521-2	PW-321	Water	12/30/20 09:40	01/05/21 17:20	
20-68521-3	PW-466	Water	01/01/21 11:29	01/05/21 17:20	
20-68521-4	PW-012	Water	01/02/21 13:11	01/05/21 17:20	
20-68521-5	PW-138	Water	12/31/20 13:19	01/05/21 17:20	
20-68521-6	PW-039	Water	12/31/20 14:28	01/05/21 17:20	
20-68521-7	PW-037	Water	12/31/20 14:00	01/05/21 17:20	
0-68521-8	PW-221	Water	12/30/20 09:50	01/05/21 17:20	
0-68521-9	PW-040	Water	12/31/20 14:55	01/05/21 17:20	
)-68521-10	PW-203	Water	12/31/20 09:29	01/05/21 17:20	
)-68521-11	PW-016	Water	12/29/20 14:26	01/05/21 17:20	
0-68521-12	PW-010	Water	12/30/20 10:29	01/05/21 17:20	
0-68521-13	PW-059	Water	12/30/20 14:38	01/05/21 17:20	
0-68521-14	PW-235	Water	12/29/20 15:30	01/05/21 17:20	
0-68521-15	PW-211	Water	12/30/20 13:49	01/05/21 17:20	
0-68521-16	PW-501	Water	12/29/20 16:13	01/05/21 17:20	
0-68521-17	PW-218	Water	12/30/20 15:51	01/05/21 17:20	

Water

12/29/20 16:23 01/05/21 17:20

(

4

5

6

8

9

10

11

13

14

15

_	
-	_
-	
C	×
Ì	٩
ŗ	_
C	_
r	ľ
_	-

GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 www.shannonwilson.com		N-OF-CUSTODY	RECORD At Analytical Methods (include preserv	
Turn Around Time: Normal Rush	Quote No: J-Flags: Yes No]		Remarks/Matrix Composition/Grab? Sample Containers
Please Specify Sample Identity	Lab No. Time Sai	Date mpled		Remarks/Matrix Composition/Grab? Sample Containers
PW-038 PW-321 PW-466	0940 12/3	31/20 × 10/20 × 121 × co costa Chain		2 groundwater w/ Trizma
Pw-201	1311 1/2	/21 × 320-68521 Chain	01 000007	
PW-138 PW-039 PW-037	1428 121	31/20 × 131/20 × 131/20 ×		
PW-221	0950 12	/3a/2a × 31/2a ×		
Project Information	Sample Receipt	Reliquished By: 1.	Reliquished By: 2,	Reliquished By: 3.
Number: 102599-013 Name: DOT- PF GUS PFAS	Total No. of Containers: 2 COC Seals/Intact? Y/N/NA Y	Signature: Time \(\) \(\) \(\) \(\) \(\)	Signature: Time:	Signature:
Contact: 1C12V Ongoing Project? Yes No	Received Good Cond./Cold 4.4 % Temp:	Printed Name: Date: 1/1/2		Printed Name: Date:
Sampler: ALM	Delivery Method:	Shannar Hilber Inc	Company:	Company:
		Received By: 1.	Received By: 2.	Received By: 3.
		Signature: Time: 1720	Signature: Time:	Signature: Time:
		Printed Name: Date: 1/5/21	Printed Name: Date:	Printed Name: Date:
Distribution: White - w/shipment - returned Yellow - w/shipment - for cons Pink - Shannon & Wilson - job	signee files	Company: E14WSac	Company:	Company:

No. 36196

_
_
Q
٨
C
Ν
_

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600	AIN-	N-OF-CUSTODY RECORD Attn Analytical Methods (include preservat							Page Z of Z aboratory TestAmesica					
www.shannonwilson.co	m						An	alytical ivie	etnoas (ir	iciude pre				7
Turn Around Time:	Quote No:						/		/ /	/			ainers /	
Normal Rush	J-Flags:	Yes	No			4/						nber c	Remark Compositi Sample O	
Please Specify	1 /				25		/	/ /				ZI KUT!	/ Remark	s/Matrix
Sample Identity	Lab No.	Time	Date Sample		N5+						/^		Compositi Sample C	
PW-203		0929	12/31/	20 ×							2	arou	reluak	s w/
PW-016		1426	12/29/								1	J		Ima
PW-010		1029	12/30/	OX										
PW-059		1438	12/30/	20 X										
PW-235		1530	12/29	20 X										
PW-211		1349	12/30/2	o ×										
PW-501		1613	12/29/	OX										
PW-218		1551	12/30/								\coprod			
PW-401		1623	12/291	20 ×										
											_			
Project Information	Sample	Receipt		Reliqu	ished B	By: 1.		Reliqu	uished l	Ву: 2		Re	liquished	By: 3.
Number: 102599 - 013	Total No. of Contain	-	Sig	nature		Time:		Signature:		Time:		Signature:		Time:
Name: DOT GUS PFAS	COC Seals/Intact?					- 1/4	124	Printed Name:						
Contact: KKF	Received Good Con			ited Name:	Lars	Date:	1.49	rinted Name:		Date:_		Printed Nar	me:	Date:
Ongoing Project? Yes No	Temp: Delivery Method:	4.4	Co	Mas	1			Company:				Company:		
			=15	Shannort Wilson, Inc										
Notes:				Received By: 1. Received By			y: 2. Rece			eceived B	y: 3.			
			Sig	Signature: Time: 1726 Signature:			Time: Sign			Signature: Time:		Time:		
				Printed Name: Date: 1/4/2/ Printed Name:			Date:_	Date: Printed Name: Date:			Date:			
Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - w/shipment - for consignee files Pink - Shannon & Wilson - job file				Company: Company:				Company:						

No. 36197

Job Number: 320-68521-1

Client: Shannon & Wilson, Inc Job Nu

Login Number: 68521 List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Her, David A

Creator: Her, David A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1469157/1469156
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Sacramento

Laboratory Data Review Checklist

Completed By:
Amber Masters
Γitle:
Environmental Scientist
Date:
January 13, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-68521-1
Laboratory Report Date:
January 13, 2021
CS Site Name:
DOT&PF Gustavus Airport Statewide PFAS
ADEC File Number:
2569.38.033
Hazard Identification Number:
26981

Laboratory Report Date:		
Note: Any N/A or No box checked must have an explanation in the comments box.		
1. <u>Laboratory</u>		
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes⊠ No□ N/A□ Comments: The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.		
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? Yes \Bo No \Bo N/A \Bo Comments:		
The requested analyses were conducted by TestAmerica of West Sacramento, CA.		
2. Chain of Custody (CoC)		
 a. CoC information completed, signed, and dated (including released/received by)? Yes⊠ No□ N/A□ Comments: 		
b. Correct analyses requested?		
Yes⊠ No□ N/A□ Comments:		
3. <u>Laboratory Sample Receipt Documentation</u>		
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?		
Yes⊠ No□ N/A□ Comments:		
 b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)? Yes⊠ No□ N/A□ Comments: 		
Samples were preserved with Trizma.		
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?		
Yes No□ N/A□ Comments:		
The sample receipt form notes that the samples were received in good condition.		

320-68521-1

32	20-68521-1
Labor	ratory Report Date:
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
ſ	Yes \square No \square N/A \boxtimes Comments:
	See above.
	e. Data quality or usability affected?
	Comments:
	The data quality and/or usability was not affected; see above.
4.	Case Narrative
	a. Present and understandable?Yes⊠ No□ N/A□ Comments:
	b. Discrepancies, errors, or QC failures identified by the lab?
	$Yes \boxtimes No \square N/A \square$ Comments:
	The case narrative indicates the following: The following sample had floating particulates prior to extraction: <i>PW-211</i> .
	The following samples were observed to be a light yellow in color prior to extraction: <i>PW-321</i> , <i>PW-466</i> , <i>PW-012</i> , <i>PW-039</i> , <i>PW-037</i> , <i>PW-221</i> , <i>PW-203</i> , <i>PW-016</i> , <i>PW-010</i> , <i>PW-059</i> , <i>PW-501</i> , <i>PW-218</i> , and <i>PW-401</i> .
	The following samples are yellow contain a thin layer of sediment at the bottom of the bottles prior to extraction: <i>PW-321</i> , <i>PW-466</i> , <i>PW-012</i> , <i>PW-039</i> , <i>PW-037</i> , <i>PW-221</i> , <i>PW-203</i> , <i>PW-016</i> , <i>PW-010</i> , <i>PW-059</i> , <i>PW-501</i> , <i>PW-218</i> , and <i>PW-401</i> .
	The following samples were yellow after final voluming: <i>PW-321</i> , <i>PW-012</i> , <i>PW-039</i> , <i>PW-037</i> , <i>PW-221</i> , <i>PW-203</i> , <i>PW-016</i> , <i>PW-010</i> , <i>PW-059</i> , <i>PW-501</i> and <i>PW-401</i> .
	The following samples were light yellow after extraction and final voluming: <i>PW-466</i> , <i>PW-012</i> , <i>PW-037</i> , <i>PW-016</i> , <i>PW-010</i> , and <i>PW-218</i> .
	The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 4.4 ° C upon arrival at the laboratory.

There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate

(MSD) in conjunction with preparation batches 320-450305, 320-449972, and 320-449087.

Laboratory Report Date:		
c. Were all corrective actions documented?		
Yes□ No□ N/A⊠ Comments:		
Corrective actions were not required.		
d. What is the effect on data quality/usability according to the	case narrative?	
Comments:		
The case narrative does not identify an effect on the data qualit	ty and/or usability.	
5. <u>Samples Results</u>		
a. Correct analyses performed/reported as requested on COCS	?	
Yes \boxtimes No \square N/A \square Comments:		
b. All applicable holding times met?		
Yes \boxtimes No \square N/A \square Comments:		
c. All soils reported on a dry weight basis?		
Yes \square No \square N/A \boxtimes Comments:		
Soil samples were not submitted with this work order.		
d. Are the reported LOQs less than the Cleanup Level or the r the project?	minimum required detection level for	
Yes \boxtimes No \square N/A \square Comments:		
The reporting limits (RL) are less than the applicable DEC reg	ulatory limit for the project.	
e. Data quality or usability affected?		
The data quality and/or usability was not affected; see above.		
6. QC Samples		
a. Method Blank		
a. Method Blanki. One method blank reported per matrix, analysis and 20) camplac?	
Yes⊠ No□ N/A□ Comments:	o sampies:	
16812 NOLI N/ALI COMMENS:		

320-68521-1

320-68521-1	

Laboratory Report Date:

ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
Yes \boxtimes No \square N/A \square Comments:
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
There were no detections in the method blanks.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
Qualification of the data was not required. See above.
v. Data quality or usability affected? Comments:
Results are not affected. See above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes⊠ No□ N/A□ Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
Yes \square No \square N/A \boxtimes Comments:
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:

Laboratory Report Date:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
NA; analytical accuracy and precision were demonstrated to be within acceptable limits.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments:
Qualification of the data was not required; see above.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality and/or usability was not affected; see above.
c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project
i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
Yes □ No⊠ N/A□ Comments: Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batches. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and precision.
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?Yes□ No□ N/A⊠ Comments:
Metals and/or inorganics were not analyzed as part of this work order.
 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes□ No□ N/A⊠ Comments:
MS and MSD samples were not analyzed for this work order.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
$Yes \square No \square N/A \boxtimes Comments:$
MS and MSD samples were not analyzed for this work order.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
NA; MS and MSD samples were not analyzed for this work order.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \Bo \NA \Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses - field, QC and laboratory samples? Yes \Bo \No \NA \Comments: ii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes \Bo \No \NA \Comments:	320-68521-1		
Yes□ No□ N/A☒ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes☒ No□ N/A□ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes☒ No□ N/A□ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?	oratory Report	Date:	
Yes□ No□ N/A☒ Comments: MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes☒ No□ N/A□ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes☒ No□ N/A□ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?			
MS and MSD samples were not analyzed for this work order. vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates − Organics Only or Isotope Dilution Analytes (IDA) − Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses − field, QC and laboratory samples? Yes ⋈ No ⋈ N/A ⋈ Comments: ii. Accuracy − All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes ⋈ No ⋈ N/A ⋈ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?	vi. Do	the affected sample(s) have	we data flags? If so, are the data flags clearly defined?
vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes⊠ No□ N/A□ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes⊠ No□ N/A□ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?	Yes	\square No \square N/A \boxtimes C	Comments:
Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes ⋈ No ⋈ N/A ⋈ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes ⋈ No ⋈ N/A ⋈ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?	MS and M	SD samples were not analy	zed for this work order.
 d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes No□ N/A□ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes No□ N/A□ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? 	vii. D	1 0	` '
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? Yes⊠ No□ N/A□ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)	The data q	ality and/or usability was	not affected; see above.
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes ⋈ No ⋈ N/A ⋈ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?	i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory		otope Dilution Analytes (IDA) – Isotope Dilution Methods Only
 ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes⊠ No□ N/A□ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? 			s reported for organic analyses – field, QC and laboratory
project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) Yes No N/A Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?	Yes	⊠ No□ N/A□ C	Comments:
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the da flags clearly defined?	pro	ject specified objectives, i	f applicable? (AK Petroleum methods 50-150 %R for field
flags clearly defined?	Yes	⊠ No□ N/A□ C	Comments:
Vac Na Na N/A M		*	iled surrogate/IDA recoveries have data flags? If so, are the data
Yes No N/A Comments:	Yes	□ No□ N/A⊠ C	Comments:

iv. Data quality or usability affected?

Comments:

The data quality and/or usability was not affected; see above.

- e. Trip Blanks
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)

Yes \square No \square N/A \boxtimes Comments:

PFAS are not volatile compounds. A trip blank is not required for the requested analysis.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

Yes \square No \square N/A \boxtimes Comments:

A trip blank is not required for the requested analysis.

320-68521-1	
Laboratory Report Date:	
iii. All results less than LOQ and project specified objectives?	
Yes□ No□ N/A⊠ Comments:	
A trip blank is not required for the requested analysis.	
iv. If above LOQ or project specified objectives, what samples are affected? Comments:	
NA; a trip blank is not required for the requested analysis.	
v. Data quality or usability affected? Comments:	
The data quality and/or usability was not affected; see above.	
f. Field Duplicate	
i. One field duplicate submitted per matrix, analysis and 10 project samples?	
Yes⊠ No□ N/A□ Comments:	
ii. Submitted blind to lab?	
Yes \boxtimes No \square N/A \square Comments:	
The field duplicate <i>pairs PW-221/PW-321</i> , <i>PW-038/PW-138</i> , and <i>PW-401/PW-501</i> were submitted with this work order; one for each day of sampling.	
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: (R_1-R_2) x 100	
RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$	
Where $R_1 = Sample Concentration$	
R_2 = Field Duplicate Concentration	
Yes \boxtimes No \square N/A \square Comments:	
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:	
The data quality and/or usability was not affected; see above.	
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?	
Yes \square No \square N/A \boxtimes Comments:	
Decontamination or equipment blank were not required for this project.	

	320-68521-1	
La	poratory Report Date:	
	i. All results less than L Yes□ No□ N/A⊠	OQ and project specified objectives? Comments:
	Decontamination or equipmen	at blank were not required for this project.
	ii. If above LOQ or proj	ect specified objectives, what samples are affected? Comments:
	Decontamination or equipmen	at blank were not required for this project.
	iii. Data quality or usabi	lity affected? Comments:
	The data quality and/or usabil	ity was not affected; see above.
7.	Other Data Flags/Qualifiers (ACC	DE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?	
	Yes□ No□ N/A⊠	Comments:

No additional data flags are required.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-68522-1 Client Project/Site: POE Gustavus

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamil altina

Authorized for release by: 1/19/2021 12:06:08 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

10

12

14

Client: Shannon & Wilson, Inc Project/Site: POE Gustavus Laboratory Job ID: 320-68522-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

11

12

14

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-68522-1 Project/Site: POE Gustavus

Qualifiers

LCMS

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
p	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

 $\mathsf{DL}, \mathsf{RA}, \mathsf{RE}, \mathsf{IN}$ Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-68522-1 Project/Site: POE Gustavus

Job ID: 320-68522-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-68522-1

Receipt

The samples were received on 1/5/2021 5:20 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.4° C.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 537.1 DW: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-448945.

Method 537.1 DW: The following samples PW-200 (320-68522-1) in preparation batch 320-448945 were light yellow prior to extraction.

Method 537.1 DW: The following samples PW-200 (320-68522-1) in preparation batch 320-448945 were yellow after extraction and final voluming.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-68522-1

Project/Site: POE Gustavus

Client Sample ID: PW-200 Lab Sample ID: 320-68522-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	3.3		1.9	0.47	ng/L	1	_	537.1 DW	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.7	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorooctanoic acid (PFOA)	1.1	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorononanoic acid (PFNA)	0.78	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorodecanoic acid (PFDA)	0.88	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluoroundecanoic acid (PFUnA)	0.84	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorododecanoic acid (PFDoA)	0.83	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorotridecanoic acid (PFTriA)	0.87	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorotetradecanoic acid (PFTeA)	0.79	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.84	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	7.6		1.9	0.47	ng/L	1		537.1 DW	Total/NA
Perfluorooctanesulfonic acid (PFOS)	50		1.9	0.47	ng/L	1		537.1 DW	Total/NA
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	0.89	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	0.96	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	0.79	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	0.84	J	1.9	0.47	ng/L	1		537.1 DW	Total/NA

Client Sample ID: PW-200-C Port Composite

Lab Sample ID: 320-68522-2

No Detections.

Client Sample ID: PW-200-Sink Lab Sample ID: 320-68522-8

No Detections.

This Detection Summary does not include radiochemical test results.

- 3

4

7

9

10

12

14

Le

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-68522-1

Project/Site: POE Gustavus

d5-NEt FCSAA

13C3 HFPQDA

Client Sample ID: PW-200 Lab Sample ID: 320-68522-1 Date Collected: 12/30/20 11:39

Matrix: Water

Date Received: 01/05/21 17:20 Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) Analyte Result Qualifier **MDL** Unit Dil Fac RL Prepared Analyzed 01/06/21 12:26 01/06/21 22:47 Perfluorohexanoic acid (PFHxA) 3.3 1.9 0.47 ng/L Perfluoroheptanoic acid (PFHpA) 1.7 J 1.9 0.47 ng/L Perfluorooctanoic acid (PFOA) 1.1 J 1.9 0.47 ng/L 01/06/21 12:26 01/06/21 22:47 0.47 ng/L 01/06/21 12:26 01/06/21 22:47 Perfluorononanoic acid (PFNA) 0.78 J 1.9 Perfluorodecanoic acid (PFDA) 1.9 0.47 ng/L 0.88 J Perfluoroundecanoic acid 01/06/21 12:26 01/06/21 22:47 1.9 0.47 ng/L 0.84 J (PFUnA) Perfluorododecanoic acid 0.47 ng/L 0.83 J 1.9 (PFDoA) 1.9 0.47 ng/L 01/06/21 12:26 01/06/21 22:47 Perfluorotridecanoic acid (PFTriA) 0.87 J Perfluorotetradecanoic acid 0.47 ng/L 1.9 0.79 J (PFTeA) 0.47 ng/L Perfluorobutanesulfonic acid 0.84 J 1.9 01/06/21 12:26 01/06/21 22:47 (PFBS) Perfluorohexanesulfonic acid 7.6 1.9 0.47 ng/L (PFHxS) Perfluorooctanesulfonic acid 1.9 0.47 ng/L 50 (PFOS) N-methylperfluorooctanesulfona 01/06/21 12:26 01/06/21 22:47 0.89 J 1.9 0.47 ng/L midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami 1.9 0.47 ng/L 0.96 J doacetic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxano 0.79 J 1.9 0.47 ng/L 01/06/21 12:26 01/06/21 22:47 nane-1-sulfonic acid (9CI-PF3O 11-Chloroeicosafluoro-3-oxaunde 0.84 J 1.9 0.47 ng/L cane-1-sulfonic acid (11CI-PF Hexafluoropropylene Oxide Dimer ND 1.9 0.47 ng/L Acid (HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid ND 1.9 0.47 ng/L (ADONA) Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C2 PFHxA 94 70 - 130 01/06/21 12: 26 01/06/21 22: 47 13C2 PFDA 90 01/06/21 12: 26 01/06/21 22: 47 70 - 130 1

70 - 130

70 - 130

91

88

01/06/21 12: 26 01/06/21 22: 47

01/06/21 12: 26 01/06/21 22: 47

6

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-68522-1

Project/Site: POE Gustavus

Client Sample ID: PW-200-C Port Composite Lab Sample ID: 320-68522-2

Date Collected: 12/30/20 11:35 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 22:54	1
Surrogate	%Recovery	Qualifier Limit	s				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
13C2 PFHxA	92	70 - 130	01/06/21 12: 26 01/06/21 22:	54 1
13C2 PFDA	89	70 - 130	01/06/21 12: 26 01/06/21 22: 5	4 1
d5-NEt FSAA	87	70 - 130	01/06/21 12: 26 01/06/21 22:	54 1
13C3 HFPQDA	84	70 - 130	01/06/21 12:26 01/06/21 22:54	1 1

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-68522-1

Project/Site: POE Gustavus

13C3 HFPQDA

Client Sample ID: PW-200-Sink Lab Sample ID: 320-68522-8

83

Date Collected: 12/30/20 11:09 **Matrix: Water** Date Received: 01/05/21 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.47	ng/L		01/06/21 12:26	01/06/21 23:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	95		70 - 130				01/06/21 12: 26	01/06/21 23:02	1
13C2 PFDA	86		70 - 130				01/06/21 12: 26	01/06/21 23: 02	1
d5-NEt FCSAA	90		70 - 130				01/06/21 12: 26	01/06/21 23:02	1

70 - 130

01/06/21 12: 26 01/06/21 23: 02

Surrogate Summary

Client: Shannon & Wilson, Inc Job ID: 320-68522-1

Project/Site: POE Gustavus

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Matrix: Water Prep Type: Total/NA

	Percent Surrogate R						
		PFHxA	PFDA	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)		
320-68522-1	PW-200	94	90	91	88		
320-68522-2	PW-200-C Port Composite	92	89	87	84		
320-68522-8	PW-200-Sink	95	86	90	83		
LCS 320-448945/2-A	Lab Control Sample	92	89	87	81		
LCSD 320-448945/3-A	Lab Control Sample Dup	90	90	88	83		
MB 320-448945/1-A	Method Blank	89	87	84	78		

PFHxA = 13C2 PFHxA PFDA = 13C2 PFDA d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Client: Shannon & Wilson, Inc
Project/Site: POE Gustavus

Job ID: 320-68522-1

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS)

Lab Sample ID: MB 320-448945/1-A
Matrix: Water
Analysis Batch: 449091

MB MB

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 448945

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid (9CI-PF3O	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid (11Cl-PF	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.50	ng/L		01/06/21 12:26	01/06/21 22:31	1

	MB MB				
Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	89	70 - 130	01/06/21 12: 26	01/0621 22: 31	1
13C2 PFDA	87	70 - 130	01/06/21 12: 26	01/06/21 22: 31	1
d5-NEtFOSAA	84	70 - 130	01/06/21 12: 26	01/06/21 22: 31	1
13C3 HFPO-DA	78	70 - 130	01/06/21 12: 26	01/06/21 22: 31	1

Lab Sample ID: LCS 320-448945/2-A

Matrix: Water

Analysis Batch: 449091

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 448945

Analysis Batch: 449091							Prep Batch: 446945
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	80.0	67.7		ng/L		85	70 - 130
Perfluoroheptanoic acid (PFHpA)	80.0	67.9		ng/L		85	70 - 130
Perfluorooctanoic acid (PFOA)	80.0	65.0		ng/L		81	70 - 130
Perfluorononanoic acid (PFNA)	80.0	68.3		ng/L		85	70 - 130
Perfluorodecanoic acid (PFDA)	80.0	67.3		ng/L		84	70 - 130
Perfluoroundecanoic acid	80.0	66.2		ng/L		83	70 - 130
(PFUnA)							
Perfluorododecanoic acid	80.0	62.6		ng/L		78	70 - 130
(PFDoA)							
Perfluorotridecanoic acid	80.0	64.0		ng/L		80	70 - 130
(PFTriA)							
Perfluorotetradecanoic acid	80.0	63.6		ng/L		80	70 - 130
(PFTeA)							
Perfluorobutanesulfonic acid	70.7	66.8		ng/L		94	70 - 130
(PFBS)							

Eurofins TestAmerica, Sacramento

Page 10 of 19

3

4

6

8

10

12

14

Client: Shannon & Wilson, Inc Job ID: 320-68522-1

Project/Site: POE Gustavus

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab Sample ID: LCS 320-448945/2-A

Matrix: Water

Analysis Batch: 449091

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 448945

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanesulfonic acid	72.8	68.4		ng/L		94	70 - 130	
(PFHxS)								
Perfluorooctanesulfonic acid	74.2	64.9		ng/L		87	70 - 130	
(PFOS)								
N-methylperfluorooctanesulfona	80.0	66.0		ng/L		83	70 - 130	
midoacetic acid (NMeFOSAA)								
N-ethylperfluorooctanesulfonami	80.0	66.2		ng/L		83	70 - 130	
doacetic acid (NEtFOSAA)								
9-Chlorohexadecafluoro-3-oxan	74.6	66.3		ng/L		89	70 - 130	
onane-1-sulfonic acid (9CI-PF3O								
11-Chloroeicosafluoro-3-oxaund	75.4	67.3		ng/L		89	70 - 130	
ecane-1-sulfonic acid (11CI-PF								
Hexafluoropropylene Oxide	80.0	63.4		ng/L		79	70 - 130	
Dimer Acid (HFPO-DA)								
4,8-Dioxa-3H-perfluorononanoic	75.4	66.1		ng/L		88	70 - 130	
acid (ADONA)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
13C2 PFHxA	92		70 - 130
13C2 PFDA	89		70 - 130
d5-NEtFOSAA	87		70 - 130
13C3 HFPO-DA	81		70 - 130

Lab Sample ID: LCSD 320-448945/3-A

Client Sample ID: Lab Control Sample Dup

Matrix: Water Analysis Batch: 449091					ampio i	J. 242	Prep Ty Prep Ba	pe: Tot	al/NA
Amaryolo Batom 440001	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	80.0	69.0		ng/L		86	70 - 130	2	30
Perfluoroheptanoic acid (PFHpA)	80.0	72.4		ng/L		91	70 - 130	6	30
Perfluorooctanoic acid (PFOA)	80.0	68.2		ng/L		85	70 - 130	5	30
Perfluorononanoic acid (PFNA)	80.0	69.6		ng/L		87	70 - 130	2	30
Perfluorodecanoic acid (PFDA)	80.0	70.3		ng/L		88	70 - 130	4	30
Perfluoroundecanoic acid	80.0	69.1		ng/L		86	70 - 130	4	30
(PFUnA)				Ū					
Perfluorododecanoic acid	80.0	66.3		ng/L		83	70 - 130	6	30
(PFDoA)									
Perfluorotridecanoic acid	80.0	66.1		ng/L		83	70 - 130	3	30
(PFTriA)									
Perfluorotetradecanoic acid	80.0	65.4		ng/L		82	70 - 130	3	30
(PFTeA)	<u> </u>			<u>-</u>					<u></u>
Perfluorobutanesulfonic acid	70.7	65.8		ng/L		93	70 - 130	2	30
(PFBS)	70.0	67 F		m == /1		02	70 120	4	30
Perfluorohexanesulfonic acid (PFHxS)	72.8	67.5		ng/L		93	70 - 130	1	30
Perfluorooctanesulfonic acid	74.2	65.6		ng/L		88	70 - 130	1	30
(PFOS)	77.2	00.0		119/1		00	70-100	•	00
N-methylperfluorooctanesulfona	80.0	67.6		ng/L		84	70 - 130	2	30
midoacetic acid (NMeFOSAA)				J					
N-ethylperfluorooctanesulfonami	80.0	68.4		ng/L		85	70 - 130	3	30
doacetic acid (NEtFOSAA)									
9-Chlorohexadecafluoro-3-oxan	74.6	67.9		ng/L		91	70 - 130	2	30
onane-1-sulfonic acid (9CI-PF3O									

Eurofins TestAmerica, Sacramento

Page 11 of 19

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: POE Gustavus

Job ID: 320-68522-1

Method: 537.1 DW - Perfluorinated Alkyl Acids (LC/MS) (Continued)

Lab	Sample	ID:	LCSD	320-4	48945	/3-A
Mote	iv. Mot					

Matrix: Water

Analysis Batch: 449091

Client Sample	ID:	Lab	Control	Sample	Dup
			Dune To		LIBLA

Prep Type: Total/NA Prep Batch: 448945

_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
11-Chloroeicosafluoro-3-oxaund	75.4	67.5		ng/L		90	70 - 130	0	30
ecane-1-sulfonic acid (11CI-PF									
Hexafluoropropylene Oxide	80.0	65.3		ng/L		82	70 - 130	3	30
Dimer Acid (HFPO-DA)									
4,8-Dioxa-3H-perfluorononanoic	75.4	69.0		ng/L		92	70 - 130	4	30
acid (ADONA)									

LCSD	LCSD

Surrogate	%Recovery Qua	lifier Limits
13C2 PFHxA	90	70 - 130
13C2 PFDA	90	70 - 130
d5-NEtFOSAA	88	70 - 130
13C3 HFPO-DA	83	70 - 130

9

10

46

13

14

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: POE Gustavus

Job ID: 320-68522-1

LCMS

Prep Batch: 448945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68522-1	PW-200	Total/NA	Water	537.1 DW	
320-68522-2	PW-200-C Port Composite	Total/NA	Water	537.1 DW	
320-68522-8	PW-200-Sink	Total/NA	Water	537.1 DW	
MB 320-448945/1-A	Method Blank	Total/NA	Water	537.1 DW	
LCS 320-448945/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	
LCSD 320-448945/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	

Analysis Batch: 449091

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-68522-1	PW-200	Total/NA	Water	537.1 DW	448945
320-68522-2	PW-200-C Port Composite	Total/NA	Water	537.1 DW	448945
320-68522-8	PW-200-Sink	Total/NA	Water	537.1 DW	448945
MB 320-448945/1-A	Method Blank	Total/NA	Water	537.1 DW	448945
LCS 320-448945/2-A	Lab Control Sample	Total/NA	Water	537.1 DW	448945
LCSD 320-448945/3-A	Lab Control Sample Dup	Total/NA	Water	537.1 DW	448945

•

8

9

12

13

14

Lab Chronicle

Client: Shannon & Wilson, Inc

Job ID: 320-68522-1

Project/Site: POE Gustavus

Client Sample ID: PW-200 Lab Sample ID: 320-68522-1

Date Collected: 12/30/20 11:39

Date Received: 01/05/21 17:20

Matrix: Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			267.3 mL	1.00 mL	448945	01/06/21 12:26	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			449091	01/06/21 22:47	D1R	TAL SAC

Client Sample ID: PW-200-C Port Composite Lab Sample ID: 320-68522-2

Date Collected: 12/30/20 11:35 Matrix: Water

Date Received: 01/05/21 17:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			268.2 mL	1.00 mL	448945	01/06/21 12:26	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			449091	01/06/21 22:54	D1R	TAL SAC

Client Sample ID: PW-200-Sink

Lab Sample ID: 320-68522-8

Date Collected: 12/30/20 11:09 Matrix: Water

Date Received: 01/05/21 17:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537.1 DW			267.8 mL	1.00 mL	448945	01/06/21 12:26	EH	TAL SAC
Total/NA	Analysis	537.1 DW		1			449091	01/06/21 23:02	D1R	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

2

4

5

0

8

9

11

12

14

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc
Project/Site: POE Gustavus

Job ID: 320-68522-1

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	02-01-21
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-2	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20 *
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

10

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Sacramento

Method Summary

Client: Shannon & Wilson, Inc Project/Site: POE Gustavus Job ID: 320-68522-1

Method	Method Description	Protocol	Laboratory
537.1 DW	Perfluorinated Alkyl Acids (LC/MS)	EPA	TAL SAC
537.1 DW	Extraction of Perfluorinated Alkyl Acids	EPA	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

4

_

7

_

10

13

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: POE Gustavus Job ID: 320-68522-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset I
320-68522-1	PW-200	Water	12/30/20 11:39	01/05/21 17:20	
320-68522-2	PW-200-C Port Composite	Water	12/30/20 11:35	01/05/21 17:20	
320-68522-8	PW-200-Sink	Water	12/30/20 11:09	01/05/21 17:20	

- -

6

0

9

11

13

14

=	
_	
u	
ī	
\subset	
Ñ	
_	
Τ	

SHANNON & WILSON, I GEOTECHNICAL AND ENVIRONMENTAL CONSU 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600	INC. CHAIN	N-OF-CUSTOD	Y RECORD Analytical Methods (incl	Attn: _	Page 1 of 1 ratory Testamenica D.Alltucker e if used)
Turn Around Time:	Lab No. Time Sam 30/20 X	nain of Custody	7 7	Remarks/Matrix Composition/Grab? Sample Containers Grandwater w/ *HOLD* *HOLD* *HOLD* *HOLD* *HOLD* *HOLD*	
Project Information	Sample Receipt	Reliquished By: 1.	Reliquished By	<i>y</i> : 2.	Reliquished By: 3.
11.4.5.1.0	al No. of Containers:	Signature: Time: 68			Signature: Time:
Name: POE Gustavus coo	C Seals/Intact? Y/N/NA		(- 3)		
	eived Good Cond./Cold	Printed Name: Date:	Printed Name:	Date:	Printed Name: Date:
Ongoing Project? Yes No Deliv	np: 4.4 °C	A Mastus	Company:		Company:
		Shannon+Wilson, In	۷.		
Notes:		Received By: 1.	Received By:	2.	Received By: 3.
		Signature: / Jime: / Z	Signature:	Time:	Signature: Time:
		Printed Name: Date://	Printed Name:	Date:	Printed Name: Date:
Distribution: White - w/shipment - returned to Sh Yellow - w/shipment - for consigned Pink - Shannon & Wilson - job file		Company: E1AWSuc	Company:		Company:

No. 36198

٥

7

၈

ာ ြ

n | .

N

Client: Shannon & Wilson, Inc

Job Number: 320-68522-1

Login Number: 68522 List Number: 1 List Source: Eurofins TestAmerica, Sacramento

List Number:	1
Creator: Her,	David A

oreator. Her, with A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1469157/1469156
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Co	mpleted By:
	Amber Masters
Tit	le:
	Environmental Scientist
Dat	te:
	January 20, 2021
Co	nsultant Firm:
	Shannon & Wilson, Inc.
Lał	poratory Name:
	Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Lał	poratory Report Number:
	320-68522-1
Lał	poratory Report Date:
	January 19, 2021
CS	Site Name:
	POET
ΑD	DEC File Number:
	1507.38.017
Ha	zard Identification Number:
	26904

Laboratory Report Date:
Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
$Yes \boxtimes No \square N/A \square$ Comments:
The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
The requested analyses were conducted by TestAmerica of West Sacramento, CA.
2. Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Correct analyses requested?
$Yes \boxtimes No \square N/A \square$ Comments:
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes⊠ No□ N/A□ Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes⊠ No□ N/A□ Comments:
Samples were preserved with Trizma TM .
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
Yes⊠ No□ N/A□ Comments:
The sample receipt form notes the samples were received in good condition.

320-68522-1

Laboratory Report Date:
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
Yes□ No□ N/A⊠ Comments:
The receipt documentation does not note any discrepancies.
e. Data quality or usability affected?
Comments:
The data quality and/or usability was not affected; see above.
4. <u>Case Narrative</u>
a. Present and understandable?Yes⊠ No□ N/A□ Comments:
Tesz 110 11/11 Comments.
b. Discrepancies, errors, or QC failures identified by the lab? Yes⊠ No□ N/A□ Comments:
The case narrative indicates the following:
The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 4.4° C upon arrival at the laboratory.
The following sample was light yellow prior to extraction: PW-200.
The following sample was yellow after extraction and final voluming: PW-200.
There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batch 320-448945.
c. Were all corrective actions documented?
Yes \square No \square N/A \boxtimes Comments:
Corrective actions were not required.
d. What is the effect on data quality/usability according to the case narrative?
Comments:
N/A; data quality/usability is not affected.

320-68522-1

	Correct analyses performed/reported as requested on COC?
a.	Yes \boxtimes No \square N/A \square Comments:
	TCSE TWO TV/ALL COMMENTS.
b.	All applicable holding times met?
	Yes \boxtimes No \square N/A \square Comments:
c.	All soils reported on a dry weight basis?
	Yes \square No \square N/A \boxtimes Comments:
So	il samples were not submitted with this work order.
d.	Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	Yes \boxtimes No \square N/A \square Comments:
Th	ne reporting limit (RL) is less than the applicable DEC regulatory limit for the project.
e.	Data quality or usability affected?
- T-1	
Th	ne data quality and/or usability was not affected; see above.
	amples
	amples Method Blank
C Sa	amples
C Sa	amples Method Blank
C Sa	Method Blank i. One method blank reported per matrix, analysis and 20 samples?
C Sa	Method Blank i. One method blank reported per matrix, analysis and 20 samples?
C Sa	Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes⊠ No□ N/A□ Comments:
a.	Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes⊠ No□ N/A□ Comments: ii. All method blank results less than limit of quantitation (LOQ) or project specified objective
a.	Method Blank i. One method blank reported per matrix, analysis and 20 samples? Yes⊠ No□ N/A□ Comments: ii. All method blank results less than limit of quantitation (LOQ) or project specified objective Yes⊠ No□ N/A□ Comments:

320-68522-1

Laboratory Report Date:

320-68522-1	

Laboratory Report Date:

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
v. Data quality or usability affected? Comments:
No; see above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
$Yes \boxtimes No \square N/A \square$ Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/A; see above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes \square No \square N/A \boxtimes Comments:
Data is not affected; see above.

320-68522-1	
Laboratory Report Date:	
vii. Data quality or usability	y affected? (Use comment box to explain.)
Comments:	
The data quality and/or usability was not affected; see above.	
c. Matrix Spike/Matrix Spike Note: Leave blank if not r i. Organics – One MS/M	• • • •
$Yes \square No \square N/A \square$	Comments:
	s available to perform a MS/MSD with the associated preparatory ry analyzed LCS and LCSD samples to assess laboratory accuracy and
ii. Metals/Inorganics – on Yes□ No□ N/A⊠	te MS and one MSD reported per matrix, analysis and 20 samples? Comments:
	not analyzed as part of this work order.
	t recoveries (%R) reported and within method or laboratory limits and
Yes□ No□ N/A⊠	Comments:
MS and MSD samples were no	t analyzed for this work order.
	e percent differences (RPD) reported and less than method or laboratory ified objectives, if applicable? RPD reported from MS/MSD, and or te.
$ Yes \square $	Comments:
MS and MSD samples were no	t analyzed for this work order.
v. If %R or RPD is outsice	le of acceptable limits, what samples are affected? Comments:
NA; MS and MSD samples we	re not analyzed for this work order.
vi. Do the affected sample Yes□ No□ N/A⊠	e(s) have data flags? If so, are the data flags clearly defined? Comments:

MS and MSD samples were not analyzed for this work order.

320-68522-1	

Laboratory Report Date:

vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? $Yes \boxtimes No \square N/A \square$ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \boxtimes No \square N/A \square$ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: There were no IDA recovery failures associated with this work order. iv. Data quality or usability affected? Comments: The data quality and/or usability was not affected; see above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) $Yes \square No \square N/A \boxtimes$ Comments: PFAS are not volatile compounds. A trip blank is not required for the requested analysis. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: A trip blank is not required for the requested analysis. iii. All results less than LOQ and project specified objectives? Yes \square No \square N/A \boxtimes Comments: A trip blank is not required for the requested analysis.

320-68522-1
Laboratory Report Date:
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
NA; a trip blank is not required for the requested analysis.
v. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
$Yes \square No \boxtimes N/A \square$ Comments:
A field duplicate was not submitted with this work order.
ii. Submitted blind to lab?
$Yes \square No \square N/A \boxtimes Comments:$
N/A; see above.
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where $R_1 = Sample Concentration$ $R_2 = Field Duplicate Concentration$
Yes□ No□ N/A⊠ Comments:
N/A; see above.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
The data quality and/or usability was not affected; see above.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
$Yes \square No \square N/A \boxtimes Comments:$
Reusable equipment was not used for sample collection. Therefore, decontamination or equipment blank samples were not required. A peri-pump was used to collect the requested analytes.
i. All results less than LOQ and project specified objectives?
Yes \square No \square N/A \boxtimes Comments:
See above.

May 2020 Page 8

20-68522-1	
ratory Report Date:	
ii. If above LOQ or proje	ect specified objectives, what samples are affected? Comments:
N/A; see above.	
iii. Data quality or usabil	ity affected? Comments:
No; see above.	
Other Data Flags/Qualifiers (ACO	E, AFCEE, Lab Specific, etc.)
a. Defined and appropriate?	
Yes□ No□ N/A⊠	Comments:
	ratory Report Date: ii. If above LOQ or projection iii. Data quality or usability No; see above. Other Data Flags/Qualifiers (ACO) a. Defined and appropriate?

Page 9

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-71796-1 Client Project/Site: GUS PFAS PW

Revision: 1

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamil Oltima

Authorized for release by: 4/7/2021 1:53:29 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

10

11

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

Laboratory Job ID: 320-71796-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Isotope Dilution Summary	23
QC Sample Results	25
QC Association Summary	28
Lab Chronicle	29
Certification Summary	32
Method Summary	33
Sample Summary	34
Chain of Custody	35
Receipt Checklists	37

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-71796-1

Project/Site: GUS PFAS PW

Qualifiers

		N/A	C
ш	U	IVI	J

Qualifier	Qualifier Description

Value is EMPC (estimated maximum possible concentration).

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

Q

9

10

46

13

14

Case Narrative

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS PW

Job ID: 320-71796-1

Job ID: 320-71796-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-71796-1

Receipt

The samples were received on 3/29/2021 11:55 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.5° C.

Receipt Exceptions

The CoC lists sample ID as PW-011. Per client request on 3-29-2021 the sample ID has been changed to PW-10. PW-010 (320-71796-9)

LCMS

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limit. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte. PW-208 (320-71796-3)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples contained a small amount of sediment: NPS Well (320-71796-1), PW-501 (320-71796-2), PW-208 (320-71796-3), PW-221 (320-71796-4), PW-401 (320-71796-5), PW-112 (320-71796-6), PW-012 (320-71796-7), PW-010 (320-71796-9), PW-203 (320-71796-11), PW-037 (320-71796-12) and PW-039 (320-71796-16)

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-475229.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

J

4

_

6

0

a

10

12

13

14

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: NPS Well	Lab Sample ID: 320-71796-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	5.1	1.9	0.54	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.2	1.9	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.7	1.9	0.79	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.0 J	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	10	1.9	0.53	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	7.1	1.9	0.50	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-501 Lab Sample ID: 320-71796-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	3.5		1.9	0.54	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.4	J	1.9	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.45	J	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	6.5		1.9	0.53	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	29		1.9	0.51	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-208 Lab Sample ID: 320-71796-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.3		1.8	0.53	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.33	JI	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.52	J	1.8	0.52	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.6	J	1.8	0.49	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-221 Lab Sample ID: 320-71796-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.52 J	1.8	0.52 ng/L		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.90 J	1.8	0.51 ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.1	1.8	0.49 ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: PW-401 Lab Sample ID: 320-71796-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.4		1.8	0.52	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.5	J	1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.0	J	1.8	0.76	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.74	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	7.7		1.8	0.51	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	30		1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-112 Lab Sample ID: 320-71796-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.62	J	1.8	0.51	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.8	0.50	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	6.1		1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-012 Lab Sample ID: 320-71796-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	1.5	J	1.8	0.51	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	7.7		1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 320-71796-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

Client Sample ID: PW-211 Lab Sample ID: 320-71796-8

No Detections.

Client Sample ID: PW-010 Lab Sample ID: 320-71796-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	0.79 J	1.8	0.48 ng/L	1 EPA 537(Mod)	Total/NA

Client Sample ID: PW-059 Lab Sample ID: 320-71796-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.1	J	1.7	0.49	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.26	J	1.7	0.21	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	0.96	J	1.7	0.72	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.3	J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.7		1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.6	J	1.7	0.46	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-203 Lab Sample ID: 320-71796-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorononanoic acid (PFNA)	0.50	J	1.7	0.23	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.90	J	1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.8		1.7	0.46	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-037 Lab Sample ID: 320-71796-12

No Detections.

Client Sample ID: PW-038 Lab Sample ID: 320-71796-13

No Detections.

Client Sample ID: PW-141 Lab Sample ID: 320-71796-14

No Detections.

Client Sample ID: PW-040 Lab Sample ID: 320-71796-15

No Detections.

Client Sample ID: PW-039 Lab Sample ID: 320-71796-16

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: NPS Well

13C3 HFPO-DA

Lab Sample ID: 320-71796-1 Date Collected: 03/25/21 09:16

Matrix: Water Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	5.1		1.9	0.54	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluoroheptanoic acid (PFHpA)	2.2		1.9	0.23	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorooctanoic acid (PFOA)	2.7		1.9	0.79	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.25	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.51	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorobutanesulfonic acid (PFBS)	1.0	J	1.9	0.19	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorohexanesulfonic acid (PFHxS)	10		1.9	0.53	ng/L		03/31/21 04:16	04/04/21 14:55	1
Perfluorooctanesulfonic acid (PFOS)	7.1		1.9	0.50	ng/L		03/31/21 04:16	04/04/21 14:55	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		03/31/21 04:16	04/04/21 14:55	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		03/31/21 04:16	04/04/21 14:55	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.22	ng/L		03/31/21 04:16	04/04/21 14:55	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		03/31/21 04:16	04/04/21 14:55	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.30	ng/L		03/31/21 04:16	04/04/21 14:55	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.37	ng/L		03/31/21 04:16	04/04/21 14:55	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	97		50 - 150				03/ 31/21 04: 16	04/0421 14: 55	
13C4 PFHpA	101		50 ₋ 150				03/ 31/21 04: 16	04/04/21 14 55	1
13C4 PFOA	100		50 ₋ 150				03/ 31/21 04: 16	04/04/21 14 55	1
13C5 PFNA	94		50 - 150				03/31/21 04: 16	04/04/21 14 55	1
13C2 PFDA	98		50 ₋ 150				03/ 31/21 04: 16	04/04/21 14 55	1
13C2 PFUnA	85		50 - 150				03/ 31/21 04: 16		1
13C2 PFDoA	84		50 - 150				03/31/21 04: 16		
13C2 PFTeDA	101		50 - 150 50 - 150				08/31/21 04: 16		1
13C3 PFBS	90		50 - 150 50 - 150					04/04/21 14 55	
1802 PFHxS	89		50 - 150					6 04/04/21 14: 55	
· · · · ····•									
13C4 PEOS	20		50 - 150				118/ 31/21 (14: 16	114/18/21 14 55	7
13C4 PFOS d3-NMeFOSAA	89 90		50 - 150 50 - 150				03/31/21 04: 16	04/0421 14 55	1 1

03/31/21 04: 16 04/04/21 14 55

50 - 150

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS PW

Job ID: 320-71796-1

Client Sample ID: PW-501 Lab Sample ID: 320-71796-2

Date Collected: 03/23/21 12:27

Date Received: 03/29/21 17:16

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	3.5		1.9	0.54	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluoroheptanoic acid (PFHpA)	1.4	J	1.9	0.23	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.80	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.25	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorobutanesulfonic acid (PFBS)	0.45	J	1.9	0.19	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorohexanesulfonic acid (PFHxS)	6.5		1.9	0.53	ng/L		03/31/21 04:16	04/04/21 15:04	1
Perfluorooctanesulfonic acid (PFOS)	29		1.9	0.51			03/31/21 04:16	04/04/21 15:04	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.7		ng/L		03/31/21 04:16	04/04/21 15:04	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.7		ng/L		03/31/21 04:16	04/04/21 15:04	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.22	ng/L		03/31/21 04:16	04/04/21 15:04	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		03/31/21 04:16	04/04/21 15:04	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9		ng/L		03/31/21 04:16	04/04/21 15:04	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.37	ng/L		03/31/21 04:16	04/04/21 15:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150				03/ 31/21 04: 16	04/04/21 15: 04	
13C4 PFHpA	95		50 - 150				03/31/21 04: 16	04/04/21 15: 04	1
13C4 PFOA	101		50 ₋ 150				03/31/21 04: 16	04/04/21 15: 04	1
13C5 PFNA	96		50 ₋ 150				03/31/21 04: 16	04/0421 15: 04	1
13C2 PFDA	91		50 - 150				03/ 31/21 04: 16	04/0421 15: 04	1
13C2 PFUnA	89		50 - 150				03/ 31/21 04: 16	04/0421 15: 04	1
13C2 PFDoA	98		50 ₋ 150				03/31/21 04: 16	04/0421 15: 04	1
13C2 PFTeDA	104		50 ₋ 150				03/31/21 04: 16	04/0421 15: 04	1
13C3 PFBS	77		50 ₋ 150				03/ 31/21 04: 16	6 04/0421 15:04	
1802 PFHxS	94		50 - 150					6 04/0421 15:04	
13C4 PFOS	88		50 - 150					04/0421 15: 04	1
d3-NMeFOSAA	88		50 - 150					6 04/04/21 15: 04	
LE VECENO A									

50 - 150

50 - 150

87

88

d5-NEtFOSAA

13C3 HFPO-DA

03/31/21 04: 16 04/04/21 15: 04

03/31/21 04: 16 04/04/21 15: 04

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-208

13C3 HFPO-DA

Lab Sample ID: 320-71796-3

Date Collected: 03/23/21 13:54 **Matrix: Water** Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.3		1.8	0.53	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.78	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorobutanesulfonic acid (PFBS)	0.33	JI	1.8	0.18	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorohexanesulfonic acid (PFHxS)	0.52	J	1.8	0.52	ng/L		03/31/21 04:16	04/04/21 15:14	1
Perfluorooctanesulfonic acid (PFOS)	1.6	J	1.8	0.49	ng/L		03/31/21 04:16	04/04/21 15:14	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		03/31/21 04:16	04/04/21 15:14	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		03/31/21 04:16	04/04/21 15:14	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		03/31/21 04:16	04/04/21 15:14	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		03/31/21 04:16	04/04/21 15:14	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		03/31/21 04:16	04/04/21 15:14	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		03/31/21 04:16	04/04/21 15:14	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	102		50 - 150				03/ 31/21 04: 16	04/04/21 15: 14	
13C4 PFHpA	104		50 - 150				03/31/21 04: 16	04/04/21 15: 14	1
13C4 PFOA	103		50 - 150				03/31/21 04: 16	04/04/21 15: 14	1
13C5 PFNA	108		50 - 150				03/31/21 04: 16	04/04/21 15: 14	1
13C2 PFDA	103		50 - 150				03/31/21 04: 16	04/0421 15: 14	1
13C2 PFUnA	102		50 - 150				03/31/21 04: 16	04/0421 15: 14	1
13C2 PFDoA	102		50 - 150				03/31/21 04: 16	04/0421 15: 14	1
13C2 PFTeDA	119		50 - 150				03/31/21 04: 16	04/04/21 15: 14	1
13C3 PFBS	87		50 ₋ 150				03/ 31/21 04: 10	6 04/04/21 15: 14	
1802 PFHxS	106		50 - 150					04/ 04/21 15: 14	1
13C4 PFOS	96		50 - 150					04/0421 15: 14	1
d3-NMeFOSAA	87		50 - 150					6 04/0#21 15: 14	
d5-NEtFOSAA	101		50 - 150					04/04/21 15: 14	1
	101						33, 31, <u>21</u> 34. 10	5 // GIZT 10. 17	,

50 - 150

106

03/31/21 04: 16 04/04/21 15: 14

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-221

Lab Sample ID: 320-71796-4

Date Collected: 03/24/21 10:02 **Matrix: Water** Date Received: 03/29/21 17:16

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.52 J	1.8		ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluoroheptanoic acid (PFHpA)	ND	1.8	0.22	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorooctanoic acid (PFOA)	ND	1.8	0.76	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorononanoic acid (PFNA)	ND	1.8	0.24	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorodecanoic acid (PFDA)	ND	1.8	0.28	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluoroundecanoic acid (PFUnA)	ND	1.8	0.99	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorododecanoic acid (PFDoA)	ND	1.8	0.49	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorotridecanoic acid (PFTriA)	ND	1.8	1.2	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	0.66	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	0.18	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorohexanesulfonic acid (PFHxS)	0.90 J	1.8	0.51	ng/L		03/31/21 04:16	04/04/21 15:23	1
Perfluorooctanesulfonic acid (PFOS)	2.1	1.8	0.49	ng/L		03/31/21 04:16	04/04/21 15:23	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.5	1.1	ng/L		03/31/21 04:16	04/04/21 15:23	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.5	1.2	ng/L		03/31/21 04:16	04/04/21 15:23	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.8	0.22	ng/L		03/31/21 04:16	04/04/21 15:23	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	3.6	1.3	ng/L		03/31/21 04:16	04/04/21 15:23	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.8	0.29	ng/L		03/31/21 04:16	04/04/21 15:23	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.8	0.36	ng/L		03/31/21 04:16	04/04/21 15:23	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	104	50 - 150				03/ 31/21 04: 16	6 04/04/21 15: 23	
13C4 PFHpA	100	50 - 150				03/31/21 04: 16	04/04/21 15: 23	1
13C4 PFOA	96	50 ₋ 150				03/31/21 04: 16	04/04/21 15: 23	1
13C5 PFNA	101	50 ₋ 150				03/31/21 04: 16	04/0421 15: 23	1
13C2 PFDA	96	50 ₋ 150				03/31/21 04: 16	04/04/21 15: 23	1
13C2 PFUnA	95	50 ₋ 150				03/ 31/21 04: 16	04/04/21 15: 23	1
13C2 PFDoA	93	50 - 150				03/ 31/21 04: 16	04/0421 15: 23	1
13C2 PFTeDA	99	50 ₋ 150				03/ 31/21 04: 16	04/04/21 15: 23	1
13C3 PFBS	80	50 ₋ 150				03/ 31/21 04: 1	6 04/04/21 15: 23	3
1802 PFHxS	95	50 ₋ 150				03/ 31/21 04: 16	6 04/04/21 15: 23	1
13C4 PFOS	89	50 - 150					04/0421 15: 23	1
d3-NMeFOSAA	80	50 - 150					6 04/04/21 15: 23	3
d5-NEtFOSAA	84	50 - 150					6 04/04/21 15: 23	
13C3 HFPO-DA	96	50 - 150					04/04/21 15: 23	

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-401

13C3 HFPO-DA

Lab Sample ID: 320-71796-5

Date Collected: 03/23/21 12:37 **Matrix: Water** Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.4		1.8	0.52	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluoroheptanoic acid (PFHpA)	1.5	J	1.8	0.22	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorooctanoic acid (PFOA)	1.0	J	1.8	0.76	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorobutanesulfonic acid (PFBS)	0.74	J	1.8	0.18	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorohexanesulfonic acid (PFHxS)	7.7		1.8	0.51	ng/L		03/31/21 04:16	04/04/21 15:32	1
Perfluorooctanesulfonic acid (PFOS)	30		1.8	0.48	ng/L		03/31/21 04:16	04/04/21 15:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		03/31/21 04:16	04/04/21 15:32	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		03/31/21 04:16	04/04/21 15:32	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		03/31/21 04:16	04/04/21 15:32	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		03/31/21 04:16	04/04/21 15:32	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		03/31/21 04:16	04/04/21 15:32	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		03/31/21 04:16	04/04/21 15:32	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	80		50 - 150				03/ 31/21 04: 16	04/04/21 15: 32	
13C4 PFHpA	94		50 ₋ 150				03/ 31/21 04: 16	04/04/21 15: 32	1
13C4 PFOA	84		50 ₋ 150				03/ 31/21 04: 16	04/04/21 15: 32	1
13C5 PFNA	86		50 - 150				03/ 31/21 04: 16	04/04/21 15: 32	1
13C2 PFDA	83		50 ₋ 150				03/31/21 04: 16	04/04/21 15: 32	1
13C2 PFUnA	84		50 - 150					04/04/21 15: 32	1
13C2 PFDoA	88		50 - 150				03/31/21 04: 16	04/04/21 15: 32	1
13C2 PFTeDA	101		50 ₋ 150					04/04/21 15: 32	1
13C3 PFBS	65		50 - 150					6 04/04/21 15: 32	
1802 PFHxS	85		50 - 150					6 04/04/21 15: 32	
13C4 PFOS	80		50 - 150 50 - 150					04/04/21 15: 32	. 1
d3-NMeFOSAA	77		50 - 150 50 - 150					04/0421 15: 32	
d5-NEtFOSAA	75		50 - 150 50 - 150					6 04/0421 15: 32	

03/31/21 04: 16 04/04/21 15: 32

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-71796-1

Project/Site: GUS PFAS PW

Client Sample ID: PW-112 Lab Sample ID: 320-71796-6

Date Collected: 03/24/21 14:55

Date Received: 03/29/21 17:16

Matrix: Water

Method: EPA 537(Mod) - PFAS Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.62	J	1.8	0.51	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorooctanoic acid (PFOA)	ND		1.8		ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.1	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.64	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorohexanesulfonic acid (PFHxS)	1.3	J	1.8	0.50	ng/L		03/31/21 04:16	04/04/21 15:42	1
Perfluorooctanesulfonic acid (PFOS)	6.1		1.8	0.48	ng/L		03/31/21 04:16	04/04/21 15:42	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4		ng/L		03/31/21 04:16	04/04/21 15:42	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4		ng/L		03/31/21 04:16	04/04/21 15:42	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21			03/31/21 04:16	04/04/21 15:42	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5		ng/L		03/31/21 04:16	04/04/21 15:42	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8		ng/L		03/31/21 04:16	04/04/21 15:42	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		03/31/21 04:16	04/04/21 15:42	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	102		50 - 150				03/31/21 04: 16	6 04/04/21 15: 42	1
13C4 PFHpA	105		50 - 150				03/31/21 04: 16	04/0421 15: 42	1
13C4 PFOA	106		50 - 150				03/31/21 04: 16	04/0421 15: 42	1
13C5 PFNA	106		50 - 150				03/31/21 04: 16	04/0421 15: 42	1
13C2 PFDA	105		50 - 150				03/31/21 04: 16	04/0421 15: 42	1
13C2 PFUnA	97		50 - 150				03/31/21 04: 16	04/04/21 15: 42	1
13C2 PFDoA	103		50 - 150				03/31/21 04: 16	04/04/21 15: 42	1
13C2 PFTeDA	119		50 ₋ 150				03/ 31/21 04: 16	04/04/21 15: 42	1
13C3 PFBS	87		50 - 150					6 04/04/21 15: 42	2
1802 PFHxS	98		50 - 150				03/31/21 04: 16	6 04/04/21 15: 42	1
13C4 PFOS	99		50 - 150				03/31/21 04: 16	04/04/21 15: 42	1
d3-NMeFOSAA	83		50 - 150				03/ 31/21 04: 1	6 04/04/21 15: 42	2
d5-NEtFOSAA	86		50 - 150				03/ 31/21 04: 16	6 04/04/21 15: 42	1

4

6

8

10

12

14

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-012

Lab Sample ID: 320-71796-7 Date Collected: 03/24/21 15:05 **Matrix: Water**

Date Received: 03/29/21 17:16

13C3 HFPO-DA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.51	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.75	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorohexanesulfonic acid (PFHxS)	1.5	J	1.8	0.51	ng/L		03/31/21 04:16	04/04/21 15:51	1
Perfluorooctanesulfonic acid (PFOS)	7.7		1.8	0.48	ng/L		03/31/21 04:16	04/04/21 15:51	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		03/31/21 04:16	04/04/21 15:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.2	ng/L		03/31/21 04:16	04/04/21 15:51	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		03/31/21 04:16	04/04/21 15:51	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/31/21 04:16	04/04/21 15:51	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28	ng/L		03/31/21 04:16	04/04/21 15:51	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		03/31/21 04:16	04/04/21 15:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	81		50 - 150				03/ 31/21 04: 16	04/04/21 15: 51	
13C4 PFHpA	85		50 - 150				03/ 31/21 04: 16	04/04/21 15: 51	1
13C4 PFOA	91		50 - 150				03/ 31/21 04: 16	04/04/21 15: 51	1
13C5 PFNA	91		50 - 150				03/31/21 04: 16	04/04/21 15: 51	1
13C2 PFDA	83		50 - 150				03/31/21 04: 16	04/04/21 15: 51	1
13C2 PFUnA	79		50 - 150				03/31/21 04: 16	04/04/21 15: 51	1
13C2 PFDoA	89		50 - 150				03/ 31/21 04: 16	04/04/21 15: 51	1
13C2 PFTeDA	98		50 ₋ 150				03/ 31/21 04: 16	04/04/21 15: 51	1
13C3 PFBS	70		50 - 150				03/ 31/21 04: 16	6 04/0421 15: 51	
1802 PFHxS	87		50 - 150				03/ 31/21 04: 10	6 04/04/21 15: 51	
13C4 PFOS	76		50 ₋ 150				03/31/21 04: 16	04/04/21 15: 51	1
d3-NMeFOSAA	71		50 - 150					6 04/0421 15: 51	

03/31/21 04: 16 04/04/21 15: 51

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-211 Lab Sample ID: 320-71796-8

Date Collected: 03/24/21 09:23 **Matrix: Water** Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.77	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L		03/31/21 04:16	04/04/21 16:19	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49	ng/L		03/31/21 04:16	04/04/21 16:19	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		03/31/21 04:16	04/04/21 16:19	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5		ng/L		03/31/21 04:16	04/04/21 16:19	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8		ng/L		03/31/21 04:16	04/04/21 16:19	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6		ng/L		03/31/21 04:16	04/04/21 16:19	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	-		03/31/21 04:16	04/04/21 16:19	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		03/31/21 04:16	04/04/21 16:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	91		50 - 150				03/ 31/21 04: 16	6 <i>04/ 04</i> /21 16: 19	1
13C4 PFHpA	104		50 - 150				03/31/21 04: 16	04/0421 16: 19	1
13C4 PFOA	98		50 - 150				03/31/21 04: 16	04/0421 16: 19	1
13C5 PFNA	107		50 - 150				03/31/21 04: 16	04/0421 16: 19	1
13C2 PFDA	93		50 - 150				03/31/21 04: 16	04/04/21 16: 19	1
13C2 PFUnA	88		50 - 150				03/31/21 04: 16	04/04/21 16: 19	1
13C2 PFDoA	97		50 - 150				03/31/21 04: 16	04/0421 16: 19	1
13C2 PFTeDA	104		50 - 150				03/31/21 04: 16	04/0421 16: 19	1
13C3 PFBS	71		50 - 150				03/ 31/21 04: 16	6 04/0421 16: 19)
1802 PFHxS	92		50 - 150				03/ 31/21 04: 16	6 04/04/21 16: 19)
13C4 PFOS	90		50 - 150				03/31/21 04: 16	04/04/21 16: 19	1
d3-NMeFOSAA	75		50 ₋ 150				03/ 31/21 04: 16	6 04/04/21 16: 19)
d5-NEtFOSAA	77		50 ₋ 150				03/ 31/21 04: 16	6 04/04/21 16: 19	
13C3 HFPO-DA	84		50 - 150					04/04/21 16: 19	

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-010

13C3 HFPO-DA

Lab Sample ID: 320-71796-9

Date Collected: 03/24/21 10:50 **Matrix: Water** Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.51	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.75	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.48	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.1	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.64	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.50	ng/L		03/31/21 04:16	04/04/21 16:28	1
Perfluorooctanesulfonic acid (PFOS)	0.79	J	1.8	0.48	ng/L		03/31/21 04:16	04/04/21 16:28	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		03/31/21 04:16	04/04/21 16:28	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.1	ng/L		03/31/21 04:16	04/04/21 16:28	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		03/31/21 04:16	04/04/21 16:28	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/31/21 04:16	04/04/21 16:28	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28	ng/L		03/31/21 04:16	04/04/21 16:28	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		03/31/21 04:16	04/04/21 16:28	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	97		50 - 150				03/ 31/21 04: 16	04/04/21 16: 28	
13C4 PFHpA	98		50 - 150				03/31/21 04: 16	04/04/21 16: 28	1
13C4 PFOA	98		50 ₋ 150				03/31/21 04: 16	04/0421 16: 28	1
13C5 PFNA	103		50 - 150				OB/ 31/21 04: 16	04/0421 16: 28	1
13C2 PFDA	108		50 ₋ 150				OB/ 31/21 04: 16	04/04/21 16: 28	1
13C2 PFUnA	89		50 - 150				OB/ 31/21 04: 16	04/04/21 16: 28	1
13C2 PFDoA	103		50 - 150				OB/ 31/21 04: 16	04/04/21 16: 28	1
13C2 PFTeDA	114		50 ₋ 150				OB/ 31/21 04: 16	04/04/21 16: 28	1
13C3 PFBS	78		50 ₋ 150				03/ 31/21 04: 16	6 04/0421 16: 28	
1802 PFHxS	99		50 - 150					6 04/04/21 16: 28	
13C4 PFOS	95		50 - 150					04/04/21 16: 28	1
d3-NMeFOSAA	82		50 - 150 50 - 150					6 04/0421 16: 28	
d5-NEtFOSAA	90		50 - 150				03/ 31/21 04: 16		

03/31/21 04: 16 04/04/21 16: 28

50 - 150

98

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-059

Lab Sample ID: 320-71796-10 Date Collected: 03/24/21 12:10

Matrix: Water

Date Received: 03/29/21 17:16		
Method: EPA 537(Mod) - PFAS	for QSM 5	.3, Table
Analyte	Result	Qualifier
Perfluorohexanoic acid (PFHxA)	1.1	J
Perfluoroheptanoic acid (PFHpA)	0.26	J

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.1	J	1.7	0.49	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluoroheptanoic acid (PFHpA)	0.26	J	1.7	0.21	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorooctanoic acid (PFOA)	0.96	J	1.7	0.72	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.62	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorobutanesulfonic acid (PFBS)	1.3	J	1.7	0.17	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorohexanesulfonic acid (PFHxS)	1.7		1.7	0.49	ng/L		03/31/21 04:16	04/04/21 16:38	1
Perfluorooctanesulfonic acid (PFOS)	1.6	J	1.7	0.46	ng/L		03/31/21 04:16	04/04/21 16:38	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		03/31/21 04:16	04/04/21 16:38	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		03/31/21 04:16	04/04/21 16:38	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		03/31/21 04:16	04/04/21 16:38	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		03/31/21 04:16	04/04/21 16:38	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		03/31/21 04:16	04/04/21 16:38	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/31/21 04:16	04/04/21 16:38	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	92	50 - 150	03/31/21 04: 16 04	/ 04/21 16: 38	1
13C4 PFHpA	89	50 - 150	03/ 31/21 04: 16 04	/04/21 16: 38	1
13C4 PFOA	99	50 - 150	03/ 31/21 04: 16 04	/04/21 16: 38	1
13C5 PFNA	96	50 - 150	03/ 31/21 04: 16 04	/0421 16: 38	1
13C2 PFDA	101	50 - 150	03/31/21 04: 16 04	/04/21 16: 38	1
13C2 PFUnA	91	50 - 150	03/ 31/21 04: 16 04	/04/21 16: 38	1
13C2 PFDoA	103	50 - 150	03/31/21 04: 16 04	/0421 16: 38	1
13C2 PFTeDA	108	50 - 150	03/ 31/21 04: 16 04	/0421 16: 38	1
13C3 PFBS	77	50 - 150	03/ 31/21 04: 16 04	1/0421 16: 38	1
1802 PFHxS	94	50 - 150	03/ 31/21 04: 16 04	/ 0421 16: 38	1
13C4 PFOS	86	50 - 150	03/ 31/21 04: 16 04	/04/21 16: 38	1
d3-NMeFOSAA	89	50 - 150	03/ 31/21 04: 16 04	4/ 04/21 16: 38	1
d5-NEtFOSAA	89	50 - 150	03/ 31/21 04: 16 04	/ 0421 16: 38	1
13C3 HFPO-DA	98	50 ₋ 150	03/31/21 04: 16 04	/ 04/21 16: 38	1

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-203

Lab Sample ID: 320-71796-11 Date Collected: 03/23/21 17:24 **Matrix: Water**

Date Received: 03/29/21 17:16

13C4 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	1.7	0.50	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluoroheptanoic acid (PFHpA)	ND	1.7	0.21	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorooctanoic acid (PFOA)	ND	1.7	0.73	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorononanoic acid (PFNA)	0.50 J	1.7	0.23	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorodecanoic acid (PFDA)	ND	1.7	0.27	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.94	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.47	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorotridecanoic acid (PFTriA)	ND	1.7	1.1	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.7	0.63	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.7	0.17	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorohexanesulfonic acid (PFHxS)	0.90 J	1.7	0.49	ng/L		03/31/21 04:16	04/04/21 16:47	1
Perfluorooctanesulfonic acid (PFOS)	1.8	1.7	0.46	ng/L		03/31/21 04:16	04/04/21 16:47	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.3	1.0	ng/L			04/04/21 16:47	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.3		ng/L		03/31/21 04:16	04/04/21 16:47	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.7		ng/L		03/31/21 04:16	04/04/21 16:47	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	3.4		ng/L		03/31/21 04:16	04/04/21 16:47	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.7	0.27	ng/L		03/31/21 04:16	04/04/21 16:47	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.34	ng/L		03/31/21 04:16	04/04/21 16:47	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	90	50 - 150				03/ 31/21 04: 16	04/ 04/21 16: 47	-
13C4 PFHpA	92	50 - 150				03/31/21 04: 16	04/04/21 16: 47	1
13C4 PFOA	99	50 - 150				03/31/21 04: 16	04/04/21 16: 47	1
13C5 PFNA	96	50 - 150				03/31/21 04: 16	04/04/21 16: 47	1
13C2 PFDA	101	50 - 150				03/31/21 04: 16	04/04/21 16: 47	1
13C2 PFUnA	79	50 - 150				03/31/21 04: 16	04/0421 16: 47	1
13C2 PFDoA	93	50 - 150				03/31/21 04: 16	04/04/21 16: 47	1
13C2 PFTeDA	97	50 ₋ 150				03/31/21 04: 16	04/04/21 16: 47	1
13C3 PFBS	69	50 - 150				03/ 31/21 04: 16	6 04/04/21 16: 47	
1802 PFHxS	93	50 ₋ 150				- 11:::::::::::::::::::::::::::::::::::	6 04/04/21 16: 47	

03/31/21 04: 16 04/04/21 16: 47

03/31/21 04: 16 04/04/21 16: 47

03/31/21 04: 16 04/04/21 16: 47

03/31/21 04: 16 04/04/21 16: 47

50 - 150

50 - 150

50 - 150

50 - 150

80

82

81

84

1

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-037

Lab Sample ID: 320-71796-12 Date Collected: 03/25/21 13:17 **Matrix: Water**

Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.64	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.50	ng/L		03/31/21 04:16	04/04/21 16:56	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.47	ng/L		03/31/21 04:16	04/04/21 16:56	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.0	ng/L		03/31/21 04:16	04/04/21 16:56	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.1	ng/L		03/31/21 04:16	04/04/21 16:56	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		03/31/21 04:16	04/04/21 16:56	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/31/21 04:16	04/04/21 16:56	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		03/31/21 04:16	04/04/21 16:56	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		03/31/21 04:16	04/04/21 16:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	104		50 - 150				03/ 31/21 04: 16	04/04/21 16: 56	1
13C4 PFHpA	103		50 - 150				03/31/21 04: 16	04/04/21 16: 56	1
13C4 PFOA	106		50 - 150				03/31/21 04: 16	04/04/21 16: 56	1
13C5 PFNA	107		50 - 150				03/31/21 04: 16	04/0421 16: 56	1
13C2 PFDA	106		50 - 150				03/31/21 04: 16	04/04/21 16: 56	1
13C2 PFUnA	94		50 ₋ 150				OB/ 31/21 04: 16	04/04/21 16: 56	1
13C2 PFDoA	109		50 - 150				OB/ 31/21 04: 16	04/04/21 16: 56	1
13C2 PFTeDA	121		50 ₋ 150				OB/ 31/21 04: 16	04/04/21 16: 56	1
13C3 PFBS	85		50 ₋ 150				03/ 31/21 04: 1	6 04/04/21 16: 56	6 1
1802 PFHxS	103		50 ₋ 150				OB/ 31/21 04: 16	04/ 04/21 16: 56	1
13C4 PFOS	101		50 ₋ 150				OB/ 31/21 04: 16	04/04/21 16: 56	1
d3-NMeFOSAA	86		50 ₋ 150				03/ 31/21 04: 1	6 04/0421 16: 56	5 1
d5-NEtFOSAA	85		50 - 150					6 04/04/21 16: 56	

03/31/21 04: 16 04/04/21 16: 56

50 - 150

13C3 HFPO-DA

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-038

13C3 HFPO-DA

Lab Sample ID: 320-71796-13

Date Collected: 03/25/21 12:48 **Matrix: Water** Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.6	0.48	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluoroheptanoic acid (PFHpA)	ND		1.6	0.21	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorooctanoic acid (PFOA)	ND		1.6	0.70	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorononanoic acid (PFNA)	ND		1.6	0.22	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorodecanoic acid (PFDA)	ND		1.6	0.26	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluoroundecanoic acid (PFUnA)	ND		1.6	0.91	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorododecanoic acid (PFDoA)	ND		1.6	0.45	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorotridecanoic acid (PFTriA)	ND		1.6	1.1	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.6	0.60	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.6	0.16	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.6	0.47	ng/L		03/31/21 04:16	04/04/21 17:06	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.6	0.45	ng/L		03/31/21 04:16	04/04/21 17:06	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.1	0.99	ng/L		03/31/21 04:16	04/04/21 17:06	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.1	1.1	ng/L		03/31/21 04:16	04/04/21 17:06	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.6	0.20	ng/L		03/31/21 04:16	04/04/21 17:06	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.3		ng/L		03/31/21 04:16	04/04/21 17:06	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.6		ng/L		03/31/21 04:16	04/04/21 17:06	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.6	0.33	ng/L		03/31/21 04:16	04/04/21 17:06	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	91		50 - 150				03/ 31/21 04: 16	04/04/21 17: 06	1
13C4 PFHpA	102		50 - 150				OB/ 31/21 04: 16	04/04/21 17: 06	1
13C4 PFOA	107		50 - 150				OB/ 31/21 04: 16	04/04/21 17: 06	1
13C5 PFNA	112		50 - 150				03/31/21 04: 16	04/04/21 17: 06	1
13C2 PFDA	103		50 - 150				03/31/21 04: 16	04/0421 17: 06	1
13C2 PFUnA	97		50 - 150				03/ 31/21 04: 16	04/0421 17: 06	1
13C2 PFDoA	112		50 - 150				03/31/21 04: 16	04/0421 17: 06	1
13C2 PFTeDA	133		50 ₋ 150				03/31/21 04: 16	04/0421 17: 06	1
13C3 PFBS	85		50 - 150				03/ 31/21 04: 1	6 04/04/21 17: 06	3
1802 PFHxS	101		50 ₋ 150				03/31/21 04: 16	04/ 04/21 17: 06	1
13C4 PFOS	100		50 ₋ 150				OB/ 31/21 04: 16	04/0421 17: 06	1
d3-NMeFOSAA	95		50 ₋ 150					6 04/0421 17:06	1
d5-NEtFOSAA	96		50 ₋ 150				03/ 31/21 04: 16	04/04/21 17: 06	1

03/31/21 04: 16 04/04/21 17: 06

50 - 150

4/7/2021 (Rev. 1)

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-141

13C3 HFPO-DA

Lab Sample ID: 320-71796-14 **Matrix: Water**

Date Collected: 03/25/21 12:04 Date Received: 03/29/21 17:16

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	1.7	0.50	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluoroheptanoic acid (PFHpA)	ND	1.7	0.22	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorooctanoic acid (PFOA)	ND	1.7	0.73	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorononanoic acid (PFNA)	ND	1.7	0.23	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorodecanoic acid (PFDA)	ND	1.7	0.27	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.95	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.47	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorotridecanoic acid (PFTriA)	ND	1.7	1.1	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.7	0.63	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.7	0.17	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.7	0.49	ng/L		03/31/21 04:16	04/04/21 17:15	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.7	0.47	ng/L		03/31/21 04:16	04/04/21 17:15	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.3		ng/L		03/31/21 04:16	04/04/21 17:15	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.3		ng/L		03/31/21 04:16	04/04/21 17:15	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.7		ng/L		03/31/21 04:16	04/04/21 17:15	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	3.5		ng/L		03/31/21 04:16	04/04/21 17:15	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.7		ng/L		03/31/21 04:16	04/04/21 17:15	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.7	0.35	ng/L		03/31/21 04:16	04/04/21 17:15	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	98	50 - 150				03/ 31/21 04: 16	04/04/21 17: 15	
13C4 PFHpA	105	50 - 150				03/31/21 04: 16	04/04/21 17: 15	1
13C4 PFOA	105	50 - 150				03/31/21 04: 16	04/04/21 17: 15	1
13C5 PFNA	101	50 - 150				03/31/21 04: 16	04/04/21 17: 15	1
13C2 PFDA	100	50 - 150				03/31/21 04: 16	04/04/21 17: 15	1
13C2 PFUnA	92	50 ₋ 150				03/ 31/21 04: 16	04/04/21 17: 15	1
13C2 PFDoA	112	50 - 150				03/31/21 04: 16	04/04/21 17: 15	1
13C2 PFTeDA	133	50 ₋ 150				03/31/21 04: 16	04/0421 17: 15	1
13C3 PFBS	86	50 - 150				03/ 31/21 04: 1	6 04/04/21 17: 15	5
1802 PFHxS	109	50 ₋ 150				03/31/21 04: 16	04/ 04/21 17: 15	
13C4 PFOS	95	50 ₋ 150				03/ 31/21 04: 16	04/0421 17: 15	1
d3-NMeFOSAA	89	50 ₋ 150				03/ 31/21 04: 1	6 04/04/21 17: 15	5
d5-NEtFOSAA	99	50 ₋ 150				03/31/21 04: 16	6 04/04/21 17: 15	

03/31/21 04: 16 04/04/21 17: 15

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-040

Lab Sample ID: 320-71796-15

Date Collected: 03/25/21 12:14 **Matrix: Water** Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.77	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L		03/31/21 04:16	04/04/21 17:25	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8		ng/L		03/31/21 04:16	04/04/21 17:25	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		03/31/21 04:16	04/04/21 17:25	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		03/31/21 04:16	04/04/21 17:25	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		03/31/21 04:16	04/04/21 17:25	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		03/31/21 04:16	04/04/21 17:25	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		03/31/21 04:16	04/04/21 17:25	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		03/31/21 04:16	04/04/21 17:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150				03/ 31/21 04: 16	04/04/21 17: 25	<u> </u>
13C4 PFHpA	98		50 - 150				03/31/21 04: 16	04/04/21 17: 25	1
13C4 PFOA	96		50 - 150				03/31/21 04: 16	04/04/21 17: 25	1
13C5 PFNA	98		50 - 150				03/31/21 04: 16	04/04/21 17: 25	1
13C2 PFDA	96		50 - 150				03/ 31/21 04: 16	04/04/21 17: 25	1
13C2 PFUnA	92		50 ₋ 150				03/31/21 04: 16	04/04/21 17: 25	1
13C2 PFDoA	109		50 - 150				03/31/21 04: 16	04/04/21 17: 25	1
13C2 PFTeDA	130		50 - 150					04/04/21 17: 25	1
13C3 PFBS	77		50 ₋ 150					6 04/04/21 17: 25	-
1802 PFHxS	94		50 - 150					6 04/04/21 17: 25	
13C4 PFOS	90		50 - 150 50 - 150					04/0 4 /21 17: 25	. 1
d3-NMeFOSAA	82		50 ₋ 150					6 04/04/21 17: 25	
d5-NEtFOSAA	94		50 - 150					6 04/04/21 17: 25	
13C3 HFPO-DA	86		50 ₋ 150					04/ 0 4 /21 17: 25	

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Client Sample ID: PW-039

Lab Sample ID: 320-71796-16

Date Collected: 03/25/21 13:45 **Matrix: Water** Date Received: 03/29/21 17:16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.76	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.51	ng/L		03/31/21 04:16	04/04/21 17:34	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.48	ng/L		03/31/21 04:16	04/04/21 17:34	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		03/31/21 04:16	04/04/21 17:34	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		03/31/21 04:16	04/04/21 17:34	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		03/31/21 04:16	04/04/21 17:34	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		03/31/21 04:16	04/04/21 17:34	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		03/31/21 04:16	04/04/21 17:34	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		03/31/21 04:16	04/04/21 17:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	102		50 - 150				03/ 31/21 04: 16	04/04/21 17: 34	
13C4 PFHpA	107		50 - 150				03/31/21 04: 16	04/0421 17: 34	1
13C4 PFOA	99		50 - 150				03/ 31/21 04: 16	04/0421 17: 34	1
13C5 PFNA	107		50 - 150				03/31/21 04: 16	04/0421 17: 34	1
13C2 PFDA	109		50 - 150				03/31/21 04: 16	04/0421 17: 34	1
13C2 PFUnA	110		50 - 150				03/31/21 04: 16	04/0421 17: 34	1
13C2 PFDoA	116		50 - 150				03/31/21 04: 16	04/0421 17: 34	1
13C2 PFTeDA	118		50 - 150				03/31/21 04: 16	04/0421 17: 34	1
13C3 PFBS	88		50 - 150				03/ 31/21 04: 1	6 04/04/21 17: 34	!
1802 PFHxS	104		50 - 150				03/31/21 04: 16	04/ 04/21 17: 34	1
13C4 PFOS	98		50 - 150				03/31/21 04: 16	04/0421 17: 34	1
d3-NMeFOSAA	90		50 ₋ 150				03/31/21 04: 16	6 04/04/21 17: 34	

03/31/21 04: 16 04/04/21 17: 34

03/31/21 04: 16 04/04/21 17: 34

50 - 150

50 - 150

101

96

d5-NEtFOSAA

13C3 HFPO-DA

Job ID: 320-71796-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150
320-71796-1	NPS Well	97	101	100	94	98	85	84	101
320-71796-2	PW-501	89	95	101	96	91	89	98	104
320-71796-3	PW-208	102	104	103	108	103	102	102	119
320-71796-4	PW-221	104	100	96	101	96	95	93	99
320-71796-5	PW-401	80	94	84	86	83	84	88	101
320-71796-6	PW-112	102	105	106	106	105	97	103	119
320-71796-7	PW-012	81	85	91	91	83	79	89	98
320-71796-8	PW-211	91	104	98	107	93	88	97	104
320-71796-9	PW-010	97	98	98	103	108	89	103	114
320-71796-10	PW-059	92	89	99	96	101	91	103	108
320-71796-11	PW-203	90	92	99	96	101	79	93	97
320-71796-12	PW-037	104	103	106	107	106	94	109	121
320-71796-13	PW-038	91	102	107	112	103	97	112	133
320-71796-14	PW-141	98	105	105	101	100	92	112	133
320-71796-15	PW-040	89	98	96	98	96	92	109	130
320-71796-16	PW-039	102	107	99	107	109	110	116	118
LCS 320-475229/2-A	Lab Control Sample	110	116	103	102	103	95	106	117
LCSD 320-475229/3-A	Lab Control Sample Dup	100	97	91	98	93	85	99	106
MB 320-475229/1-A	Method Blank	99	114	108	103	94	97	98	115
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-71796-1	NPS Well	90	89	89	90	82	106		
320-71796-2	PW-501	77	94	88	88	87	88		
320-71796-3	PW-208	87	106	96	87	101	106		
320-71796-4	PW-221	80	95	89	80	84	96		
320-71796-5	PW-401	65	85	80	77	75	89		
320-71796-6	PW-112	87	98	99	83	86	96		
320-71796-7	PW-012	70	87	76	71	66	86		
320-71796-8	PW-211	71	92	90	75	77	84		
320-71796-9	PW-010	78	99	95	82	90	98		
320-71796-10	PW-059	77	94	86	89	89	98		
320-71796-11	PW-203	69	93	80	82	81	84		
320-71796-12	PW-037	85	103	101	86	85	94		
320-71796-13	PW-038	85	101	100	95	96	93		
320-71796-14	PW-141	86	109	95	89	99	86		
320-71796-15	PW-040	77	94	90	82	94	86		
320-71796-16	PW-039	88	104	98	90	101	96		
LCS 320-475229/2-A	Lab Control Sample	101	109	96	92	101	103		
LCSD 320-475229/3-A	Lab Control Sample Dup	98	96	87	88	88	99		
MB 320-475229/1-A	Method Blank	91	103	95	92	101	99		

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

Eurofins TestAmerica, Sacramento

Page 23 of 37

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

PFTDA = 13C2 PFTeDA
C3PFBS = 13C3 PFBS
PFHxS = 18O2 PFHxS
PFOS = 13C4 PFOS
d3NMFOS = d3-NMeFOSAA
d5NEFOS = d5-NEtFOSAA
HFPODA = 13C3 HFPO-DA

Job ID: 320-71796-1

3

4

5

7

9

4 4

12

13

16

Job ID: 320-71796-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-475229/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 476504 **Prep Batch: 475229**

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte Perfluorohexanoic acid (PFHxA) ND 2.0 0.58 ng/L 03/31/21 04:16 04/04/21 14:27 Perfluoroheptanoic acid (PFHpA) ND 2.0 0.25 ng/L 03/31/21 04:16 04/04/21 14:27 Perfluorooctanoic acid (PFOA) ND 2.0 0.85 ng/L 03/31/21 04:16 04/04/21 14:27 Perfluorononanoic acid (PFNA) ND 2.0 0.27 ng/L 03/31/21 04:16 04/04/21 14:27 Perfluorodecanoic acid (PFDA) ND 2.0 0.31 ng/L 03/31/21 04:16 04/04/21 14:27 Perfluoroundecanoic acid (PFUnA) ND 2.0 03/31/21 04:16 04/04/21 14:27 1.1 ng/L ND Perfluorododecanoic acid (PFDoA) 2.0 03/31/21 04:16 04/04/21 14:27 0.55 ng/L Perfluorotridecanoic acid (PFTriA) ND 2.0 1.3 ng/L 03/31/21 04:16 04/04/21 14:27 Perfluorotetradecanoic acid (PFTeA) ND 2.0 0.73 ng/L 03/31/21 04:16 04/04/21 14:27 Perfluorobutanesulfonic acid (PFBS) ND 2.0 0.20 ng/L 03/31/21 04:16 04/04/21 14:27 Perfluorohexanesulfonic acid (PFHxS) ND 2.0 03/31/21 04:16 04/04/21 14:27 0.57 ng/L Perfluorooctanesulfonic acid (PFOS) ND 2.0 0.54 ng/L 03/31/21 04:16 04/04/21 14:27 N-methylperfluorooctanesulfonamidoa ND 5.0 03/31/21 04:16 04/04/21 14:27 1.2 ng/L cetic acid (NMeFOSAA) 03/31/21 04:16 04/04/21 14:27 N-ethylperfluorooctanesulfonamidoac ND 5.0 1.3 ng/L etic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxanonan ND 2.0 0.24 ng/L 03/31/21 04:16 04/04/21 14:27 e-1-sulfonic acid ND 4.0 1.5 ng/L 03/31/21 04:16 04/04/21 14:27 Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) ND 2.0 0.32 ng/L 03/31/21 04:16 04/04/21 14:27 11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid 0.40 ng/L ND 2.0 03/31/21 04:16 04/04/21 14:27 4,8-Dioxa-3H-perfluorononanoic acid

MD MD

	MB	MR				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	99		50 - 150	03/31/21 0416	04/ 04/21 14:27	1
13C4 PFHpA	114		50 - 150	03/ 31/21 0416	04/ 04/21 14:27	1
13C4 PFOA	108		50 - 150	03/ 31/21 04:16	04/0421 1427	1
13C5 PFNA	103		50 - 150	03/ 31/21 04:16	04/0421 1427	1
13C2 PFDA	94		50 - 150	03/ 31/21 04:16	04/ 04/21 14:27	1
13C2 PFUnA	97		50 - 150	03/ 31/21 04:16	04/ 04/21 14:27	1
13C2 PFDoA	98		50 - 150	03/ 31/21 04:16	04/0421 14:27	1
13C2 PFTeDA	115		50 - 150	03/ 31/21 0416	04/ 04/21 14:27	1
13C3 PFBS	91		50 - 150	03/ 31/21 04:16	04/ 04/21 14:27	1
1802 PFHxS	103		50 - 150	03/ 31/21 04:16	04/0421 1427	1
13C4 PFOS	95		50 - 150	03/ 31/21 04:16	04/ 04/21 14:27	1
d3-NMeFOSAA	92		50 - 150	03/ 31/21 04:16	04/ 04/21 14:27	1
d5-NEtFOSAA	101		50 - 150	03/ 31/21 04:16	04/0421 1427	1
13C3 HFPO-DA	99		50 - 150	03/ 31/21 04:16	04/ 04/21 14:27	1

Lab Sample ID: LCS 320-475229/2-A

Matrix: Water

(ADONA)

Analysis Batch: 476504

Client Sample ID: L	ab Control Sample
P	Prep Type: Total/NA
F	Prep Batch: 475229

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier U	nit D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	45.1	n	g/L	113	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	43.9	n	g/L	110	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	45.2	n	g/L	113	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	45.7	n	g/L	114	69 - 130	

Eurofins TestAmerica, Sacramento

Page 25 of 37

.

Job ID: 320-71796-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-475229/2-A

Matrix: Water

ecane-1-sulfonic acid

acid (ADONA)

Matrix: Water

4,8-Dioxa-3H-perfluorononanoic

Analysis Batch: 476504

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 475229

	Spike	LCS I	LCS		%Rec.	
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits	
Perfluorodecanoic acid (PFDA)	40.0	44.1	ng/L		71 - 129	
Perfluoroundecanoic acid	40.0	52.2	ng/L	131	69 - 133	
(PFUnA)			-			
Perfluorododecanoic acid	40.0	41.6	ng/L	104	72 - 134	
(PFDoA)						
Perfluorotridecanoic acid	40.0	44.7	ng/L	112	65 - 144	
(PFTriA)						
Perfluorotetradecanoic acid	40.0	43.3	ng/L	108	71 - 132	
(PFTeA)						
Perfluorobutanesulfonic acid	35.4	40.0	ng/L	113	72 - 130	
(PFBS)						
Perfluorohexanesulfonic acid	36.4	38.9	ng/L	107	68 - 131	
(PFHxS)						
Perfluorooctanesulfonic acid	37.1	39.1	ng/L	105	65 - 140	
(PFOS)						
N-methylperfluorooctanesulfona	40.0	44.3	ng/L	111	65 - 136	
midoacetic acid (NMeFOSAA)						
N-ethylperfluorooctanesulfonami	40.0	40.1	ng/L	100	61 - 135	
doacetic acid (NEtFOSAA)			,,			
9-Chlorohexadecafluoro-3-oxan	37.3	45.8	ng/L	123	77 - 137	
onane-1-sulfonic acid						
Hexafluoropropylene Oxide	40.0	45.7	ng/L	114	72 - 132	
Dimer Acid (HFPO-DA)	07.7	44.0	4	440	70 400	
11-Chloroeicosafluoro-3-oxaund	37.7	44.3	ng/L	118	76 - 136	

37.7

43.6

ng/L

LCS LCS

	LUS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	110		50 - 150
13C4 PFHpA	116		50 - 150
13C4 PFOA	103		50 - 150
13C5 PFNA	102		50 - 150
13C2 PFDA	103		50 - 150
13C2 PFUnA	95		50 - 150
13C2 PFDoA	106		50 - 150
13C2 PFTeDA	117		50 - 150
13C3 PFBS	101		50 - 150
1802 PFHxS	109		50 - 150
13C4 PFOS	96		50 - 150
d3-NMeFOSAA	92		50 - 150
d5-NEtFOSAA	101		50 - 150
13C3 HFPO-DA	103		50 - 150
			

Lab Sample ID: LCSD 320-475229/3-A

Client Sample ID: Lab Control Sample Dup

116

81 - 141

Prep Type: Total/NA

Analysis Batch: 476504						itch: 47	5229		
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	43.5		ng/L		109	72 - 129	4	30
Perfluoroheptanoic acid (PFHpA)	40.0	43.9		ng/L		110	72 - 130	0	30
Perfluorooctanoic acid (PFOA)	40.0	44.3		ng/L		111	71 - 133	2	30

Eurofins TestAmerica, Sacramento

Page 26 of 37

Client: Shannon & Wilson, Inc Job ID: 320-71796-1 Project/Site: GUS PFAS PW

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-475229/3-A

Matrix: Water

Analysis Batch: 476504

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 475229

Spike Added			Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
40.0	44.4			— <u> </u>	111	69 - 130	3	30
40.0	45.3		ng/L		113	71 - 129	3	30
40.0	50.7		ng/L		127	69 - 133	3	30
40.0	39.9		ng/L		100	72 - 134	4	30
40.0	45.9		ng/L		115	65 - 144	3	30
40.0	45.6		ng/L		114	71 - 132	5	30
35.4	35.4		ng/L		100	72 - 130	12	30
36.4	41.3		ng/L		113	68 - 131	6	30
37.1	38.5		ng/L		104	65 - 140	2	30
40.0	42.1		ng/L		105	65 - 136	5	30
40.0	40.4		ng/L		101	61 - 135	1	30
37.3	44.0		ng/L		118	77 - 137	4	30
40.0	39.6		ng/L		99	72 - 132	14	30
37.7	43.1		ng/L		114	76 - 136	3	30
37.7	46.8		ng/L		124	81 - 141	7	30
	Added 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.	Added Result 40.0 44.4 40.0 45.3 40.0 50.7 40.0 39.9 40.0 45.9 40.0 45.6 35.4 35.4 36.4 41.3 37.1 38.5 40.0 42.1 40.0 40.4 37.3 44.0 40.0 39.6 37.7 43.1	Added Result Qualifier 40.0 44.4 40.0 45.3 40.0 50.7 40.0 39.9 40.0 45.9 40.0 45.6 35.4 35.4 36.4 41.3 37.1 38.5 40.0 42.1 40.0 40.4 37.3 44.0 40.0 39.6 37.7 43.1	Added Result Qualifier Unit 40.0 44.4 ng/L 40.0 45.3 ng/L 40.0 39.9 ng/L 40.0 45.9 ng/L 40.0 45.6 ng/L 35.4 35.4 ng/L 36.4 41.3 ng/L 40.0 42.1 ng/L 40.0 40.4 ng/L 37.3 44.0 ng/L 40.0 39.6 ng/L 37.7 43.1 ng/L	Added Result 44.4 Qualifier ng/L ng/L ng/L ng/L D ng/L ng/L 40.0 45.3 ng/L ng/L ng/L ng/L 40.0 39.9 ng/L ng/L ng/L 40.0 45.9 ng/L ng/L 35.4 35.4 ng/L ng/L 36.4 41.3 ng/L ng/L 40.0 42.1 ng/L ng/L 40.0 40.4 ng/L ng/L 37.3 44.0 ng/L ng/L 40.0 39.6 ng/L ng/L 37.7 43.1 ng/L ng/L	Added Result Qualifier Unit D %Rec 40.0 44.4 ng/L 111 40.0 45.3 ng/L 113 40.0 50.7 ng/L 127 40.0 39.9 ng/L 100 40.0 45.9 ng/L 115 40.0 45.6 ng/L 114 35.4 35.4 ng/L 100 36.4 41.3 ng/L 113 37.1 38.5 ng/L 104 40.0 42.1 ng/L 105 40.0 40.4 ng/L 101 37.3 44.0 ng/L 118 40.0 39.6 ng/L 99 37.7 43.1 ng/L 114	Added Result Qualifier Unit D %Rec Limits 40.0 44.4 ng/L 111 69 - 130 40.0 45.3 ng/L 113 71 - 129 40.0 50.7 ng/L 127 69 - 133 40.0 39.9 ng/L 100 72 - 134 40.0 45.9 ng/L 115 65 - 144 40.0 45.6 ng/L 114 71 - 132 35.4 35.4 ng/L 100 72 - 130 36.4 41.3 ng/L 100 72 - 130 37.1 38.5 ng/L 104 65 - 140 40.0 42.1 ng/L 105 65 - 136 40.0 40.4 ng/L 101 61 - 135 37.3 44.0 ng/L 118 77 - 137 40.0 39.6 ng/L 99 72 - 132 37.7 43.1 ng/L 114 76 - 136	Added Result Qualifier Unit D %Rec Limits RPD 40.0 44.4 ng/L 111 69-130 3 40.0 45.3 ng/L 113 71-129 3 40.0 50.7 ng/L 127 69-133 3 40.0 39.9 ng/L 100 72-134 4 40.0 45.9 ng/L 115 65-144 3 40.0 45.6 ng/L 114 71-132 5 35.4 35.4 ng/L 100 72-130 12 36.4 41.3 ng/L 113 68-131 6 37.1 38.5 ng/L 104 65-140 2 40.0 42.1 ng/L 105 65-136 5 40.0 40.4 ng/L 101 61-135 1 37.3 44.0 ng/L 99 72-132 14 40.0 39.6

LCSD LCSD

	LC3D LC	30
Isotope Dilution	%Recovery Qu	alifier Limits
13C2 PFHxA	100	50 - 150
13C4 PFHpA	97	50 - 150
13C4 PFOA	91	50 - 150
13C5 PFNA	98	50 - 150
13C2 PFDA	93	50 - 150
13C2 PFUnA	85	50 - 150
13C2 PFDoA	99	50 - 150
13C2 PFTeDA	106	50 - 150
13C3 PFBS	98	50 - 150
1802 PFHxS	96	50 - 150
13C4 PFOS	87	50 - 150
d3-NMeFOSAA	88	50 - 150
d5-NEtFOSAA	88	50 - 150
13C3 HFPO-DA	99	50 - 150
•		

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS PW

Job ID: 320-71796-1

LCMS

Prep Batch: 475229

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-71796-1	NPS Well	Total/NA	Water	3535	
320-71796-2	PW-501	Total/NA	Water	3535	
320-71796-3	PW-208	Total/NA	Water	3535	
320-71796-4	PW-221	Total/NA	Water	3535	
320-71796-5	PW-401	Total/NA	Water	3535	
320-71796-6	PW-112	Total/NA	Water	3535	
320-71796-7	PW-012	Total/NA	Water	3535	
320-71796-8	PW-211	Total/NA	Water	3535	
320-71796-9	PW-010	Total/NA	Water	3535	
320-71796-10	PW-059	Total/NA	Water	3535	
320-71796-11	PW-203	Total/NA	Water	3535	
320-71796-12	PW-037	Total/NA	Water	3535	
320-71796-13	PW-038	Total/NA	Water	3535	
320-71796-14	PW-141	Total/NA	Water	3535	
320-71796-15	PW-040	Total/NA	Water	3535	
320-71796-16	PW-039	Total/NA	Water	3535	
MB 320-475229/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-475229/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-475229/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 476504

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-71796-1	NPS Well	Total/NA	Water	EPA 537(Mod)	475229
320-71796-2	PW-501	Total/NA	Water	EPA 537(Mod)	475229
320-71796-3	PW-208	Total/NA	Water	EPA 537(Mod)	475229
320-71796-4	PW-221	Total/NA	Water	EPA 537(Mod)	475229
320-71796-5	PW-401	Total/NA	Water	EPA 537(Mod)	475229
320-71796-6	PW-112	Total/NA	Water	EPA 537(Mod)	475229
320-71796-7	PW-012	Total/NA	Water	EPA 537(Mod)	475229
320-71796-8	PW-211	Total/NA	Water	EPA 537(Mod)	475229
320-71796-9	PW-010	Total/NA	Water	EPA 537(Mod)	475229
320-71796-10	PW-059	Total/NA	Water	EPA 537(Mod)	475229
320-71796-11	PW-203	Total/NA	Water	EPA 537(Mod)	475229
320-71796-12	PW-037	Total/NA	Water	EPA 537(Mod)	475229
320-71796-13	PW-038	Total/NA	Water	EPA 537(Mod)	475229
320-71796-14	PW-141	Total/NA	Water	EPA 537(Mod)	475229
320-71796-15	PW-040	Total/NA	Water	EPA 537(Mod)	475229
320-71796-16	PW-039	Total/NA	Water	EPA 537(Mod)	475229
MB 320-475229/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	475229
LCS 320-475229/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	475229
LCSD 320-475229/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	475229

Eurofins TestAmerica, Sacramento

2

5

7

9

10

13

14

Le

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

Client Sample ID: NPS Well

Date Collected: 03/25/21 09:16 Date Received: 03/29/21 17:16 Lab Sample ID: 320-71796-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			268.9 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 14:55	RS1	TAL SAC

Client Sample ID: PW-501 Lab Sample ID: 320-71796-2

Date Collected: 03/23/21 12:27 Matrix: Water

Date Received: 03/29/21 17:16

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			266.7 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 15:04	RS1	TAL SAC

Client Sample ID: PW-208 Lab Sample ID: 320-71796-3

Date Collected: 03/23/21 13:54 Matrix: Water

Date Received: 03/29/21 17:16

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			273.4 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 15:14	RS1	TAL SAC

Client Sample ID: PW-221

Date Collected: 03/24/21 10:02

Lab Sample ID: 320-71796-4

Matrix: Water

Date Received: 03/29/21 17:16

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			278.2 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 15:23	RS1	TAL SAC

Client Sample ID: PW-401

Date Collected: 03/23/21 12:37

Lab Sample ID: 320-71796-5

Matrix: Water

Date Received: 03/29/21 17:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			280.2 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 15:32	RS1	TAL SAC

Client Sample ID: PW-112 Lab Sample ID: 320-71796-6
Date Collected: 03/24/21 14:55
Matrix: Water

Date Received: 03/29/21 17:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			283.1 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 15:42	RS1	TAL SAC

Eurofins TestAmerica, Sacramento

10

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

Client Sample ID: PW-012 Lab Sample ID: 320-71796-7 Date Collected: 03/24/21 15:05

Matrix: Water

Date Received: 03/29/21 17:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			281.7 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 15:51	RS1	TAL SAC

Lab Sample ID: 320-71796-8 Client Sample ID: PW-211

Matrix: Water

Date Collected: 03/24/21 09:23 Date Received: 03/29/21 17:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			276.6 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 16:19	RS1	TAL SAC

Client Sample ID: PW-010 Lab Sample ID: 320-71796-9

Date Collected: 03/24/21 10:50 **Matrix: Water**

Date Received: 03/29/21 17:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			284 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 16:28	RS1	TAL SAC

Client Sample ID: PW-059 Lab Sample ID: 320-71796-10 **Matrix: Water**

Date Collected: 03/24/21 12:10 Date Received: 03/29/21 17:16

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Analyst Type Run Factor Lab Total/NA 3535 10.00 mL 475229 03/31/21 04:16 MA Prep 293.6 mL TAL SAC

476504

04/04/21 16:38 RS1

Client Sample ID: PW-203 Lab Sample ID: 320-71796-11

1

Date Collected: 03/23/21 17:24 Date Received: 03/29/21 17:16

Analysis

EPA 537(Mod)

Total/NA

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535	_		291.5 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 16:47	RS1	TAL SAC

Client Sample ID: PW-037 Lab Sample ID: 320-71796-12 Date Collected: 03/25/21 13:17 **Matrix: Water**

Date Received: 03/29/21 17:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			287.2 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 16:56	RS1	TAL SAC

Eurofins TestAmerica, Sacramento

TAL SAC

Matrix: Water

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW

Client Sample ID: PW-038

Lab Sample ID: 320-71796-13

Matrix: Water

Date Collected: 03/25/21 12:48 Date Received: 03/29/21 17:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			303.3 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
_Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 17:06	RS1	TAL SAC

Client Sample ID: PW-141 Lab Sample ID: 320-71796-14
Date Collected: 03/25/21 12:04

Matrix: Water

Date Collected: 03/25/21 12:04 Date Received: 03/29/21 17:16

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			289.5 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 17:15	RS1	TAL SAC

Client Sample ID: PW-040

Date Collected: 03/25/21 12:14

Lab Sample ID: 320-71796-15

Matrix: Water

Date Collected: 03/25/21 12:14 Date Received: 03/29/21 17:16

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			275.1 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 17:25	RS1	TAL SAC

Client Sample ID: PW-039

Lab Sample ID: 320-71796-16

Matrix: Water

Date Received: 03/29/21 17:16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			279.6 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 17:34	RS1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Sacramento

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-71796-1

Project/Site: GUS PFAS PW

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Alaska (UST)	State	17-020	02-20-24	

.

3

5

7

9

11

13

14

Method Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW Job ID: 320-71796-1

Method	Method Description	Protocol	Laboratory	
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC	
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC	

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

-

4

7

0

10

111

13

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS PW Job ID: 320-71796-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-71796-1	NPS Well	Water	03/25/21 09:16	03/29/21 17:16	
320-71796-2	PW-501	Water	03/23/21 12:27	03/29/21 17:16	
320-71796-3	PW-208	Water	03/23/21 13:54	03/29/21 17:16	
320-71796-4	PW-221	Water	03/24/21 10:02	03/29/21 17:16	
320-71796-5	PW-401	Water	03/23/21 12:37	03/29/21 17:16	
320-71796-6	PW-112	Water	03/24/21 14:55	03/29/21 17:16	
320-71796-7	PW-012	Water	03/24/21 15:05	03/29/21 17:16	
320-71796-8	PW-211	Water	03/24/21 09:23	03/29/21 17:16	
320-71796-9	PW-010	Water	03/24/21 10:50	03/29/21 17:16	
320-71796-10	PW-059	Water	03/24/21 12:10	03/29/21 17:16	
320-71796-11	PW-203	Water	03/23/21 17:24	03/29/21 17:16	
320-71796-12	PW-037	Water	03/25/21 13:17	03/29/21 17:16	
320-71796-13	PW-038	Water	03/25/21 12:48	03/29/21 17:16	
320-71796-14	PW-141	Water	03/25/21 12:04	03/29/21 17:16	
320-71796-15	PW-040	Water	03/25/21 12:14	03/29/21 17:16	
320-71796-16	PW-039	Water	03/25/21 13:45	03/29/21 17:16	

3

4

5

6

8

9

11

12

14

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 www.shannonwilson.com		N-OF-CUST		RECORD	Attn:	Page 1 of 2 pratory Test America D. Alltuckes re if used)
Turn Around Time: Normal Rush	Quote No: J-Flags: Yes No		/ / /			Remarks/Matrix Composition/Grab? Sample Containers
Please Specify Sample Identity		Date mpled	320-71	796 Chain of Custody		Remarks/Matrix Composition/Grab? Sample Containers
PW-565 VPS Nell		25/21 ×			2	Groundwates
PW-465 PW-501	815 3/2	23/21 ×			2	
· PW-208 · PW-221	1354 3/2	3/21 X 24/21 X			2 2	
· PW-401	1237 3/2 1455 3/2	13/21 X			2	
PW-012 PW-211	50.5 3/2 0923 3/2	24/21 X 24/21 X			3	
Project Information	Sample Receipt	Reliquished By:	1.	Reliquished B	y: 2.	Reliquished By: 3.
Number: 102599 -013 Name: GLS PFAS PW	Total No. of Containers: COC Seals/Intact? Y/N/NA	Signature: Ti	ime: <u>090</u> 0	Signature:	Time:	Signature: Time:
Contact: KRF@Shanwil. Ongoing Project? Yes X No□	Received Good Cond./Cold Temp:	Printed Name: D	Date: <u>3/26/2(</u>	Printed Name:	Date:	Printed Name: Date:
Sampler: Alm	Delivery Method:	Shannon + Wil	son, Inc	Company:		Company:
		Received By:	1.	Received By Signature:	2. Time:	Received By: 3. Signature: Time:
	2.5°		155 Date:	Printed Name:	Date:	Printed Name: Date:
Distribution: White - w/shipment - returned Yellow - w/shipment - for con Pink - Shannon & Wilson - jol	signee files	Company:		Company:	ı	Company:

No. 36383

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600	ON, INC.	HAIN	I-OF-C	USTO		RECC		Α	kttn: _	12.411	Page 2 + Anner	of Z
www.shannonwilson.cor	n			_	${}$	nalytical ivie	LITOUS (IIICI	lude preser	7		7	
Turn Around Time: Normal Rush	Quote No:	□ No		(3)					/	Murida d'os	idies	
Please Specify Sample Identity	Lab No. Tii	Da me Sam	IC /_/('	2	/				/,8	3 Huger	Remarks/M Composition/ Sample Cont	Grab?
PW-OII	105	T /		f = f					2		ndwate	
PW-059	121		1-1						2	9700	100470	
- PW-203	172								2			
			,									
PW-037	13	17 3/25	7						2			
pW-141			7						2			
	120		5/21 X 5/21 X						2			
PW-040	12	14 3/2	3/4/						2			
PW-039	139	15 3/2	S/ZIX		-	-	+		0		_	
Project Information	Sample Rece	ipt	Reliqui	shed By:		Reliqu	uished By	y: 2.		Reliq	uished By	: 3.
Number: See page	Total No. of Containers:		Signature	Time:	900	Signature:		Time:	s	ignature:		Time:
Name:	COC Seals/Intact? Y/N/NA	4			, ,							
Contact:	Received Good Cond./Cold		Printed Name:		126/21	Printed Name:		Date:	P	rinted Name:		Date:
Ongoing Project? Yes No	Temp:		A Masta	38		Company:						
Sampler:	Delivery Method:			+W. 1501, 1,		Company:			٦	ompany:		
No	tes:			ved By: 1.		Rece	eived By:	2.		Rec	eived By:	3.
			Signature:	Time:_		Signature:		Time:	s	ignature:		Time:
	-		SIN	1	155							
	al C	-a	Printed Name:	Date:_		Printed Name:		Date:	Р	rinted Name:		Date:
			ETA-SA	(03	29/11							
Distribution: White - w/shipment - returner Yellow - w/shipment - for cor Pink - Shannon & Wilson - jo	nsignee files	oratory report	Company:		,	Company:	- <u> </u>		С	ompany:		

No. 36384

ത

O

4

N

Client: Shannon & Wilson, Inc

Job Number: 320-71796-1

Login Number: 71796

List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Guzman, Juan

orontor. Guzman, Guan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seals on cooler
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:
Amber Masters
Citle:
Environmental Scientist
Date:
April 6, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-71796-1
Laboratory Report Date:
April 6, 2021
CS Site Name:
DOT&PF Gustavus Airport Statewide PFAS
ADEC File Number:
1507.38.017
Hazard Identification Number:
26904

May 2020 Page 1

Laboratory Report Date:
Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
Yes⊠ No□ N/A□ Comments: The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic
acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
The requested analyses were conducted by TestAmerica of West Sacramento, CA.
2. Chain of Custody (CoC)
a. CoC information completed gigned and deted (including released/received by)?
a. CoC information completed, signed, and dated (including released/received by)?
Yes⊠ No□ N/A□ Comments:
b. Correct analyses requested?
Yes \boxtimes No \square N/A \square Comments:
Test Twite Comments
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes \boxtimes No \square N/A \square Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
Yes \boxtimes No \square N/A \square Comments:
Samples were preserved with Trizma.
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
Yes \boxtimes No \square N/A \square Comments:
The sample receipt form notes that the samples were received in good condition, properly preserved, and at a temperature of 2.5° C.

320-71796-1

320-7	796-1
Laborator	Report Date:
	If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
	Yes \square No \square N/A \boxtimes Comments:
See	above.
e.	Data quality or usability affected?
	Comments:
The	data quality and/or usability was not affected; see above.
4. <u>Ca</u>	se Narrative
a.	Present and understandable? Yes⊠ No□ N/A□ Comments:
b.	Discrepancies, errors, or QC failures identified by the lab?
	Yes⊠ No□ N/A□ Comments:
	e case narrative indicates the following: e COC lists sample ID as <i>PW-011</i> , client requested sample ID be changed to <i>PW-010</i> .
of de	e "I" qualifier means the transition mass ratio for Perfluorobutanesulfonic acid (PFBS) was outside the established ratio limit in sample PW -208. The qualitative identification of the analyte has some gree of uncertainty, and the reported value may have some high bias. However, analyst judgment is used to positively identify the analyte.
ex	e following samples contain a small amount of sediment at the bottom of the bottles prior to raction: NPS Well, PW-501, PW-208, PW-221, PW-401, PW-012, PW-112, PW-010, PW-203, V-037, and PW-039.
	ere was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate SD) in conjunction with preparation batch 320-475229.
c.	Were all corrective actions documented?
Λ.	Yes⊠ No□ N/A□ Comments: alyst judgment was used to positively identify the analyte listed above with the "I" qualifier.
AI	aryst judgment was used to positively identity the analyte listed above with the 1 qualifier.

Laboratory Report Date:
d. What is the effect on data quality/usability according to the case narrative?
Comments:
Due to the uncertainty associated with <i>PW-208</i> and the "I" flagged analyte (PFBS), the PFBS result is considered an estimated. The laboratory notes there may be a high bias; therefore, the analytes has been flagged 'JH' in the analytical tables.
5. <u>Samples Results</u>
a. Correct analyses performed/reported as requested on COC?
$Yes \boxtimes No \square N/A \square$ Comments:
b. All applicable holding times met?
$Yes \boxtimes No \square N/A \square$ Comments:
c. All soils reported on a dry weight basis?
$Yes \square No \square N/A \boxtimes Comments:$
Soil samples were not submitted with this work order.
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
$Yes \boxtimes No \square N/A \square$ Comments:
The reporting limits (RL) are less than the applicable DEC regulatory limit for the project.
e. Data quality or usability affected?
The data quality and/or usability was not affected; see above.
6. QC Samples
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
Yes \boxtimes No \square N/A \square Comments:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
Yes⊠ No□ N/A□ Comments:
May 2020 Page 4

320-71796-1

320-71796-1	

Laboratory Report Date:

iii. If above LOQ or project specified objectives, what samples are affected? Comments:
There were no detections in the method blank.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠ Comments: Qualification of the data was not required. See above.
<u>·</u>
v. Data quality or usability affected? Comments:
Results are not affected. See above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes⊠ No□ N/A□ Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/A; analytical accuracy and precision were demonstrated to be within acceptable limits.

May 2020 Page 5

ato	ry Report Date:
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	Yes \square No \square N/A \boxtimes Comments:
Q	rualification of the data was not required; see above.
	vii. Data quality or usability affected? (Use comment box to explain.) Comments:
T	he data quality and/or usability was not affected; see above.
c.	 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? Yes□ No⊠ N/A□ Comments:
ba	asufficient sample volume was available to perform a MS/MSD with the associated preparatory atches. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and recision.
	ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?Yes□ No□ N/A⊠ Comments:
M	letals and/or inorganics were not analyzed as part of this work order.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
	Yes \square No \square N/A \boxtimes Comments:
M	IS and MSD samples were not analyzed for this work order.
	iv. Precision – All relative percent differences (RPD) reported and less than method or laborate limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
	Yes \square No \square N/A \boxtimes Comments:
M	IS and MSD samples were not analyzed for this work order.
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N	/A; MS and MSD samples were not analyzed for this work order.
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
_	Yes \square No \square N/A \boxtimes Comments:
M	IS and MSD samples were not analyzed for this work order.

320-71796-1

220 71706 1	
320-71796-1	

Labora

ratory Report Date:
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality and/or usability was not affected; see above.
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
$Yes \boxtimes No \square N/A \square$ Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
$Yes \boxtimes No \square N/A \square$ Comments:
 iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments:
There were no IDA recovery failures associated with this work order.
iv. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
$Yes \square No \square N/A \boxtimes Comments:$
PFAS are not volatile compounds. A trip blank is not required for the requested analysis.
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
$Yes \square No \square N/A \boxtimes Comments:$
A trip blank is not required for the requested analysis.
iii. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
A trip blank is not required for the requested analysis.

Page 7 May 2020

20-717	96-1
ratory I	Report Date:
i	iv. If above LOQ or project specified objectives, what samples are affected? Comments:
N/A;	a trip blank is not required for the requested analysis.
,	v. Data quality or usability affected? Comments:
The	data quality and/or usability was not affected; see above.
f. F	ield Duplicate
j	i. One field duplicate submitted per matrix, analysis and 10 project samples?
	$Yes \boxtimes No \square N/A \square$ Comments:
j	ii. Submitted blind to lab?
	$Yes \boxtimes No \square N/A \square$ Comments:
1	duplicate pairs PW-040/PW-141, PW-012/PW-112, and PW-401/PW-501 were submitted with
	work order; one for each day of sampling. Note: duplicate sample <i>PW-141</i> should have been
	ed PW-140 using project naming conventions. This does not affect data quality or usability and
nas c	peen confirmed to be a duplicate of PW-040.
i	iii. Precision – All relative percent differences (RPD) less than specified project objectives?
	(Recommended: 30% water, 50% soil)
	RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
	$((R_1+R_2)/2)$
	Where $R_1 = Sample Concentration$
	$R_2 = Field Duplicate Concentration$
	Yes \square No \boxtimes N/A \square Comments:
PFBS	S results for duplicate pair <i>PW-401/PW-501</i> exceeded RPD limits. We note both detected
	entrations are flagged as estimates due to detection below the reporting limit. There were no
	etions in duplicate pair PW-040/PW-141; RPD could not be calculated.
i	iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
	S results for duplicate pair <i>PW-401/PW-501</i> are less than the reporting limit, therefore are idered estimated and flagged 'J' by the laboratory. No further flagging has been applied.
	Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered elow)?
	Yes \square No \square N/A \boxtimes Comments:
Deco	ontamination or equipment blank were not required for this project.

	320-71796-1
La	poratory Report Date:
	i. All results less than LOQ and project specified objectives?
	$Yes \square No \square N/A \boxtimes Comments:$
	Decontamination or equipment blank were not required for this project.
	ii. If above LOQ or project specified objectives, what samples are affected? Comments:
	Decontamination or equipment blank were not required for this project.
	iii. Data quality or usability affected? Comments:
	The data quality and/or usability was not affected; see above.
7.	Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	$Yes \square No \square N/A \boxtimes Comments:$
	No additional data flags are required.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-71798-1

Client Project/Site: GUS PFAS DOT-MW

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamil Oltima

Authorized for release by: 4/7/2021 1:18:07 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

10

13

14

Laboratory Job ID: 320-71798-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	1
Detection Summary	5
Client Sample Results	3
Isotope Dilution Summary	25
QC Sample Results	27
QC Association Summary	30
Lab Chronicle	31
Certification Summary	34
Method Summary	35
Sample Summary	36
Chain of Custody	37
Receipt Checklists	39

3

4

5

7

9

10

12

IR

Definitions/Glossary

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS DOT-MW

Job ID: 320-71798-1

Qualifiers

LCMS

Qualifier Qualifier Description

*5- Isotope dilution analyte is outside acceptance limits, low biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Sacramento

Page 3 of 39 4/7/2021

Case Narrative

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW Job ID: 320-71798-1

Job ID: 320-71798-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-71798-1

Receipt

The samples were received on 3/29/2021 11:55 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

LCMS

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte were outside of the established ratio limit. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte. (CCVL 320-476514/2)

Method EPA 537(Mod): Several Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit: MW-10-20 (320-71798-9) and MW-6-20 (320-71798-12). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples were yellow prior to extraction: MW-9-30 (320-71798-4), MW-3-15 (320-71798-5), MW-8-20 (320-71798-8), MW-10-20 (320-71798-9), MW-4-20 (320-71798-11), MW-6-20 (320-71798-12), MW-12-10 (320-71798-13) and MW-7-20 (320-71798-17).

Method 3535: The following samples contained floating particulates in the sample bottle prior to extraction: MW-9-30 (320-71798-4), MW-3-15 (320-71798-5), MW-10-20 (320-71798-9), MW-6-20 (320-71798-12) and MW-7-20 (320-71798-17).

Method 3535: During the solid phase extraction process, the following samples contain non-settable particulates which clogged the solid phase extraction column: MW-9-30 (320-71798-4), MW-3-15 (320-71798-5), MW-10-20 (320-71798-9), MW-6-20 (320-71798-12) and MW-7-20 (320-71798-17).

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-475057.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

4

Ē

6

10

111

13

14

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS DOT-MW

Job ID: 320-71798-1

Client Sample ID: MW-2-20 Lab Sample ID: 320-71798-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	31	1.7	0.49	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	26	1.7	0.21	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	78	1.7	0.72	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	3.8	1.7	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.4	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	100	1.7	0.48	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	250	1.7	0.46	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-1-15 Lab Sample ID: 320-71798-2

No Detections.

Client Sample ID: MW-1-40 Lab Sample ID: 320-71798-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.68 J	1.7	0.49 ng/L		EPA 537(Mod)	Total/NA

Client Sample ID: MW-9-30 Lab Sample ID: 320-71798-4

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	8.9		1.8	0.52	ng/L		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.0		1.8	0.22	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.0	J	1.8	0.76	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.8	0.18	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	15		1.8	0.51	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	97		1.8	0.48	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: MW-3-15 Lab Sample ID: 320-71798-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.87	J	1.7	0.50	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.24	J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.9		1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.1		1.7	0.47	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-3-40 Lab Sample ID: 320-71798-6

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.4	1.7	0.51	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.7	1.7	0.74	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.93 J	1.7	0.17	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	17	1.7	0.50	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	13	1.7	0.47	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: MW-102-20 Lab Sample ID: 320-71798-7

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	30	1.7	0.50	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	24	1.7	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	72	1.7	0.74	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	4.0	1.7	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.3	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	98	1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	240	1.7	0.47	ng/L	1		EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

4/7/2021

Page 5 of 39

3

4

5

7

8

3

10

12

14

Detection Summary

Project/Site: GUS PFAS DOT-MW Lab Sample ID: 320-71798-8 Client Sample ID: MW-8-20 Result Qualifier RL Dil Fac D Method MDL Unit Prep Type Perfluorohexanesulfonic acid (PFHxS) 0.57 J 1.8 0.52 ng/L EPA 537(Mod) Total/NA Client Sample ID: MW-10-20 Lab Sample ID: 320-71798-9 Analyte Result Qualifier Dil Fac D Method RL MDI Unit **Prep Type** EPA 537(Mod) 1.7 Perfluorohexanoic acid (PFHxA) 16 0.50 ng/L Total/NA Perfluoroheptanoic acid (PFHpA) 4.8 1.7 EPA 537(Mod) Total/NA 0.22 ng/L 1 Perfluorooctanoic acid (PFOA) EPA 537(Mod) 1.9 1.7 0.74 ng/L Total/NA Perfluorobutanesulfonic acid (PFBS) EPA 537(Mod) 1.3 J 1.7 0.17 ng/L Total/NA Perfluorohexanesulfonic acid (PFHxS) 17 1.7 0.50 ng/L 1 EPA 537(Mod) Total/NA Perfluorooctanesulfonic acid (PFOS) 37 1.7 0.47 ng/L EPA 537(Mod) Total/NA Client Sample ID: MW-2-30 Lab Sample ID: 320-71798-10 Analyte Result Qualifier **MDL** Unit RL Dil Fac D Method Prep Type Perfluorobutanesulfonic acid (PFBS) 0.91 J 0.18 ng/L EPA 537(Mod) Total/NA 1.8 EPA 537(Mod) Perfluorohexanesulfonic acid (PFHxS) 0.54 J 1.8 0.50 ng/L Total/NA Lab Sample ID: 320-71798-11 Client Sample ID: MW-4-20 Dil Fac D Method Analyte Result Qualifier RL **MDL** Unit **Prep Type** Perfluorohexanesulfonic acid (PFHxS) 0.50 J 1.7 0.50 ng/L EPA 537(Mod) Total/NA Client Sample ID: MW-6-20 Lab Sample ID: 320-71798-12 MDL Unit Analyte Result Qualifier RL Dil Fac D Method **Prep Type** Perfluorobutanesulfonic acid (PFBS) 0.18 ng/L EPA 537(Mod) 0.30 J 1.8 Total/NA

Cliant	2 a ma m	IA IF). N/I	1	12 46	٦
Client S	Samp	ie il	J. IVI	VV-1	12-10	J

Perfluorohexanesulfonic acid (PFHxS)

Perfluorooctanesulfonic acid (PFOS)

Client: Shannon & Wilson, Inc

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.8		1.8	0.52	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.8		1.8	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.9		1.8	0.77	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.64	J	1.8	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.52	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	9.4		1.8	0.52	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	36		1.8	0.49	ng/L	1		EPA 537(Mod)	Total/NA

1.8

1.8

0.52 ng/L

0.49 ng/L

1.0 J

1.5 J

Client Sample ID: MW-11-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	15		1.7	0.49	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.0		1.7	0.21	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.2		1.7	0.72	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.62	J	1.7	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	17		1.7	0.48	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	210		1.7	0.46	ng/L	1		EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

4/7/2021

EPA 537(Mod)

EPA 537(Mod)

Lab Sample ID: 320-71798-13

Lab Sample ID: 320-71798-14

1

Page 6 of 39

Job ID: 320-71798-1

Total/NA

Total/NA

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-5-20

Lab Sample ID: 320-71798-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.89	J	1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	0.87	J	1.7	0.73	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.65	J	1.7	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.45	J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.4	J	1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.7		1.7	0.46	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-111-15

Lab Sample ID: 320-71798-16

Analyte	Result Quali	fier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	13		0.50	ng/L			EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.7	1.7	0.21	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.2	1.7	0.73	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.60 J	1.7	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.4 J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	20	1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	200	1.7	0.46	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-7-20

Lab Sample ID: 320-71798-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.3	J	1.7	0.51	ng/L		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.0	J	1.7	0.22	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.3		1.7	0.74	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.98	J	1.7	0.50	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	5.0		1.7	0.47	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: GAC

Lab Sample ID: 320-71798-18

No Detections.

This Detection Summary does not include radiochemical test results.

4/7/2021

Page 7 of 39

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-2-20

Date Collected: 03/24/21 10:41 Date Received: 03/29/21 11:55 Lab Sample ID: 320-71798-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	31		1.7	0.49	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluoroheptanoic acid (PFHpA)	26		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorooctanoic acid (PFOA)	78		1.7	0.72	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorononanoic acid (PFNA)	3.8		1.7	0.23	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.46	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.62	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorobutanesulfonic acid (PFBS)	2.4		1.7	0.17	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorohexanesulfonic acid (PFHxS)	100		1.7	0.48	ng/L		03/30/21 11:57	04/05/21 02:27	1
Perfluorooctanesulfonic acid (PFOS)	250		1.7	0.46	ng/L		03/30/21 11:57	04/05/21 02:27	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.2	1.0	ng/L		03/30/21 11:57	04/05/21 02:27	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.2	1.1	ng/L		03/30/21 11:57	04/05/21 02:27	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		03/30/21 11:57	04/05/21 02:27	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		03/30/21 11:57	04/05/21 02:27	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 02:27	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/30/21 11:57	04/05/21 02:27	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	87		50 - 150				03/30/21 11:57	04/05/21 02:27	1

(ADONA)					
Isotope Dilution	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	87	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C4 PFHpA	98	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C4 PFOA	91	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C5 PFNA	104	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C2 PFDA	96	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C2 PFUnA	88	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C2 PFDoA	103	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C2 PFTeDA	119	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C3 PFBS	75	50 - 150	03/30/21 11:57	04/05/21 02:27	1
1802 PFHxS	87	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C4 PFOS	88	50 - 150	03/30/21 11:57	04/05/21 02:27	1
d3-NMeFOSAA	92	50 - 150	03/30/21 11:57	04/05/21 02:27	1
d5-NEtFOSAA	106	50 - 150	03/30/21 11:57	04/05/21 02:27	1
13C3 HFPO-DA	89	50 - 150	03/30/21 11:57	04/05/21 02:27	1

Client Sample ID: MW-1-15

Date Collected: 03/24/21 15:53

Lab Sample ID: 320-71798-2

Matrix: Water

Date Received: 03/29/21 11:55

Method: EPA 537(Mod) - PFAS	for QSM 5.3, Table B-15	5				
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND —	1.8	0.51 ng/L	03/30/21 11:57	04/05/21 02:36	1
Perfluoroheptanoic acid (PFHpA)	ND	1.8	0.22 ng/L	03/30/21 11:57	04/05/21 02:36	1
Perfluorooctanoic acid (PFOA)	ND	1.8	0.75 ng/L	03/30/21 11:57	04/05/21 02:36	1

Eurofins TestAmerica, Sacramento

Page 8 of 39 4/7/2021

2

3

6

8

4.6

11

12

14

Le

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-1-15

Lab Sample ID: 320-71798-2

Date Collected: 03/24/21 15:53 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/30/21 11:57	04/05/21 02:36	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L		03/30/21 11:57	04/05/21 02:36	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		03/30/21 11:57	04/05/21 02:36	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.48	ng/L		03/30/21 11:57	04/05/21 02:36	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.1	ng/L		03/30/21 11:57	04/05/21 02:36	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.64	ng/L		03/30/21 11:57	04/05/21 02:36	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		03/30/21 11:57	04/05/21 02:36	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.50	ng/L		03/30/21 11:57	04/05/21 02:36	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.47	ng/L		03/30/21 11:57	04/05/21 02:36	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		03/30/21 11:57	04/05/21 02:36	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.1	ng/L		03/30/21 11:57	04/05/21 02:36	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		03/30/21 11:57	04/05/21 02:36	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/30/21 11:57	04/05/21 02:36	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28	ng/L		03/30/21 11:57	04/05/21 02:36	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		03/30/21 11:57	04/05/21 02:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	85		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C4 PFHpA	83		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C4 PFOA	86		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C5 PFNA	89		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C2 PFDA	87		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C2 PFUnA	82		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C2 PFDoA	89		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C2 PFTeDA	110		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C3 PFBS	72		50 - 150				03/30/21 11:57	04/05/21 02:36	1
1802 PFHxS	85		50 - 150				03/30/21 11:57	04/05/21 02:36	1
13C4 PFOS	81		50 - 150				03/30/21 11:57	04/05/21 02:36	1
d3-NMeFOSAA	84		50 - 150				03/30/21 11:57	04/05/21 02:36	1
d5-NEtFOSAA	85		50 - 150					04/05/21 02:36	1

Client Sample ID: MW-1-40 Lab Sample ID: 320-71798-3 Date Collected: 03/24/21 16:48 **Matrix: Water**

50 - 150

86

Date Received: 03/29/21 11:55

13C3 HFPO-DA

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND —	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluoroheptanoic acid (PFHpA)	ND	1.7	0.21	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluorooctanoic acid (PFOA)	ND	1.7	0.73	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluorononanoic acid (PFNA)	ND	1.7	0.23	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluorodecanoic acid (PFDA)	ND	1.7	0.27	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.94	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.47	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluorotridecanoic acid (PFTriA)	ND	1.7	1.1	ng/L		03/30/21 11:57	04/05/21 02:46	1

Eurofins TestAmerica, Sacramento

03/30/21 11:57 04/05/21 02:36

Page 9 of 39 4/7/2021

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-1-40

Lab Sample ID: 320-71798-3

Matrix: Water

Date Collected: 03/24/21 16:48 Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.62	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluorohexanesulfonic acid (PFHxS)	0.68	J	1.7	0.49	ng/L		03/30/21 11:57	04/05/21 02:46	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		03/30/21 11:57	04/05/21 02:46	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		03/30/21 11:57	04/05/21 02:46	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		03/30/21 11:57	04/05/21 02:46	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 02:46	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		03/30/21 11:57	04/05/21 02:46	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 02:46	1
4,8-Dioxa-3H-perfluorononanoic acid	ND		1.7	0.34	ng/L		03/30/21 11:57	04/05/21 02:46	1

(ADONA)			0.0 :g/_	33/33/21 11131	0 1/00/21 02110	·
Isotope Dilution	%Recovery Quali	ifier Limits		Prepared	Analyzed	Dil Fac
13C2 PFHxA	70	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C4 PFHpA	76	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C4 PFOA	81	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C5 PFNA	83	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C2 PFDA	81	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C2 PFUnA	66	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C2 PFDoA	79	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C2 PFTeDA	97	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C3 PFBS	63	50 - 150		03/30/21 11:57	04/05/21 02:46	1
1802 PFHxS	74	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C4 PFOS	77	50 - 150		03/30/21 11:57	04/05/21 02:46	1
d3-NMeFOSAA	74	50 - 150		03/30/21 11:57	04/05/21 02:46	1
d5-NEtFOSAA	82	50 - 150		03/30/21 11:57	04/05/21 02:46	1
13C3 HFPO-DA	74	50 - 150		03/30/21 11:57	04/05/21 02:46	1

Client Sample ID: MW-9-30 Lab Sample ID: 320-71798-4 Date Collected: 03/24/21 20:44 **Matrix: Water**

Date Received: 03/29/21 11:55

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	8.9		1.8	0.52	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluoroheptanoic acid (PFHpA)	3.0		1.8	0.22	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluorooctanoic acid (PFOA)	1.0 J	J	1.8	0.76	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluorobutanesulfonic acid (PFBS)	1.2 J	J	1.8	0.18	ng/L		03/30/21 11:57	04/05/21 02:55	1
Perfluorohexanesulfonic acid (PFHxS)	15		1.8	0.51	ng/L		03/30/21 11:57	04/05/21 02:55	1

Eurofins TestAmerica, Sacramento

Page 10 of 39

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-9-30

13C3 HFPO-DA

Date Received: 03/29/21 11:55

Lab Sample ID: 320-71798-4

Date Collected: 03/24/21 20:44 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid (PFOS)	97		1.8	0.48	ng/L		03/30/21 11:57	04/05/21 02:55	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		03/30/21 11:57	04/05/21 02:55	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		03/30/21 11:57	04/05/21 02:55	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		03/30/21 11:57	04/05/21 02:55	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		03/30/21 11:57	04/05/21 02:55	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		03/30/21 11:57	04/05/21 02:55	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		03/30/21 11:57	04/05/21 02:55	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	68		50 - 150				03/30/21 11:57	04/05/21 02:55	1
13C4 PFHpA	78		50 - 150				03/30/21 11:57	04/05/21 02:55	1
13C4 PFOA	74		50 - 150				03/30/21 11:57	04/05/21 02:55	1
13C5 PFNA	80		50 - 150				03/30/21 11:57	04/05/21 02:55	1
13C2 PFDA	70		50 - 150				03/30/21 11:57	04/05/21 02:55	1
13C2 PFUnA	60		50 - 150				03/30/21 11:57	04/05/21 02:55	1
13C2 PFDoA	56		50 - 150				03/30/21 11:57	04/05/21 02:55	1
	61		50 - 150				03/30/21 11:57	04/05/21 02:55	1
13C2 PFTeDA	01								
	58		50 - 150				03/30/21 11:57	04/05/21 02:55	7
13C3 PFBS			50 - 150 50 - 150					04/05/21 02:55 04/05/21 02:55	· ·
13C3 PFBS 18O2 PFHxS	58							04/05/21 02:55	1
13C2 PFTeDA 13C3 PFBS 18O2 PFHxS 13C4 PFOS d3-NMeFOSAA	58 75		50 - 150				03/30/21 11:57 03/30/21 11:57	04/05/21 02:55	1 1 1 1

Lab Sample ID: 320-71798-5 Client Sample ID: MW-3-15 Date Collected: 03/24/21 12:29 **Matrix: Water**

50 - 150

71

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.87	J	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.63	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorobutanesulfonic acid (PFBS)	0.24	J	1.7	0.17	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorohexanesulfonic acid (PFHxS)	1.9		1.7	0.49	ng/L		03/30/21 11:57	04/05/21 03:04	1
Perfluorooctanesulfonic acid (PFOS)	3.1		1.7	0.47	ng/L		03/30/21 11:57	04/05/21 03:04	1

03/30/21 11:57 04/05/21 02:55

Page 11 of 39

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-3-15

Lab Sample ID: 320-71798-5

Date Collected: 03/24/21 12:29 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		03/30/21 11:57	04/05/21 03:04	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		03/30/21 11:57	04/05/21 03:04	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 03:04	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/30/21 11:57	04/05/21 03:04	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		03/30/21 11:57	04/05/21 03:04	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		03/30/21 11:57	04/05/21 03:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	82		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C4 PFHpA	90		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C4 PFOA	87		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C5 PFNA	94		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C2 PFDA	89		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C2 PFUnA	81		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C2 PFDoA	75		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C2 PFTeDA	84		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C3 PFBS	71		50 - 150				03/30/21 11:57	04/05/21 03:04	1
1802 PFHxS	87		50 - 150				03/30/21 11:57	04/05/21 03:04	1
13C4 PFOS	87		50 - 150				03/30/21 11:57	04/05/21 03:04	1
d3-NMeFOSAA	74		50 - 150				03/30/21 11:57	04/05/21 03:04	1
d5-NEtFOSAA	74		50 - 150				03/30/21 11:57	04/05/21 03:04	1

Client Sample ID: MW-3-40 Lab Sample ID: 320-71798-6 Date Collected: 03/24/21 13:23 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.4	1.7	0.51	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluoroheptanoic acid (PFHpA)	ND	1.7	0.22	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorooctanoic acid (PFOA)	1.7	1.7	0.74	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorononanoic acid (PFNA)	ND	1.7	0.24	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorodecanoic acid (PFDA)	ND	1.7	0.27	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.96	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.48	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorotridecanoic acid (PFTriA)	ND	1.7	1.1	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.7	0.64	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorobutanesulfonic acid (PFBS)	0.93 J	1.7	0.17	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorohexanesulfonic acid (PFHxS)	17	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 03:32	1
Perfluorooctanesulfonic acid (PFOS)	13	1.7	0.47	ng/L		03/30/21 11:57	04/05/21 03:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.4	1.0	ng/L		03/30/21 11:57	04/05/21 03:32	1

Page 12 of 39

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-3-40

Lab Sample ID: 320-71798-6

Date Collected: 03/24/21 13:23 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.1	ng/L		03/30/21 11:57	04/05/21 03:32	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 03:32	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/30/21 11:57	04/05/21 03:32	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		03/30/21 11:57	04/05/21 03:32	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		03/30/21 11:57	04/05/21 03:32	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				03/30/21 11:57	04/05/21 03:32	1
13C4 PFHpA	87		50 - 150				03/30/21 11:57	04/05/21 03:32	1
13C4 PFOA	89		50 - 150				03/30/21 11:57	04/05/21 03:32	1
13C5 PFNA	97		50 - 150				03/30/21 11:57	04/05/21 03:32	1
13C2 PFDA	90		50 - 150				03/30/21 11:57	04/05/21 03:32	1
13C2 PFUnA	82		50 ₋ 150				03/30/21 11:57	04/05/21 03:32	1
13C2 PFDoA	81		50 - 150				03/30/21 11:57	04/05/21 03:32	1
13C2 PFTeDA	105		50 ₋ 150				03/30/21 11:57	04/05/21 03:32	1
13C3 PFBS	78		50 - 150				03/30/21 11:57	04/05/21 03:32	1
1802 PFHxS	90		50 - 150				03/30/21 11:57	04/05/21 03:32	1
13C4 PFOS	91		50 - 150				03/30/21 11:57	04/05/21 03:32	1
d3-NMeFOSAA	83		50 - 150				03/30/21 11:57	04/05/21 03:32	1
d5-NEtFOSAA	85		50 - 150				02/20/21 11:57	04/05/21 03:32	1

Client Sample ID: MW-102-20 Lab Sample ID: 320-71798-7 Date Collected: 03/24/21 10:31 **Matrix: Water**

50 - 150

81

13C3 HFPO-DA

Date Received: 03/29/21 11:55

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	30	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluoroheptanoic acid (PFHpA)	24	1.7	0.22	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorooctanoic acid (PFOA)	72	1.7	0.74	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorononanoic acid (PFNA)	4.0	1.7	0.23	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorodecanoic acid (PFDA)	ND	1.7	0.27	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.95	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.48	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorotridecanoic acid (PFTriA)	ND	1.7	1.1	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.7	0.63	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorobutanesulfonic acid (PFBS)	2.3	1.7	0.17	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorohexanesulfonic acid (PFHxS)	98	1.7	0.49	ng/L		03/30/21 11:57	04/05/21 03:42	1
Perfluorooctanesulfonic acid (PFOS)	240	1.7	0.47	ng/L		03/30/21 11:57	04/05/21 03:42	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.3	1.0	ng/L		03/30/21 11:57	04/05/21 03:42	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.3	1.1	ng/L		03/30/21 11:57	04/05/21 03:42	1

Eurofins TestAmerica, Sacramento

03/30/21 11:57 04/05/21 03:32

Page 13 of 39

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-102-20

13C3 HFPO-DA

Date Received: 03/29/21 11:55

Lab Sample ID: 320-71798-7

Date Collected: 03/24/21 10:31 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
9-Chlorohexadecafluoro-3-oxanonan	ND		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 03:42	1
e-1-sulfonic acid									
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/30/21 11:57	04/05/21 03:42	1
11-Chloroeicosafluoro-3-oxaundecan	ND		1.7	0.28	ng/L		03/30/21 11:57	04/05/21 03:42	1
e-1-sulfonic acid									
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		03/30/21 11:57	04/05/21 03:42	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	76		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C4 PFHpA	84		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C4 PFOA	84		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C5 PFNA	91		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C2 PFDA	89		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C2 PFUnA	80		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C2 PFDoA	90		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C2 PFTeDA	104		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C3 PFBS	69		50 - 150				03/30/21 11:57	04/05/21 03:42	1
1802 PFHxS	83		50 - 150				03/30/21 11:57	04/05/21 03:42	1
13C4 PFOS	80		50 - 150				03/30/21 11:57	04/05/21 03:42	1
d3-NMeFOSAA	81		50 - 150				03/30/21 11:57	04/05/21 03:42	1
d5-NEtFOSAA	89		50 - 150				03/30/21 11:57	04/05/21 03:42	1

Lab Sample ID: 320-71798-8 **Client Sample ID: MW-8-20** Date Collected: 03/24/21 18:12 **Matrix: Water**

50 - 150

79

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.78	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorohexanesulfonic acid (PFHxS)	0.57	J	1.8	0.52	ng/L		03/30/21 11:57	04/05/21 03:51	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49	ng/L		03/30/21 11:57	04/05/21 03:51	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		03/30/21 11:57	04/05/21 03:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		03/30/21 11:57	04/05/21 03:51	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		03/30/21 11:57	04/05/21 03:51	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		03/30/21 11:57	04/05/21 03:51	1

Eurofins TestAmerica, Sacramento

03/30/21 11:57 04/05/21 03:42

Page 14 of 39

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-8-20

Lab Sample ID: 320-71798-8 Date Collected: 03/24/21 18:12

Matrix: Water Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
11-Chloroeicosafluoro-3-oxaundecan	ND		1.8	0.29	ng/L		03/30/21 11:57	04/05/21 03:51	1
e-1-sulfonic acid									
4,8-Dioxa-3H-perfluorononanoic acid	ND		1.8	0.37	ng/L		03/30/21 11:57	04/05/21 03:51	1
(ADONA)									
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	80		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C4 PFHpA	80		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C4 PFOA	83		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C5 PFNA	82		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C2 PFDA	80		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C2 PFUnA	78		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C2 PFDoA	84		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C2 PFTeDA	100		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C3 PFBS	67		50 - 150				03/30/21 11:57	04/05/21 03:51	1
1802 PFHxS	81		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C4 PFOS	79		50 - 150				03/30/21 11:57	04/05/21 03:51	1
d3-NMeFOSAA	78		50 - 150				03/30/21 11:57	04/05/21 03:51	1
d5-NEtFOSAA	80		50 - 150				03/30/21 11:57	04/05/21 03:51	1
13C3 HFPO-DA	78		50 ₋ 150				03/30/21 11:57	04/05/21 03:51	1

Lab Sample ID: 320-71798-9 Client Sample ID: MW-10-20

Date Collected: 03/24/21 19:14 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	16	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluoroheptanoic acid (PFHpA)	4.8	1.7	0.22	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorooctanoic acid (PFOA)	1.9	1.7	0.74	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorononanoic acid (PFNA)	ND	1.7	0.23	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorodecanoic acid (PFDA)	ND	1.7	0.27	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.96	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.48	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorotridecanoic acid (PFTriA)	ND	1.7	1.1	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.7	0.63	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorobutanesulfonic acid (PFBS)	1.3 J	1.7	0.17	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorohexanesulfonic acid (PFHxS)	17	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 04:00	1
Perfluorooctanesulfonic acid (PFOS)	37	1.7	0.47	ng/L		03/30/21 11:57	04/05/21 04:00	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.3	1.0	ng/L		03/30/21 11:57	04/05/21 04:00	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.3	1.1	ng/L		03/30/21 11:57	04/05/21 04:00	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.7	0.21	ng/L		03/30/21 11:57	04/05/21 04:00	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	3.5	1.3	ng/L		03/30/21 11:57	04/05/21 04:00	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.7	0.28	ng/L		03/30/21 11:57	04/05/21 04:00	1

Eurofins TestAmerica, Sacramento

Page 15 of 39

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-10-20

Lab Sample ID: 320-71798-9

Date Collected: 03/24/21 19:14 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		03/30/21 11:57	04/05/21 04:00	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	49	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C4 PFHpA	51		50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C4 PFOA	52		50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C5 PFNA	52		50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C2 PFDA	48	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C2 PFUnA	45	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C2 PFDoA	41	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C2 PFTeDA	45	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C3 PFBS	41	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
1802 PFHxS	45	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C4 PFOS	47	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
d3-NMeFOSAA	43	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
d5-NEtFOSAA	40	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1
13C3 HFPO-DA	46	*5-	50 - 150				03/30/21 11:57	04/05/21 04:00	1

Client Sample ID: MW-2-30 Lab Sample ID: 320-71798-10

Date Collected: 03/24/21 09:54 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.51	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.75	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorobutanesulfonic acid (PFBS)	0.91	J	1.8	0.18	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorohexanesulfonic acid (PFHxS)	0.54	J	1.8	0.50	ng/L		03/30/21 11:57	04/05/21 04:10	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.48	ng/L		03/30/21 11:57	04/05/21 04:10	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		03/30/21 11:57	04/05/21 04:10	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.2	ng/L		03/30/21 11:57	04/05/21 04:10	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		03/30/21 11:57	04/05/21 04:10	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/30/21 11:57	04/05/21 04:10	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28	ng/L		03/30/21 11:57	04/05/21 04:10	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		03/30/21 11:57	04/05/21 04:10	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	95		50 - 150				03/30/21 11:57	04/05/21 04:10	

Eurofins TestAmerica, Sacramento

Page 16 of 39

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS DOT-MW

Job ID: 320-71798-1

Client Sample ID: MW-2-30

Lab Sample ID: 320-71798-10

Matrix: Water

Date Collected: 03/24/21 09:54 Date Received: 03/29/21 11:55

Method: EPA 537(Mod) -	PFAS for QSM 5.3, Table B	-15 (Continued)			
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFHpA	98	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C4 PFOA	98	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C5 PFNA	104	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C2 PFDA	107	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C2 PFUnA	102	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C2 PFDoA	114	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C2 PFTeDA	123	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C3 PFBS	74	50 - 150	03/30/21 11:57	04/05/21 04:10	1
1802 PFHxS	96	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C4 PFOS	93	50 - 150	03/30/21 11:57	04/05/21 04:10	1
d3-NMeFOSAA	96	50 - 150	03/30/21 11:57	04/05/21 04:10	1
d5-NEtFOSAA	102	50 - 150	03/30/21 11:57	04/05/21 04:10	1
13C3 HFPO-DA	92	50 - 150	03/30/21 11:57	04/05/21 04:10	1

Client Sample ID: MW-4-20 Lab Sample ID: 320-71798-11

Date Collected: 03/25/21 15:20 Matrix: Water Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.64	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorohexanesulfonic acid (PFHxS)	0.50	J	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 04:19	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.47	ng/L		03/30/21 11:57	04/05/21 04:19	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		03/30/21 11:57	04/05/21 04:19	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		03/30/21 11:57	04/05/21 04:19	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 04:19	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		03/30/21 11:57	04/05/21 04:19	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		03/30/21 11:57	04/05/21 04:19	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		03/30/21 11:57	04/05/21 04:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		50 - 150				03/30/21 11:57	04/05/21 04:19	1
13C4 PFHpA	86		50 - 150				03/30/21 11:57	04/05/21 04:19	1
13C4 PFOA	91		50 - 150				03/30/21 11:57	04/05/21 04:19	1
13C5 PFNA	95		50 - 150				03/30/21 11:57	04/05/21 04:19	1
13C2 PFDA	84		50 ₋ 150				03/30/21 11:57	04/05/21 04:19	1

Eurofins TestAmerica, Sacramento

Page 17 of 39

9

3

5

7

10

12

4 4

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-4-20

Lab Sample ID: 320-71798-11

Matrix: Water

Date Collected: 03/25/21 15:20 Date Received: 03/29/21 11:55

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFUnA	86	50 - 150	03/30/21 11:57	04/05/21 04:19	1
13C2 PFDoA	98	50 - 150	03/30/21 11:57	04/05/21 04:19	1
13C2 PFTeDA	110	50 - 150	03/30/21 11:57	04/05/21 04:19	1
13C3 PFBS	70	50 - 150	03/30/21 11:57	04/05/21 04:19	1
1802 PFHxS	85	50 - 150	03/30/21 11:57	04/05/21 04:19	1
13C4 PFOS	82	50 - 150	03/30/21 11:57	04/05/21 04:19	1
d3-NMeFOSAA	75	50 - 150	03/30/21 11:57	04/05/21 04:19	1
d5-NEtFOSAA	86	50 - 150	03/30/21 11:57	04/05/21 04:19	1
13C3 HFPO-DA	84	50 - 150	03/30/21 11:57	04/05/21 04:19	1

Client Sample ID: MW-6-20 Lab Sample ID: 320-71798-12

Date Collected: 03/25/21 16:40 Matrix: Water

Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.77	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorobutanesulfonic acid (PFBS)	0.30	J	1.8	0.18	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorohexanesulfonic acid (PFHxS)	1.0	J	1.8	0.52	ng/L		03/30/21 11:57	04/05/21 04:28	1
Perfluorooctanesulfonic acid (PFOS)	1.5	J	1.8	0.49	ng/L		03/30/21 11:57	04/05/21 04:28	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		03/30/21 11:57	04/05/21 04:28	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		03/30/21 11:57	04/05/21 04:28	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		03/30/21 11:57	04/05/21 04:28	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		03/30/21 11:57	04/05/21 04:28	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		03/30/21 11:57	04/05/21 04:28	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		03/30/21 11:57	04/05/21 04:28	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 DEHVA			50 150				03/30/21 11:57	04/05/21 04:28	1

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	44	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C4 PFHpA	47	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C4 PFOA	50		50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C5 PFNA	51		50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C2 PFDA	47	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C2 PFUnA	40	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C2 PFDoA	39	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C2 PFTeDA	43	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1

Eurofins TestAmerica, Sacramento

Page 18 of 39

2

3

5

7

8

9

11

13

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-6-20 Lab Sample ID: 320-71798-12

Date Collected: 03/25/21 16:40 **Matrix: Water** Date Received: 03/29/21 11:55

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C3 PFBS	40	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
1802 PFHxS	48	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C4 PFOS	43	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
d3-NMeFOSAA	38	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
d5-NEtFOSAA	42	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1
13C3 HFPO-DA	43	*5-	50 - 150	03/30/21 11:57	04/05/21 04:28	1

Client Sample ID: MW-12-10 Lab Sample ID: 320-71798-13 Date Collected: 03/25/21 12:05 **Matrix: Water**

Date Received: 03/29/21 11:55

Mothod: FPA	537(Mod) -	PEAS for	OSM 53	Table R-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.8		1.8	0.52	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluoroheptanoic acid (PFHpA)	3.8		1.8	0.23	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorooctanoic acid (PFOA)	2.9		1.8	0.77	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorononanoic acid (PFNA)	0.64	J	1.8	0.24	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorobutanesulfonic acid (PFBS)	0.52	J	1.8	0.18	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorohexanesulfonic acid (PFHxS)	9.4		1.8	0.52	ng/L		03/30/21 11:57	04/05/21 04:38	1
Perfluorooctanesulfonic acid (PFOS)	36		1.8	0.49	ng/L		03/30/21 11:57	04/05/21 04:38	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		03/30/21 11:57	04/05/21 04:38	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		03/30/21 11:57	04/05/21 04:38	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		03/30/21 11:57	04/05/21 04:38	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		03/30/21 11:57	04/05/21 04:38	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		03/30/21 11:57	04/05/21 04:38	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		03/30/21 11:57	04/05/21 04:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	67	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C4 PFHpA	67	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C4 PFOA	74	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C5 PFNA	75	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C2 PFDA	71	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C2 PFUnA	67	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C2 PFDoA	71	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C2 PFTeDA	91	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C3 PFBS	61	50 - 150	03/30/21 11:57	04/05/21 04:38	1
1802 PFHxS	67	50 - 150	03/30/21 11:57	04/05/21 04:38	1
13C4 PFOS	68	50 - 150	03/30/21 11:57	04/05/21 04:38	1

Eurofins TestAmerica, Sacramento

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Lab Sample ID: 320-71798-13 **Client Sample ID: MW-12-10**

Date Collected: 03/25/21 12:05 **Matrix: Water** Date Received: 03/29/21 11:55

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
d3-NMeFOSAA	75		50 - 150	03/30/21 11:57	04/05/21 04:38	1
d5-NEtFOSAA	74		50 ₋ 150	03/30/21 11:57	04/05/21 04:38	1
13C3 HFPO-DA	63		50 ₋ 150	03/30/21 11:57	04/05/21 04:38	1

Lab Sample ID: 320-71798-14 **Client Sample ID: MW-11-15** Date Collected: 03/25/21 10:35 **Matrix: Water**

Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	15		1.7	0.49	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluoroheptanoic acid (PFHpA)	3.0		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorooctanoic acid (PFOA)	2.2		1.7	0.72	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorononanoic acid (PFNA)	0.62	J	1.7	0.23	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.46	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.62	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.7	0.17	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorohexanesulfonic acid (PFHxS)	17		1.7	0.48	ng/L		03/30/21 11:57	04/05/21 04:47	1
Perfluorooctanesulfonic acid (PFOS)	210		1.7	0.46	ng/L		03/30/21 11:57	04/05/21 04:47	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.2	1.0	ng/L		03/30/21 11:57	04/05/21 04:47	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.2	1.1	ng/L		03/30/21 11:57	04/05/21 04:47	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		03/30/21 11:57	04/05/21 04:47	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		03/30/21 11:57	04/05/21 04:47	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 04:47	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/30/21 11:57	04/05/21 04:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	98		50 - 150				03/30/21 11:57	04/05/21 04:47	1
13C4 PFHpA	108		50 ₋ 150				03/30/21 11:57	04/05/21 04:47	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	98	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C4 PFHpA	108	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C4 PFOA	110	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C5 PFNA	115	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C2 PFDA	111	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C2 PFUnA	105	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C2 PFDoA	102	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C2 PFTeDA	132	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C3 PFBS	99	50 - 150	03/30/21 11:57	04/05/21 04:47	1
1802 PFHxS	110	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C4 PFOS	102	50 - 150	03/30/21 11:57	04/05/21 04:47	1
d3-NMeFOSAA	106	50 - 150	03/30/21 11:57	04/05/21 04:47	1
d5-NEtFOSAA	110	50 - 150	03/30/21 11:57	04/05/21 04:47	1
13C3 HFPO-DA	103	50 - 150	03/30/21 11:57	04/05/21 04:47	1

Eurofins TestAmerica, Sacramento

Page 20 of 39

4/7/2021

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-5-20

Date Collected: 03/25/21 09:07 Date Received: 03/29/21 11:55 Lab Sample ID: 320-71798-15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.89	J	1.7	0.49	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorooctanoic acid (PFOA)	0.87	J	1.7	0.73	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorononanoic acid (PFNA)	0.65	J	1.7	0.23	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.62	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorobutanesulfonic acid (PFBS)	0.45	J	1.7	0.17	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorohexanesulfonic acid (PFHxS)	1.4	J	1.7	0.49	ng/L		03/30/21 11:57	04/05/21 04:56	1
Perfluorooctanesulfonic acid (PFOS)	2.7		1.7	0.46	ng/L		03/30/21 11:57	04/05/21 04:56	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		03/30/21 11:57	04/05/21 04:56	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		03/30/21 11:57	04/05/21 04:56	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		03/30/21 11:57	04/05/21 04:56	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		03/30/21 11:57	04/05/21 04:56	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 04:56	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/30/21 11:57	04/05/21 04:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
96	50 - 150	03/30/21 11:57	04/05/21 04:56	1
102	50 ₋ 150	03/30/21 11:57	04/05/21 04:56	1
97	50 ₋ 150	03/30/21 11:57	04/05/21 04:56	1
99	50 - 150	03/30/21 11:57	04/05/21 04:56	1
101	50 ₋ 150	03/30/21 11:57	04/05/21 04:56	1
102	50 - 150	03/30/21 11:57	04/05/21 04:56	1
120	50 - 150	03/30/21 11:57	04/05/21 04:56	1
126	50 ₋ 150	03/30/21 11:57	04/05/21 04:56	1
82	50 ₋ 150	03/30/21 11:57	04/05/21 04:56	1
96	50 - 150	03/30/21 11:57	04/05/21 04:56	1
91	50 - 150	03/30/21 11:57	04/05/21 04:56	1
103	50 ₋ 150	03/30/21 11:57	04/05/21 04:56	1
108	50 - 150	03/30/21 11:57	04/05/21 04:56	1
97	50 ₋ 150	03/30/21 11:57	04/05/21 04:56	1
	96 102 97 99 101 102 120 126 82 96 91 103	96 50 - 150 102 50 - 150 97 50 - 150 99 50 - 150 101 50 - 150 102 50 - 150 120 50 - 150 126 50 - 150 82 50 - 150 96 50 - 150 91 50 - 150 103 50 - 150 108 50 - 150	96 50 - 150 03/30/21 11:57 102 50 - 150 03/30/21 11:57 97 50 - 150 03/30/21 11:57 99 50 - 150 03/30/21 11:57 101 50 - 150 03/30/21 11:57 102 50 - 150 03/30/21 11:57 120 50 - 150 03/30/21 11:57 126 50 - 150 03/30/21 11:57 82 50 - 150 03/30/21 11:57 96 50 - 150 03/30/21 11:57 91 50 - 150 03/30/21 11:57 103 50 - 150 03/30/21 11:57 108 50 - 150 03/30/21 11:57	96 50 - 150 03/30/21 11:57 04/05/21 04:56 102 50 - 150 03/30/21 11:57 04/05/21 04:56 97 50 - 150 03/30/21 11:57 04/05/21 04:56 99 50 - 150 03/30/21 11:57 04/05/21 04:56 101 50 - 150 03/30/21 11:57 04/05/21 04:56 102 50 - 150 03/30/21 11:57 04/05/21 04:56 120 50 - 150 03/30/21 11:57 04/05/21 04:56 126 50 - 150 03/30/21 11:57 04/05/21 04:56 82 50 - 150 03/30/21 11:57 04/05/21 04:56 96 50 - 150 03/30/21 11:57 04/05/21 04:56 91 50 - 150 03/30/21 11:57 04/05/21 04:56 103 50 - 150 03/30/21 11:57 04/05/21 04:56 103 50 - 150 03/30/21 11:57 04/05/21 04:56 108 50 - 150 03/30/21 11:57 04/05/21 04:56

Client Sample ID: MW-111-15

Date Collected: 03/25/21 10:25

Date Received: 03/29/21 11:55

Lab Sample ID: 320-71798-16

Matrix: Water

Method: EPA 537(Me	od) - PFAS for QSM	5.3, Table B-1	5						
Analyte	Resu	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	(PFHxA) 1	3	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluoroheptanoic acid	d (PFHpA) 2.	7	1.7	0.21	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluorooctanoic acid	(PFOA) 2.	2	1.7	0.73	ng/L		03/30/21 11:57	04/05/21 05:25	1

Eurofins TestAmerica, Sacramento

Page 21 of 39

2

3

5

7

9

11

13

14

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-111-15

Lab Sample ID: 320-71798-16

Date Collected: 03/25/21 10:25 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorononanoic acid (PFNA)	0.60	J	1.7	0.23	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.63	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluorobutanesulfonic acid (PFBS)	1.4	J	1.7	0.17	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluorohexanesulfonic acid (PFHxS)	20		1.7	0.49	ng/L		03/30/21 11:57	04/05/21 05:25	1
Perfluorooctanesulfonic acid (PFOS)	200		1.7	0.46	ng/L		03/30/21 11:57	04/05/21 05:25	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		03/30/21 11:57	04/05/21 05:25	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		03/30/21 11:57	04/05/21 05:25	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 05:25	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		03/30/21 11:57	04/05/21 05:25	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 05:25	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/30/21 11:57	04/05/21 05:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	97		50 - 150				03/30/21 11:57	04/05/21 05:25	1
13C4 PFHpA	98		50 ₋ 150				03/30/21 11:57	04/05/21 05:25	1
13C4 PFOA	89		50 - 150				03/30/21 11:57	04/05/21 05:25	1
13C5 PFNA	90		50 - 150				03/30/21 11:57	04/05/21 05:25	1
13C2 PFDA	93		50 ₋ 150				03/30/21 11:57	04/05/21 05:25	1
13C2 PFUnA	93		50 - 150				03/30/21 11:57	04/05/21 05:25	1
13C2 PFDoA	101		50 - 150				03/30/21 11:57	04/05/21 05:25	1
13C2 PFTeDA	115		50 - 150				03/30/21 11:57	04/05/21 05:25	1
13C3 PFBS	89		50 - 150				03/30/21 11:57	04/05/21 05:25	1
1802 PFHxS	83		50 - 150				03/30/21 11:57	04/05/21 05:25	1
13C4 PFOS	85		50 - 150				03/30/21 11:57	04/05/21 05:25	1
d3-NMeFOSAA	95		50 - 150				03/30/21 11:57	04/05/21 05:25	1
d5-NEtFOSAA	94		50 - 150				02/20/21 11:57	04/05/21 05:25	1

Client Sample ID: MW-7-20 Lab Sample ID: 320-71798-17 Date Collected: 03/25/21 14:00 **Matrix: Water**

50 - 150

87

Date Received: 03/29/21 11:55

13C3 HFPO-DA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.3	J	1.7	0.51	ng/L		03/30/21 11:57	04/05/21 05:34	1
Perfluoroheptanoic acid (PFHpA)	1.0	J	1.7	0.22	ng/L		03/30/21 11:57	04/05/21 05:34	1
Perfluorooctanoic acid (PFOA)	2.3		1.7	0.74	ng/L		03/30/21 11:57	04/05/21 05:34	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		03/30/21 11:57	04/05/21 05:34	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		03/30/21 11:57	04/05/21 05:34	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		03/30/21 11:57	04/05/21 05:34	1

Eurofins TestAmerica, Sacramento

03/30/21 11:57 04/05/21 05:25

Page 22 of 39

Project/Site: GUS PFAS DOT-MW

Client: Shannon & Wilson, Inc

Client Sample ID: MW-7-20 Lab Sample ID: 320-71798-17

Date Collected: 03/25/21 14:00 Matrix: Water Date Received: 03/29/21 11:55

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued) Analyte Result Qualifier **MDL** Unit Dil Fac Prepared Analyzed Perfluorododecanoic acid (PFDoA) 1.7 03/30/21 11:57 04/05/21 05:34 ND 0.48 ng/L Perfluorotridecanoic acid (PFTriA) ND 03/30/21 11:57 04/05/21 05:34 1.7 1.1 ng/L Perfluorotetradecanoic acid (PFTeA) ND 1.7 0.64 ng/L 03/30/21 11:57 04/05/21 05:34 Perfluorobutanesulfonic acid (PFBS) ND 1.7 0.17 ng/L 03/30/21 11:57 04/05/21 05:34 Perfluorohexanesulfonic acid 1.7 0.50 ng/L 03/30/21 11:57 04/05/21 05:34 0.98 J (PFHxS) 03/30/21 11:57 04/05/21 05:34 Perfluorooctanesulfonic acid 5.0 1.7 0.47 ng/L (PFOS) ND 03/30/21 11:57 04/05/21 05:34 N-methylperfluorooctanesulfonamidoa 4.4 1.0 ng/L cetic acid (NMeFOSAA) 03/30/21 11:57 04/05/21 05:34 N-ethylperfluorooctanesulfonamidoac ND 4.4 1.1 ng/L etic acid (NEtFOSAA) 03/30/21 11:57 04/05/21 05:34 9-Chlorohexadecafluoro-3-oxanonan ND 1.7 0.21 ng/L e-1-sulfonic acid ND 3.5 1.3 ng/L 03/30/21 11:57 04/05/21 05:34 Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 03/30/21 11:57 04/05/21 05:34 11-Chloroeicosafluoro-3-oxaundecan ND 1.7 0.28 ng/L e-1-sulfonic acid 03/30/21 11:57 04/05/21 05:34 ND 0.35 ng/L 4,8-Dioxa-3H-perfluorononanoic acid 1.7 (ADONA) Isotope Dilution %Recovery Qualifier Limits Dil Fac Prepared Analyzed

130tope Dilution	fortecovery Qualifier	Lillits	i repareu	Allalyzea	Diriac
13C2 PFHxA	78	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C4 PFHpA	85	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C4 PFOA	78	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C5 PFNA	77	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C2 PFDA	79	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C2 PFUnA	66	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C2 PFDoA	67	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C2 PFTeDA	71	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C3 PFBS	68	50 - 150	03/30/21 11:57	04/05/21 05:34	1
1802 PFHxS	77	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C4 PFOS	70	50 - 150	03/30/21 11:57	04/05/21 05:34	1
d3-NMeFOSAA	72	50 - 150	03/30/21 11:57	04/05/21 05:34	1
d5-NEtFOSAA	69	50 - 150	03/30/21 11:57	04/05/21 05:34	1
13C3 HFPO-DA	82	50 - 150	03/30/21 11:57	04/05/21 05:34	1

Client Sample ID: GAC

Date Collected: 03/25/21 18:02

Lab Sample ID: 320-71798-18

Matrix: Water

Date Received: 03/29/21 11:55

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND —	1.7	0.50	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluoroheptanoic acid (PFHpA)	ND	1.7	0.22	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluorooctanoic acid (PFOA)	ND	1.7	0.73	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluorononanoic acid (PFNA)	ND	1.7	0.23	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluorodecanoic acid (PFDA)	ND	1.7	0.27	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluoroundecanoic acid (PFUnA)	ND	1.7	0.95	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluorododecanoic acid (PFDoA)	ND	1.7	0.47	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluorotridecanoic acid (PFTriA)	ND	1.7	1.1	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.7	0.63	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.7	0.17	ng/L		03/30/21 11:57	04/05/21 05:43	1

Eurofins TestAmerica, Sacramento

Page 23 of 39

2

3

5

7

9

1 1

16

14

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Client Sample ID: GAC

Lab Sample ID: 320-71798-18

Matrix: Water

Date Collected: 03/25/21 18:02 Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.49	ng/L		03/30/21 11:57	04/05/21 05:43	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.47	ng/L		03/30/21 11:57	04/05/21 05:43	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		03/30/21 11:57	04/05/21 05:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		03/30/21 11:57	04/05/21 05:43	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		03/30/21 11:57	04/05/21 05:43	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		03/30/21 11:57	04/05/21 05:43	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		03/30/21 11:57	04/05/21 05:43	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/30/21 11:57	04/05/21 05:43	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	62		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C4 PFHpA	65		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C4 PFOA	70		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C5 PFNA	66		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C2 PFDA	65		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C2 PFUnA	67		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C2 PFDoA	72		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C2 PFTeDA	79		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C3 PFBS	62		50 - 150				03/30/21 11:57	04/05/21 05:43	1
	60		50 - 150				03/30/21 11:57	04/05/21 05:43	1
1802 PFHxS	60								
	58		50 - 150				03/30/21 11:57	04/05/21 05:43	1
13C4 PFOS			50 - 150 50 - 150					04/05/21 05:43 04/05/21 05:43	1 1
1802 PFHxS 13C4 PFOS d3-NMeFOSAA d5-NEtFOSAA	58						03/30/21 11:57		1 1 1

Job ID: 320-71798-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)									
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150		
320-71798-1	MW-2-20	87	98	91	104	96	88	103	119		
320-71798-2	MW-1-15	85	83	86	89	87	82	89	110		
320-71798-3	MW-1-40	70	76	81	83	81	66	79	97		
320-71798-4	MW-9-30	68	78	74	80	70	60	56	61		
320-71798-5	MW-3-15	82	90	87	94	89	81	75	84		
320-71798-6	MW-3-40	84	87	89	97	90	82	81	105		
320-71798-7	MW-102-20	76	84	84	91	89	80	90	104		
320-71798-8	MW-8-20	80	80	83	82	80	78	84	100		
320-71798-9	MW-10-20	49 *5-	51	52	52	48 *5-	45 *5-	41 *5-	45 *5-		
320-71798-10	MW-2-30	95	98	98	104	107	102	114	123		
320-71798-11	MW-4-20	86	86	91	95	84	86	98	110		
320-71798-12	MW-6-20	44 *5-	47 *5-	50	51	47 *5-	40 *5-	39 *5-	43 *5-		
320-71798-13	MW-12-10	67	67	74	75	71	67	71	91		
320-71798-14	MW-11-15	98	108	110	115	111	105	102	132		
320-71798-15	MW-5-20	96	102	97	99	101	102	120	126		
320-71798-16	MW-111-15	97	98	89	90	93	93	101	115		
320-71798-17	MW-7-20	78	85	78	77	79	66	67	71		
320-71798-18	GAC	62	65	70	66	65	67	72	79		
LCS 320-475057/2-A	Lab Control Sample	76	87	89	93	92	81	92	100		
LCSD 320-475057/3-A	Lab Control Sample Dup	68	79	78	82	80	73	76	89		
MB 320-475057/1-A	Method Blank	88	99	99	98	89	88	95	112		

MB 320-475057/1-A	Method Blank	88	99	99	98	89	88	95	112
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance Lir	nits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-71798-1	MW-2-20	75	87	88	92	106	89		
320-71798-2	MW-1-15	72	85	81	84	85	86		
320-71798-3	MW-1-40	63	74	77	74	82	74		
320-71798-4	MW-9-30	58	75	76	58	55	71		
320-71798-5	MW-3-15	71	87	87	74	74	92		
320-71798-6	MW-3-40	78	90	91	83	85	81		
320-71798-7	MW-102-20	69	83	80	81	89	79		
320-71798-8	MW-8-20	67	81	79	78	80	78		
320-71798-9	MW-10-20	41 *5-	45 *5-	47 *5-	43 *5-	40 *5-	46 *5-		
320-71798-10	MW-2-30	74	96	93	96	102	92		
320-71798-11	MW-4-20	70	85	82	75	86	84		
320-71798-12	MW-6-20	40 *5-	48 *5-	43 *5-	38 *5-	42 *5-	43 *5-		
320-71798-13	MW-12-10	61	67	68	75	74	63		
320-71798-14	MW-11-15	99	110	102	106	110	103		
320-71798-15	MW-5-20	82	96	91	103	108	97		
320-71798-16	MW-111-15	89	83	85	95	94	87		
320-71798-17	MW-7-20	68	77	70	72	69	82		
320-71798-18	GAC	62	60	58	65	66	68		
LCS 320-475057/2-A	Lab Control Sample	80	86	82	79	83	84		
LCSD 320-475057/3-A	Lab Control Sample Dup	68	72	73	74	74	71		
MB 320-475057/1-A	Method Blank	87	93	91	90	95	89		

Surrogate Leg

PFHxA = 13C2 PFHxA C4PFHA = 13C4 PFHpA PFOA = 13C4 PFOA

Eurofins TestAmerica, Sacramento

Page 25 of 39

2

3

7

9

11

13

14

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

PFNA = 13C5 PFNA
PFDA = 13C2 PFDA
PFUnA = 13C2 PFUnA
PFDoA = 13C2 PFDoA
PFTDA = 13C2 PFTeDA
C3PFBS = 13C3 PFBS
PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS d3NMFOS = d3-NMeFOSAA d5NEFOS = d5-NEtFOSAA HFPODA = 13C3 HFPO-DA Job ID: 320-71798-1

3

3

4

5

7

8

10

12

13

14

Client: Shannon & Wilson, Inc Job ID: 320-71798-1

Project/Site: GUS PFAS DOT-MW

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-475057/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 476520	Prep Batch: 475057
MR MR	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		03/30/21 11:57	04/05/21 01:40	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		03/30/21 11:57	04/05/21 01:40	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		03/30/21 11:57	04/05/21 01:40	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		03/30/21 11:57	04/05/21 01:40	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		03/30/21 11:57	04/05/21 01:40	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		03/30/21 11:57	04/05/21 01:40	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		03/30/21 11:57	04/05/21 01:40	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		03/30/21 11:57	04/05/21 01:40	1
	MB	MB							

(ADONA)						
	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	88		50 - 150	03/30/21 11:57	04/ 05/21 01:40	1
13C4 PFHpA	99		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
13C4 PFOA	99		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
13C5 PFNA	98		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
13C2 PFDA	89		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
13C2 PFUnA	88		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
13C2 PFDoA	95		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
13C2 PFTeDA	112		50 - 150	03/30/21 11:57	04/ 05/21 01:40	1
13C3 PFBS	87		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
1802 PFHxS	93		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
13C4 PFOS	91		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
d3-NMeFOSAA	90		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
d5-NEt FOSAA	95		50-150	03/ 30/21 11:57	04/ 05/21 01:40	1
13C3 HFPO-DA	89		50 - 150	03/ 30/21 11:57	04/ 05/21 01:40	1
=						

Lab S	Sample	ID: LCS	320-47	5057/2-A
-------	--------	---------	--------	----------

Matrix: Water

Analysis Batch: 476520

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 475057

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	48.2		ng/L		121	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	42.8		ng/L		107	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	43.3		ng/L		108	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	45.8		ng/L		114	69 - 130	

Eurofins TestAmerica, Sacramento

Page 27 of 39

9

3

4

6

8

10

11

13

Job ID: 320-71798-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-475057/2-A

Matrix: Water

Analysis Batch: 476520

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 475057

	Spike	LCS L	CS		%Rec.	
Analyte	Added	Result C	ualifier Unit	D %Rec	Limits	
Perfluorodecanoic acid (PFDA)	40.0	40.8	ng/L	102	71 - 129	
Perfluoroundecanoic acid	40.0	46.5	ng/L	116	69 - 133	
(PFUnA)						
Perfluorododecanoic acid	40.0	40.0	ng/L	100	72 - 134	
(PFDoA)						
Perfluorotridecanoic acid	40.0	41.9	ng/L	105	65 - 144	
(PFTriA)						
Perfluorotetradecanoic acid	40.0	40.1	ng/L	100	71 - 132	
(PFTeA)						
Perfluorobutanesulfonic acid	35.4	37.7	ng/L	107	72 - 130	
(PFBS)						
Perfluorohexanesulfonic acid	36.4	39.0	ng/L	107	68 - 131	
(PFHxS)						
Perfluorooctanesulfonic acid	37.1	36.1	ng/L	97	65 - 140	
(PFOS)						
N-methylperfluorooctanesulfona	40.0	40.1	ng/L	100	65 - 136	
midoacetic acid (NMeFOSAA)						
N-ethylperfluorooctanesulfonami	40.0	39.2	ng/L	98	61 - 135	
doacetic acid (NEtFOSAA)						
9-Chlorohexadecafluoro-3-oxan	37.3	43.3	ng/L	116	77 - 137	
onane-1-sulfonic acid						
Hexafluoropropylene Oxide	40.0	41.5	ng/L	104	72 - 132	
Dimer Acid (HFPO-DA)						
11-Chloroeicosafluoro-3-oxaund	37.7	41.8	ng/L	111	76 - 136	
ecane-1-sulfonic acid						
4,8-Dioxa-3H-perfluorononanoic	37.7	43.5	ng/L	115	81 - 141	
acid (ADONA)						

LCS LCS

	LUS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	76		50 - 150
13C4 PFHpA	87		50 - 150
13C4 PFOA	89		50 - 150
13C5 PFNA	93		50 - 150
13C2 PFDA	92		50 - 150
13C2 PFUnA	81		50 - 150
13C2 PFDoA	92		50 - 150
13C2 PFTeDA	100		50 - 150
13C3 PFBS	80		50 - 150
1802 PFHxS	86		50 - 150
13C4 PFOS	82		50 - 150
d3-NMeFOSAA	79		50 - 150
d5-NEt FOSAA	83		50-150
13C3 HFPO-DA	84		50 - 150
-			

Lab Sample ID: LCSD 320-475057/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 476520 **Prep Batch: 475057** Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Perfluorohexanoic acid (PFHxA) 40.0 50.9 127 72 - 129 5 30 ng/L Perfluoroheptanoic acid (PFHpA) 40.0 40.5 ng/L 101 72 - 130 30 Perfluorooctanoic acid (PFOA) 40.0 43.0 ng/L 108 71 - 133 30

Eurofins TestAmerica, Sacramento

Page 28 of 39

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-71798-1 Project/Site: GUS PFAS DOT-MW

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-475057/3-A

Matrix: Water

ecane-1-sulfonic acid

acid (ADONA)

4,8-Dioxa-3H-perfluorononanoic

Analysis Batch: 476520

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 475057**

Alialysis Balcii. 470520							Fieb D	11CH. 47	
	Spike	LCSD	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorononanoic acid (PFNA)	40.0	43.9		ng/L		110	69 - 130	4	30
Perfluorodecanoic acid (PFDA)	40.0	39.5		ng/L		99	71 - 129	3	30
Perfluoroundecanoic acid (PFUnA)	40.0	45.2		ng/L		113	69 - 133	3	30
Perfluorododecanoic acid (PFDoA)	40.0	41.9		ng/L		105	72 - 134	5	30
Perfluorotridecanoic acid (PFTriA)	40.0	43.6		ng/L		109	65 - 144	4	30
Perfluorotetradecanoic acid (PFTeA)	40.0	41.4		ng/L		104	71 - 132	3	30
Perfluorobutanesulfonic acid (PFBS)	35.4	37.7		ng/L		107	72 - 130	0	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	40.5		ng/L		111	68 - 131	4	30
Perfluorooctanesulfonic acid (PFOS)	37.1	37.7		ng/L		101	65 - 140	4	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	39.5		ng/L		99	65 - 136	1	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	37.9		ng/L		95	61 - 135	3	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	41.9		ng/L		112	77 - 137	3	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	39.5		ng/L		99	72 - 132	5	30
11-Chloroeicosafluoro-3-oxaund	37.7	41.3		ng/L		110	76 - 136	1	30

37.7

43.8

ng/L

LCSD LCSD

	2002	LUUD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	68		50 - 150
13C4 PFHpA	79		50 - 150
13C4 PFOA	78		50 - 150
13C5 PFNA	82		50 - 150
13C2 PFDA	80		50 - 150
13C2 PFUnA	73		50 - 150
13C2 PFDoA	76		50 - 150
13C2 PFTeDA	89		50 - 150
13C3 PFBS	68		50 - 150
1802 PFHxS	72		50 - 150
13C4 PFOS	73		50 - 150
d3-NMeFOSAA	74		50 - 150
d5-NEt FOSAA	74		50-150
13C3 HFPO-DA	71		50 - 150

81 - 141

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS DOT-MW

Job ID: 320-71798-1

LCMS

Prep Batch: 475057

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-71798-1	MW-2-20	Total/NA	Water	3535	_
320-71798-2	MW-1-15	Total/NA	Water	3535	
320-71798-3	MW-1-40	Total/NA	Water	3535	
320-71798-4	MW-9-30	Total/NA	Water	3535	
320-71798-5	MW-3-15	Total/NA	Water	3535	
320-71798-6	MW-3-40	Total/NA	Water	3535	
320-71798-7	MW-102-20	Total/NA	Water	3535	
320-71798-8	MW-8-20	Total/NA	Water	3535	
320-71798-9	MW-10-20	Total/NA	Water	3535	
320-71798-10	MW-2-30	Total/NA	Water	3535	
320-71798-11	MW-4-20	Total/NA	Water	3535	
320-71798-12	MW-6-20	Total/NA	Water	3535	
320-71798-13	MW-12-10	Total/NA	Water	3535	
320-71798-14	MW-11-15	Total/NA	Water	3535	
320-71798-15	MW-5-20	Total/NA	Water	3535	
320-71798-16	MW-111-15	Total/NA	Water	3535	
320-71798-17	MW-7-20	Total/NA	Water	3535	
320-71798-18	GAC	Total/NA	Water	3535	
MB 320-475057/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-475057/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-475057/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 476520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-71798-1	MW-2-20	Total/NA	Water	EPA 537(Mod)	475057
320-71798-2	MW-1-15	Total/NA	Water	EPA 537(Mod)	475057
320-71798-3	MW-1-40	Total/NA	Water	EPA 537(Mod)	475057
320-71798-4	MW-9-30	Total/NA	Water	EPA 537(Mod)	475057
320-71798-5	MW-3-15	Total/NA	Water	EPA 537(Mod)	475057
320-71798-6	MW-3-40	Total/NA	Water	EPA 537(Mod)	475057
320-71798-7	MW-102-20	Total/NA	Water	EPA 537(Mod)	475057
320-71798-8	MW-8-20	Total/NA	Water	EPA 537(Mod)	475057
320-71798-9	MW-10-20	Total/NA	Water	EPA 537(Mod)	475057
320-71798-10	MW-2-30	Total/NA	Water	EPA 537(Mod)	475057
320-71798-11	MW-4-20	Total/NA	Water	EPA 537(Mod)	475057
320-71798-12	MW-6-20	Total/NA	Water	EPA 537(Mod)	475057
320-71798-13	MW-12-10	Total/NA	Water	EPA 537(Mod)	475057
320-71798-14	MW-11-15	Total/NA	Water	EPA 537(Mod)	475057
320-71798-15	MW-5-20	Total/NA	Water	EPA 537(Mod)	475057
320-71798-16	MW-111-15	Total/NA	Water	EPA 537(Mod)	475057
320-71798-17	MW-7-20	Total/NA	Water	EPA 537(Mod)	475057
320-71798-18	GAC	Total/NA	Water	EPA 537(Mod)	475057
MB 320-475057/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	475057
LCS 320-475057/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	475057
LCSD 320-475057/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	475057

Eurofins TestAmerica, Sacramento

Page 30 of 39

6

3

4

6

8

J

11

40

10

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-2-20

Date Collected: 03/24/21 10:41 Date Received: 03/29/21 11:55 Lab Sample ID: 320-71798-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			295.7 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 02:27	RS1	TAL SAC

Client Sample ID: MW-1-15

Date Collected: 03/24/21 15:53 Date Received: 03/29/21 11:55 Lab Sample ID: 320-71798-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			284.3 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 02:36	RS1	TAL SAC

Client Sample ID: MW-1-40

Lab Sample ID: 320-71798-3

Matrix: Water

Date Collected: 03/24/21 16:48 Date Received: 03/29/21 11:55

Batch Batch Dil Initial Final Batch Prepared Number **Prep Type** Type Method Run **Factor** Amount Amount or Analyzed Analyst Lab Total/NA Prep 3535 292.4 mL 10.0 mL 475057 03/30/21 11:57 LN TAL SAC Total/NA Analysis EPA 537(Mod) 476520 04/05/21 02:46 RS1 TAL SAC 1

Client Sample ID: MW-9-30

Lab Sample ID: 320-71798-4

Lab Sample ID: 320-71798-5

Matrix: Water

Matrix: Water

Date Collected: 03/24/21 20:44 Date Received: 03/29/21 11:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			279.7 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 02:55	RS1	TAL SAC

Client Sample ID: MW-3-15

Date Collected: 03/24/21 12:29

Date Received: 03/29/21 11:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			288.5 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	FPA 537(Mod)		1			476520	04/05/21 03:04	RS1	TAL SAC

Client Sample ID: MW-3-40

Lab Sample ID: 320-71798-6

Matrix: Water

Date Collected: 03/24/21 13:23 Date Received: 03/29/21 11:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			286 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	FPA 537(Mod)		1			476520	04/05/21 03:32	RS1	TAL SAC

10

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-102-20

Date Collected: 03/24/21 10:31 Date Received: 03/29/21 11:55

Lab Sample ID: 320-71798-7

Matrix: Water

Batch Batch Dil Initial Batch Final Prepared Method **Amount** Number or Analyzed Analyst **Prep Type** Type Run **Factor** Amount Lab Total/NA 3535 288.7 mL 10.0 mL 475057 03/30/21 11:57 LN TAL SAC Prep Total/NA EPA 537(Mod) 476520 04/05/21 03:42 RS1 TAL SAC Analysis 1

Client Sample ID: MW-8-20

Date Collected: 03/24/21 18:12

Lab Sample ID: 320-71798-8

Matrix: Water

Date Collected: 03/24/21 18:12 Date Received: 03/29/21 11:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			273.1 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 03:51	RS1	TAL SAC

Client Sample ID: MW-10-20 Lab Sample ID: 320-71798-9

Date Collected: 03/24/21 19:14 Matrix: Water Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			287.7 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 04:00	RS1	TAL SAC

Client Sample ID: MW-2-30

Date Collected: 03/24/21 09:54

Lab Sample ID: 320-71798-10

Matrix: Water

Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			282.6 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 04:10	RS1	TAL SAC

Client Sample ID: MW-4-20

Date Collected: 03/25/21 15:20

Lab Sample ID: 320-71798-11

Matrix: Water

Date Received: 03/29/21 11:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			287.4 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 04:19	RS1	TAL SAC

Client Sample ID: MW-6-20

Date Collected: 03/25/21 16:40

Lab Sample ID: 320-71798-12

Matrix: Water

Date Received: 03/29/21 11:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			276.3 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	FPA 537(Mod)		1			476520	04/05/21 04:28	RS1	TAL SAC

Eurofins TestAmerica, Sacramento

Job ID: 320-71798-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW

Client Sample ID: MW-12-10 Lab Sample ID: 320-71798-13 Date Collected: 03/25/21 12:05

Matrix: Water

Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			276.4 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 04:38	RS1	TAL SAC

Lab Sample ID: 320-71798-14 Client Sample ID: MW-11-15

Date Collected: 03/25/21 10:35 **Matrix: Water**

Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			295.7 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 04:47	RS1	TAL SAC

Client Sample ID: MW-5-20 Lab Sample ID: 320-71798-15

Date Collected: 03/25/21 09:07 **Matrix: Water**

Date Received: 03/29/21 11:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			293.1 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 04:56	RS1	TAL SAC

Client Sample ID: MW-111-15 Lab Sample ID: 320-71798-16

Date Collected: 03/25/21 10:25 Date Received: 03/29/21 11:55

		Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep 7	Гуре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/N	NA .	Prep	3535	· · · · · · · · · · · · · · · · · · ·		291.8 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/N	۱A	Analysis	EPA 537(Mod)		1			476520	04/05/21 05:25	RS1	TAL SAC

Client Sample ID: MW-7-20 Lab Sample ID: 320-71798-17 Date Collected: 03/25/21 14:00 **Matrix: Water**

Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			287.1 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 05:34	RS1	TAL SAC

Client Sample ID: GAC Lab Sample ID: 320-71798-18 Date Collected: 03/25/21 18:02 **Matrix: Water**

Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			290.1 mL	10.0 mL	475057	03/30/21 11:57	LN	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476520	04/05/21 05:43	RS1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Sacramento

Page 33 of 39

Matrix: Water

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-71798-1

Project/Site: GUS PFAS DOT-MW

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

3

4

0

9

11

4.0

14

Method Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW Job ID: 320-71798-1

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

•

3

4

5

6

9

11

12

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS DOT-MW Job ID: 320-71798-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
320-71798-1	MW-2-20	Water	03/24/21 10:41	03/29/21 11:55	
20-71798-2	MW-1-15	Water	03/24/21 15:53	03/29/21 11:55	
320-71798-3	MW-1-40	Water	03/24/21 16:48	03/29/21 11:55	
20-71798-4	MW-9-30	Water	03/24/21 20:44	03/29/21 11:55	
20-71798-5	MW-3-15	Water	03/24/21 12:29	03/29/21 11:55	
20-71798-6	MW-3-40	Water	03/24/21 13:23	03/29/21 11:55	
20-71798-7	MW-102-20	Water	03/24/21 10:31	03/29/21 11:55	
20-71798-8	MW-8-20	Water	03/24/21 18:12	03/29/21 11:55	
20-71798-9	MW-10-20	Water	03/24/21 19:14	03/29/21 11:55	
0-71798-10	MW-2-30	Water	03/24/21 09:54	03/29/21 11:55	
0-71798-11	MW-4-20	Water	03/25/21 15:20	03/29/21 11:55	
0-71798-12	MW-6-20	Water	03/25/21 16:40	03/29/21 11:55	
0-71798-13	MW-12-10	Water	03/25/21 12:05	03/29/21 11:55	
20-71798-14	MW-11-15	Water	03/25/21 10:35	03/29/21 11:55	
20-71798-15	MW-5-20	Water	03/25/21 09:07	03/29/21 11:55	
20-71798-16	MW-111-15	Water	03/25/21 10:25	03/29/21 11:55	
0-71798-17	MW-7-20	Water	03/25/21 14:00	03/29/21 11:55	
0-71798-18	GAC	Water	03/25/21 18:02	03/29/21 11:55	

-

_

0

10

11

12

14

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road	ON, INC. CHAIL	N-OF-CUS	FODY	RECORD	Labo	pratory Test America
Fairbanks, AK 99709 (907) 479-0600			A	nalytical Methods (i	Aπn:	V.HIITUCKOS
www.shannonwilson.com	m					
Turn Around Time:	Quote No:] /	30.			/ jitte ^{to} /
Normal Rush	J-Flags: Yes No	Date model				Remarks/Matrix Composition/Grab? Sample Containers
Please Specify	1					Remarks/Matrix
Sample Identity		Pate mpled				Composition/Grab? Sample Containers
mw-2-20	1041 3/2	24/21 X			1	Groundwaters
MW-1-15	1553 3/2	24/21 X			1	
mW-1-40	- N 1	4/21 ×				
MW-9-30	,	4/21 X				
MW-3-15			320-71798 Chair	of Custodia		
mw-3-40	1323 3/2			Tor Custody		
mw-102-20	1031 3/20	7 7				
-MW-3-40	:227 21	7/21 7				
MW-8-20	1812 3/2	4 - 1				-
mw-10-20	10.1.1	4/21 X			1	
Project Information	Sample Receipt	Reliquished By	/: 1.	Reliquished	Ву: 2.	Reliquished By: 3.
Number: 102599-012	Total No. of Containers:	Signature:	Time: 0900	Signature:	Time:	Signature: Time:
Name: GUS DFAS DOT-MU	COC Seals/Intact? Y/N/NA	*				
Contact: KRF	Received Good Cond./Cold	Printed Name:	Date: <u>3/16/14</u>	Printed Name:	Date:	Printed Name: Date:
Ongoing Project? Yes No	Temp:	AMastrs				
Sampler: TKK	Delivery Method:	Company:	10 1	Company:		Company:
No	tes:	Shanna + Wi Received By:		Received B	y: 2.	Received By: 3.
		Signature:	Time:	Signature:	Time:	Signature: Time:
	#	Printed Name:	7/35 Date: ,	Printed Name:	Date:	Printed Name: Date:
	3.4°C	ETASAC	03/29/21		Date	Printed Name: Date:
Distribution: White - w/shipment - returned	d to Shannon & Wilson w/ laboratory report		1/24-1	Company:		Company:
Yellow - w/shipment - for con Pink - Shannon & Wilson - joi						
						MT 26222

No. 36322

റ

OI

ပေ

	4	1	
į		•	•
	r	`	
	ζ		
	<u> </u>	`	

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709	ON, INC. CHAI	N-OF-CUS	TODY	RECORD	Labo Attn:	Page <u>2</u> of <u>2</u>
(907) 479-0600 www.shannonwilson.com	m		A	nalytical Methods (inc		
Turn Around Time:	Quote No:] /	<u></u>			directs .
Normal Rush	J-Flags: Yes No	Date mpled	3///			Remarks/Matrix Composition/Grab? Sample Containers
Please Specify	^	(55 [†])				Remarks/Matrix
Sample Identity		Date mpled				Composition/Grab? Sample Containers
· MW-2-30	0954 3/2	4/21 X			2	groundwater
1 MW-4-20		5/21 X				Trong of the state
0 mW-6-20	16 40 31	25/21/				
0 MW-12-10		25/21 ×				
0 MW-11-15	1035 3/	25/21 X				
0 MW-5-20	0907 3/2	S/21 X				
6 MW-111-15	1025 317	5/21				
mw-7-20		SAX				1
GAC	18:02 3/	25/21 X	,		- 1	Gas effluent
Project Information	Sample Receipt	Reliquished B	y: 1.	Reliquished B	y: 2.	Reliquished By: 3.
Number: See Page	Total No. of Containers:	Signature:	Time: <u>6900</u>	Signature:	Time:	Signature: Time:
Name:	COC Seals/Intact? Y/N/NA	9	- 0/ /			
Contact:	Received Good Cond./Cold	Printed Name:	Date: 3/26/21	Printed Name:	Date:	Printed Name: Date:
Ongoing Project? Yes No	Temp: Delivery Method:	O.Mastus		Company:		Company:
		ShannonW				
No	tes:	Received By		Received By	: 2.	Received By: 3.
		Signature:	Time:	Signature:	Time:	Signature: Time:
	3.4"	Printed Name: ETASAC	Date:	Printed Name:	Date:	Printed Name: Date:
Distribution: White - w/shipment - returned Yellow - w/shipment - for con Pink - Shannon & Wilson - jol	nsignee files	Company:		Company:		Company:

No. 36325

Client: Shannon & Wilson, Inc Job Number: 320-71798-1

Login Number: 71798 List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Guzman Juan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1029558 & 1029556
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:
Justin Risley
Γitle:
Engineering Staff
Date:
April 8, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-71798-1
Laboratory Report Date:
April 7, 2021
CS Site Name:
DOT&PF Gustavus Airport Statewide PFAS
ADEC File Number:
2569.38.033
Hazard Identification Number:
26981

May 2020 Page 1

Laboratory Report Date:	
Note: Any N/A or No box checked must have an explanation in the comments box.	
1. <u>Laboratory</u>	
a. Did an ADEC CS approved laboratory receive and perform all of the submitted samp	ple analyses?
Yes \boxtimes No \square N/A \square Comments:	
The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluoroocacid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. To compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-02	hese
b. If the samples were transferred to another "network" laboratory or sub-contracted to laboratory, was the laboratory performing the analyses ADEC CS approved?	an alternate
$Yes \square No \square N/A \boxtimes Comments:$	
The requested analyses were conducted by TestAmerica of West Sacramento, CA.	
2. Chain of Custody (CoC)	
a. CoC information completed, signed, and dated (including released/received by)?	
Yes \boxtimes No \square N/A \square Comments:	
b. Correct analyses requested?	
Yes⊠ No□ N/A□ Comments:	
3. <u>Laboratory Sample Receipt Documentation</u>	
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?	
$Yes \boxtimes No \square N/A \square$ Comments:	
The temperature of the cooler at receipt was 3.4°C.	
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (G Volatile Chlorinated Solvents, etc.)?	RO, BTEX,
$Yes \square No \square N/A \boxtimes Comments:$	
Samples do not require preservation other than temperature.	
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC	vials)?
Yes \boxtimes No \square N/A \square Comments:	
The sample receipt form notes that the samples were received in good condition.	

320-71798-1

320-71798-1	
Laboratory Report Date:	
• •	ries, were they documented? For example, incorrect sample apple temperature outside of acceptable range, insufficient or missing Comments:
No discrepancies were noted.	Comments.
140 discrepancies were noted.	
e. Data quality or usability affe	ected?
	Comments:
The data quality and/or usability	y was not affected; see above.
4. <u>Case Narrative</u>	
a. Present and understandable	?
$Yes \boxtimes No \square N/A \square$	Comments:

320-71798-1	
Laboratory Report Date:	
• •	
b. Discrepancies, errors, or QC failur	es identified by the lab?
Yes⊠ No□ N/A□ Co	omments:
The case narrative indicates the follow	ving:
were outside of the established ratio li	fier means the transition mass ratio for the indicated analyte mit. The qualitative identification of the analyte has some I value may have some high bias. However, analyst judgment lyte. (CCVL 320-476514/2)
following samples is below the metho	pe Dilution Analyte (IDA) recovery associated with the d recommended limit: $MW-10-20$ (320-71798-9) and $MW-6-20$ ty is not considered affected if the IDA signal-to-noise ratio is or all IDA in the sample(s).
3-15 (320-71798-5), MW-8-20 (320-7	were yellow prior to extraction: <i>MW-9-30</i> (320-71798-4), <i>MW-1798-8</i>), <i>MW-10-20</i> (320-71798-9), <i>MW-4-20</i> (320-71798-11), (320-71798-13) and <i>MW-7-20</i> (320-71798-17).
	contained floating particulates in the sample bottle prior to <i>MW-3-15</i> (320-71798-5), <i>MW-10-20</i> (320-71798-9), <i>MW-6-20</i> (1798-17).
particulates which clogged the solid p	extraction process, the following samples contain non-settable hase extraction column: <i>MW-9-30</i> (320-71798-4), <i>MW-3-15</i> (8-9), <i>MW-6-20</i> (320-71798-12) and <i>MW-7-20</i> (320-71798-17).
Method 3535: Insufficient sample volume duplicate (MS/MSD) associated with	ume was available to perform a matrix spike/matrix spike preparation batch 320-475057.
c. Were all corrective actions docume	ented?
Yes⊠ No□ N/A□ C	omments:
See above.	
d. What is the effect on data quality/u	asability according to the case narrative?
C	omments:
The case narrative does not note an ef	fect on data quality or usability.
5. <u>Samples Results</u>	
 a. Correct analyses performed/report 	ed as requested on COC?
, ,	omments:
l	

tory Report Date:
b. All applicable holding times met?
Yes⊠ No□ N/A□ Comments:
c. All soils reported on a dry weight basis?
Yes□ No□ N/A⊠ Comments:
Soil samples were not submitted with this work order.
d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
$Yes \boxtimes No \square N/A \square$ Comments:
The reporting limit (RL) is less than the applicable DEC regulatory limit for the project.
e. Data quality or usability affected?
The data quality and/or usability was not affected; see above.
<u>C Samples</u>
a. Method Blank
i. One method blank reported per matrix, analysis and 20 samples?
Yes \boxtimes No \square N/A \square Comments:
ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
Yes \boxtimes No \square N/A \square Comments:
There were no detections in the method blank sample associated with these project samples.
iii. If above LOQ or project specified objectives, what samples are affected? Comments:
N/A; see above.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
See above.
v. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.

320-71798-1

320-71798-1	

Laboratory Report Date:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes \boxtimes No \square N/A \square Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
$Yes \boxtimes No \square N/A \square$ Comments:
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/A; see above.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
Yes□ No□ N/A⊠ Comments:
See above.
vii. Data quality or usability affected? (Use comment box to explain.)
Comments:
The data quality and/or usability was not affected: see above.

May 2020 Page 6

	320-71798-1
La	boratory Report Date:
	c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
	Note: Leave blank if not required for project
	i. Organics – One MS/MSD reported per matrix, analysis and 20 samples?
	$Yes \square No \boxtimes N/A \square$ Comments:
	Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batch. However, the laboratory analyzed LCS and LCSD samples to assess laboratory accuracy and precision.
	ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
	$Yes \square No \square N/A \boxtimes Comments:$
	Metals and/or inorganics were not analyzed as part of this work order.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?
	Yes \square No \square N/A \boxtimes Comments:
	MS and MSD samples were not analyzed for this work order.
	iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
	Yes \square No \square N/A \boxtimes Comments:
	MS and MSD samples were not analyzed for this work order.
	v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
	NA; MS and MSD samples were not analyzed for this work order.
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
	Yes \square No \square N/A \boxtimes Comments:
	MS and MSD samples were not analyzed for this work order.

320-	-71798-1
orato	ory Report Date:
	vii. Data quality or usability affected? (Use comment box to explain.)
_	Comments:
]	The data quality and/or usability was not affected; see above.
Ċ	d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Onl
	 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
	Yes \boxtimes No \square N/A \square Comments:
	ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits an project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
I	Yes□ No⊠ N/A□ Comments: IDA %R for PFHxA, PFDA, PFUnA, PFDoA, PFTeDA, PFBS, PFHxS, PFOS, d3-NMeFOSAA, d
	NEtFOSAA, and HFPO-DA were low for project sample MW-10-20.
	IDA %R for PFHxA, PFHpA, PFDA, PFUnA, PFDoA, PFTeDA, PFBS, PFHxS, PFOS, d3-NMeFOSAA, d5-NEtFOSAA, and HFPO-DA were low for project sample <i>MW-6-20</i> .
	The associated analytes for the listed project samples are considered estimate. Detected analytes are flagged "J" and not detected analytes are flagged "UJ" in the associated data tables.
	iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
_	Yes \boxtimes No \square N/A \square Comments:
	Yes; see above.
	iv. Data quality or usability affected? Comments:
7	The data quality and/or usability was affected; see above.
 F	e. Trip Blanks
	 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples (If not, enter explanation below.)

Comments:

PFAS are not volatile compounds. A trip blank is not required for the requested analysis.

May 2020 Page 8

Yes□ No□ N/A⊠

320-71798-1
Laboratory Report Date:
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
$Yes \square No \square N/A \boxtimes Comments:$
A trip blank is not required for the requested analysis.
iii. All results less than LOQ and project specified objectives?
$Yes \square No \square N/A \boxtimes Comments:$
A trip blank is not required for the requested analysis.
iv. If above LOQ or project specified objectives, what samples are affected? Comments:
N/A; a trip blank is not required for the requested analysis.
v. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
Yes⊠ No□ N/A□ Comments:
ii. Submitted blind to lab?
Yes \boxtimes No \square N/A \square Comments:
Field duplicate pairs <i>MW-2-20/MW-102-20</i> and <i>MW-11-15/MW-111-15</i> were submitted with this work order.
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

Yes \boxtimes No \square N/A \square Comments:

RPDs were less than the DQO (30%), where calculable.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

The data quality and/or usability was not affected; see above.

May 2020 Page 9

	320-71798-1
La	boratory Report Date:
	g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
	Yes \square No \square N/A \boxtimes Comments:
	Reusable equipment was not used for sample collection. Therefore, decontamination or equipment blank samples were not required. A peri-pump was used to collect the requested analytes.
	i. All results less than LOQ and project specified objectives?
	Yes□ No□ N/A⊠ Comments:
	See above.
	ii. If above LOQ or project specified objectives, what samples are affected? Comments:
	N/A; see above.
	iii. Data quality or usability affected? Comments:
	No; see above.
7.	Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
	a. Defined and appropriate?
	$Yes \square No \square N/A \boxtimes Comments:$
	The following wells did not have sufficient purge:
	MW-3-15 - 'J' flag detected results, 'UJ' flag not detected results
	MW-8-20 - 'J' flag detected results, 'UJ' flag not detected results

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-71800-1

Client Project/Site: GUS PFAS - DRM

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamin Oltiman

Authorized for release by: 4/6/2021 11:57:08 AM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

g

9

12

13

14

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS - DRM Laboratory Job ID: 320-71800-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-71800-1

Project/Site: GUS PFAS - DRM

Qualifiers

LCMS

Qualifier Qualifier Description

Value is EMPC (estimated maximum possible concentration).

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6

9

10

12

13

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-71800-1 Project/Site: GUS PFAS - DRM

Job ID: 320-71800-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-71800-1

Receipt

The samples were received on 3/29/2021 11:55 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.5° C.

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limit. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte. PW-200 (320-71800-7)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples contained a small amount of sediment: PW-200 (320-71800-7)

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-475229.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-71800-1

Project/Site: GUS PFAS - DRM

Client Sample ID: PW-200-Sink Lab Sample ID: 320-71800-3

No Detections.

Client Sample ID: PW-200-C Port Composite Lab Sample ID: 320-71800-6

No Detections.

Client Sample ID: PW-200 Lab Sample ID: 320-71800-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	7.4		1.7	0.49	ng/L		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.8		1.7	0.21	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.3	J	1.7	0.71	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	JI	1.7	0.17	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	12		1.7	0.48	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	60		1.7	0.45	ng/L	1	EPA 537(Mod)	Total/NA

Eurofins TestAmerica, Sacramento

Job ID: 320-71800-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS - DRM

Client Sample ID: PW-200-Sink

Lab Sample ID: 320-71800-3

Date Collected: 03/23/21 14:38 **Matrix: Water** Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.49	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.72	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.62	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.48	ng/L		03/31/21 04:16	04/04/21 17:43	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		03/31/21 04:16	04/04/21 17:43	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.2	1.0	ng/L		03/31/21 04:16	04/04/21 17:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.2		ng/L		03/31/21 04:16	04/04/21 17:43	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L			04/04/21 17:43	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4		ng/L		03/31/21 04:16	04/04/21 17:43	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7		ng/L		03/31/21 04:16	04/04/21 17:43	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/31/21 04:16	04/04/21 17:43	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	106		50 - 150				03/31/21 04:16	04/04/21 17:43	1
13C4 PFHpA	106		50 - 150				03/31/21 04:16	04/04/21 17:43	1
13C4 PFOA	102		50 - 150				03/31/21 04:16	04/04/21 17:43	1
13C5 PFNA	100		50 - 150				03/31/21 04:16	04/04/21 17:43	1
13C2 PFDA	106		50 - 150				03/31/21 04:16	04/04/21 17:43	1
13C2 PFUnA	92		50 ₋ 150				03/31/21 04:16	04/04/21 17:43	1
13C2 PFDoA	106		50 - 150				03/31/21 04:16	04/04/21 17:43	1
13C2 PFTeDA	120		50 ₋ 150				03/31/21 04:16	04/04/21 17:43	1
13C3 PFBS	91		50 ₋ 150				03/31/21 04:16	04/04/21 17:43	1
1802 PFHxS	103		50 - 150				03/31/21 04:16	04/04/21 17:43	1
13C4 PFOS	95		50 ₋ 150					04/04/21 17:43	1
d3-NMeFOSAA	87		50 ₋ 150				03/31/21 04:16	04/04/21 17:43	1
d5-NEtFOSAA	98		50 - 150				03/31/21 04:16	04/04/21 17:43	1
13C3 HFPODA	99		50 - 150				03/31/21 04:16		1

Client Sample ID: PW-200-C Port Composite Lab Sample ID: 320-71800-6

Date Collected: 03/23/21 15:10 **Matrix: Water**

Date Received: 03/29/21 11:55

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND —	1.7	0.49	ng/L	— <u>-</u>	03/31/21 04:16		1
Perfluoroheptanoic acid (PFHpA)	ND	1.7	0.21	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorooctanoic acid (PFOA)	ND	1.7	0.72	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorononanoic acid (PFNA)	ND	1.7	0.23	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorodecanoic acid (PFDA)	ND	1.7	0.26	ng/L		03/31/21 04:16	04/04/21 18:11	1

Eurofins TestAmerica, Sacramento

Page 6 of 19 4/6/2021

Client: Shannon & Wilson, Inc Job ID: 320-71800-1 Project/Site: GUS PFAS - DRM

Client Sample ID: PW-200-C Port Composite

Lab Sample ID: 320-71800-6 Date Collected: 03/23/21 15:10 **Matrix: Water**

Date Received: 03/29/21 11:55

d3-NMeFCSAA

d5-NEtFOSAA

13C3 HFPODA

Date Received: 03/29/21 11:55

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.46	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.62	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	0.48	ng/L		03/31/21 04:16	04/04/21 18:11	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		03/31/21 04:16	04/04/21 18:11	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.2	1.0	ng/L		03/31/21 04:16	04/04/21 18:11	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.2	1.1	ng/L		03/31/21 04:16	04/04/21 18:11	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		03/31/21 04:16	04/04/21 18:11	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		03/31/21 04:16	04/04/21 18:11	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		03/31/21 04:16	04/04/21 18:11	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/31/21 04:16	04/04/21 18:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	104		50 - 150				03/31/21 04:16	04/04/21 18:11	1
13C4 PFHpA	102		50 - 150				03/31/21 04:16	04/04/21 18:11	1
13C4 PFOA	100		50 ₋ 150				03/31/21 04:16	04/04/21 18:11	1
13C5 PFNA	98		50 - 150				03/31/21 04:16	04/04/21 18:11	1
13C2 PFDA	94		50 - 150				03/31/21 04:16	04/04/21 18:11	1
13C2 PFUnA	96		50 - 150				03/31/21 04:16	04/04/21 18:11	1
13C2 PFDoA	93		50 - 150				03/31/21 04:16	04/04/21 18:11	1
13C2 PFTeDA	115		50 - 150				03/31/21 04:16	04/04/21 18:11	1
13C3 PFBS	97		50 - 150				03/31/21 04:16	04/04/21 18:11	1
1802 PFHxS	96		50 - 150				03/31/21 04:16	04/04/21 18:11	1
13C4 PFOS	94		50 ₋ 150				03/31/21 04:16	04/04/21 18:11	1

Client Sample ID: PW-200 Lab Sample ID: 320-71800-7 Date Collected: 03/23/21 15:16 **Matrix: Water**

50 - 150

50 - 150

50 - 150

88

96

103

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	7.4		1.7	0.49	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluoroheptanoic acid (PFHpA)	3.8		1.7	0.21	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluorooctanoic acid (PFOA)	1.3	J	1.7	0.71	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.92	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.46	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.61	ng/L		03/31/21 04:16	04/04/21 18:21	1

Eurofins TestAmerica, Sacramento

03/31/21 04:16 04/04/21 18:11

03/31/21 04:16 04/04/21 18:11

03/31/21 04:16 04/04/21 18:11

Page 7 of 19 4/6/2021

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-71800-1

Project/Site: GUS PFAS - DRM

Client Sample ID: PW-200 Lab Sample ID: 320-71800-7

. Matrix: Water

Date Collected: 03/23/21 15:16 Date Received: 03/29/21 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanesulfonic acid	1.2	JI	1.7	0.17	ng/L		03/31/21 04:16	04/04/21 18:21	1
(PFBS)							00/04/04 04 40	04/04/04 40.04	
Perfluorohexanesulfonic acid (PFHxS)	12		1.7	0.48	ng/L		03/31/21 04:16	04/04/21 18:21	1
Perfluorooctanesulfonic acid	60		1.7	0.45	ng/L		03/31/21 04:16	04/04/21 18:21	1
(PFOS)					Ü				
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.2	1.0	ng/L		03/31/21 04:16	04/04/21 18:21	1
N-ethylperfluorooctanesulfonamidoac	ND		4.2	1.1	ng/L		03/31/21 04:16	04/04/21 18:21	1
etic acid (NEtFOSAA)									
9-Chlorohexadecafluoro-3-oxanonan	ND		1.7	0.20	ng/L		03/31/21 04:16	04/04/21 18:21	1
e-1-sulfonic acid								-2-12-22-2-1-12-2-1	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4		ng/L		03/31/21 04:16	04/04/21 18:21	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		03/31/21 04:16	04/04/21 18:21	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		03/31/21 04:16	04/04/21 18:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150				03/31/21 04:16	04/04/21 18:21	1
13C4 PFHpA	97		50 - 150				03/31/21 04:16	04/04/21 18:21	1
13C4 PFOA	97		50 - 150				03/31/21 04:16	04/04/21 18:21	1
13C5 PFNA	92		50 - 150				03/31/21 04:16	04/04/21 18:21	1
13C2 PFDA	91		50 - 150				03/31/21 04:16	04/04/21 18:21	1
13C2 PFUnA	68		50 - 150				03/31/21 04:16	04/04/21 18:21	1
13C2 PFDoA	63		50 - 150				03/31/21 04:16	04/04/21 18:21	1
13C2 PFTeDA	97		50 ₋ 150				03/31/21 04:16	04/04/21 18:21	1
13C3 PFBS	73		50 ₋ 150				03/31/21 04:16	04/04/21 18:21	1
1802 PFHxS	87		50 - 150				03/31/21 04:16	04/04/21 18:21	1
13C4 PFOS	87		50 ₋ 150				03/31/21 04:16	04/04/21 18:21	1
d3-NMeFOSAA	69		50 ₋ 150				03/31/21 04:16	04/04/21 18:21	1
d5-NEtFOSAA	62		50 ₋ 150				03/31/21 04:16	04/04/21 18:21	1
13C3 HFPODA	78		50 - 150				03/31/21 04:16		1

4/6/2021

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Job ID: 320-71800-1 Project/Site: GUS PFAS - DRM

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Prep Type: Total/NA **Matrix: Water**

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-71800-3	PW-200-Sink	106	106	102	100	106	92	106	120
320-71800-6	PW-200-C Port Composite	104	102	100	98	94	96	93	115
320-71800-7	PW-200	89	97	97	92	91	68	63	97
LCS 320-475229/2-A	Lab Control Sample	110	116	103	102	103	95	106	117
LCSD 320-475229/3-A	Lab Control Sample Dup	100	97	91	98	93	85	99	106
MB 320-475229/1-A	Method Blank	99	114	108	103	94	97	98	115
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-71800-3	PW-200-Sink	91	103	95	87	98	99		
320-71800-6	PW-200-C Port Composite	97	96	94	88	96	103		
320-71800-7	PW-200	73	87	87	69	62	78		
LCS 320-475229/2-A	Lab Control Sample	101	109	96	92	101	103		
LCSD 320-475229/3-A	Lab Control Sample Dup	98	96	87	88	88	99		
MB 320-475229/1-A	Method Blank	91	103	95	92	101	99		
Surrogate Legend									

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Page 9 of 19

Client: Shannon & Wilson, Inc Job ID: 320-71800-1

Project/Site: GUS PFAS - DRM

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-475229/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 476504	Prep Batch: 475229

M	В МВ							
Analyte Resu	lt Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	D	2.0	0.58	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluoroheptanoic acid (PFHpA)	D	2.0	0.25	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorooctanoic acid (PFOA)	D	2.0	0.85	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorononanoic acid (PFNA)	D	2.0	0.27	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorodecanoic acid (PFDA)	D	2.0	0.31	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluoroundecanoic acid (PFUnA)	D	2.0	1.1	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorododecanoic acid (PFDoA)	D	2.0	0.55	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorotridecanoic acid (PFTriA)	D	2.0	1.3	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorotetradecanoic acid (PFTeA)	D	2.0	0.73	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorobutanesulfonic acid (PFBS)	D	2.0	0.20	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorohexanesulfonic acid (PFHxS)	D	2.0	0.57	ng/L		03/31/21 04:16	04/04/21 14:27	1
Perfluorooctanesulfonic acid (PFOS)	D	2.0	0.54	ng/L		03/31/21 04:16	04/04/21 14:27	1
N-methylperfluorooctanesulfonamidoa N cetic acid (NMeFOSAA)	D	5.0	1.2	ng/L		03/31/21 04:16	04/04/21 14:27	1
N-ethylperfluorooctanesulfonamidoac N etic acid (NEtFOSAA)	D	5.0	1.3	ng/L		03/31/21 04:16	04/04/21 14:27	1
9-Chlorohexadecafluoro-3-oxanonan N e-1-sulfonic acid	D	2.0	0.24	ng/L		03/31/21 04:16	04/04/21 14:27	1
Hexafluoropropylene Oxide Dimer N Acid (HFPO-DA)	D	4.0	1.5	ng/L		03/31/21 04:16	04/04/21 14:27	1
	D	2.0	0.32	ng/L		03/31/21 04:16	04/04/21 14:27	1
4,8-Dioxa-3H-perfluorononanoic acid N (ADONA)	D	2.0	0.40	ng/L		03/31/21 04:16	04/04/21 14:27	1

(ADONA)						
	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	99		50 - 150	03/31/21 0416	04 04 21 1427	1
13C4PFHpA	114	5	iO _150	03/31/21 0416	04 04 21 1427	1
13C4PFOA	108	5	0 - 150	03/31/21 0416	04 04 21 1427	1
13C5 PFNA	103		50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
13C2 PFDA	94		50 - 150	03/31/21 0416	04 04 21 1427	1
13C2 PFUnA	97		50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
13C2 PFDoA	98		50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
13C2 PFTeDA	115		50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
13C3 PFBS	91		50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
18 O2 PFHxS	103		50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
13C4PFOS	95		50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
d3-NMeFOSAA	92		50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
d5-NEtFOSAA	101	<i>ξ</i>	50 - 150	03/ 31/ 21 0416	04 04 21 1427	1
13C3 HFPO-DA	99		50 ₋ 150	03/ 31/ 21 0416	04 04 21 1427	1

Lab Sample ID: LCS 320-475229/2-A

Matrix: Water

Analysis Batch: 476504

Client Sample ID: L	ab Control Sample
P	Prep Type: Total/NA
F	Prep Batch: 475229

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	45.1		ng/L		113	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	43.9		ng/L		110	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	45.2		ng/L		113	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	45.7		ng/L		114	69 - 130	

Eurofins TestAmerica, Sacramento

Page 10 of 19

2

3

6

8

10

11

13

14

115

4/6/2021

Client: Shannon & Wilson, Inc Job ID: 320-71800-1

Project/Site: GUS PFAS - DRM

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-475229/2-A

Matrix: Water

Analysis Batch: 476504

4,8-Dioxa-3H-perfluorononanoic

acid (ADONA)

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 475229

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorodecanoic acid (PFDA)	40.0	44.1		ng/L		110	71 - 129	
Perfluoroundecanoic acid	40.0	52.2		ng/L		131	69 - 133	
(PFUnA)				•				
Perfluorododecanoic acid	40.0	41.6		ng/L		104	72 - 134	
(PFDoA)								
Perfluorotridecanoic acid	40.0	44.7		ng/L		112	65 - 144	
(PFTriA)								
Perfluorotetradecanoic acid	40.0	43.3		ng/L		108	71 - 132	
(PFTeA)								
Perfluorobutanesulfonic acid	35.4	40.0		ng/L		113	72 - 130	
(PFBS)								
Perfluorohexanesulfonic acid	36.4	38.9		ng/L		107	68 - 131	
(PFHxS)								
Perfluorooctanesulfonic acid	37.1	39.1		ng/L		105	65 - 140	
(PFOS)								
N-methylperfluorooctanesulfona	40.0	44.3		ng/L		111	65 - 136	
midoacetic acid (NMeFOSAA)								
N-ethylperfluorooctanesulfonami	40.0	40.1		ng/L		100	61 - 135	
doacetic acid (NEtFOSAA)								
9-Chlorohexadecafluoro-3-oxan	37.3	45.8		ng/L		123	77 - 137	
onane-1-sulfonic acid								
Hexafluoropropylene Oxide	40.0	45.7		ng/L		114	72 - 132	
Dimer Acid (HFPO-DA)								
11-Chloroeicosafluoro-3-oxaund	37.7	44.3		ng/L		118	76 - 136	
ecane-1-sulfonic acid								

37.7

43.6

ng/L

LCS LCS

%Recovery	Qualifier	Limits
110	-	50 - 150
116		50 - 150
103		50 - 150
102		50 - 150
103		50 - 150
95		50 - 150
106		50 - 150
117		50 - 150
101		50 - 150
109		50-150
96		50 - 150
92		50 - 150
101		50 - 150
103		50 - 150
	110 116 103 102 103 95 106 117 101 109 96 92	116 103 102 103 95 106 117 101 109 96 92

Lab Sample ID: LCSD 320-475229/3-A

Client Sample ID: Lab Control Sample Dup

116

81 - 141

Prep Type: Total/NA

alysis Batch: 476504 F							Prep Ba	Prep Batch: 475229		
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Perfluorohexanoic acid (PFHxA)	40.0	43.5		ng/L		109	72 - 129	4	30	
Perfluoroheptanoic acid (PFHpA)	40.0	43.9		ng/L		110	72 - 130	0	30	
Perfluorooctanoic acid (PFOA)	40.0	44.3		ng/L		111	71 - 133	2	30	

Eurofins TestAmerica, Sacramento

Page 11 of 19

4/6/2021

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-71800-1 Project/Site: GUS PFAS - DRM

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-475229/3-A

Matrix: Water

Analysis Batch: 476504

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 475229**

, , , , , , , , , , , , , , , , , , , ,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorononanoic acid (PFNA)	40.0	44.4		ng/L		111	69 - 130	3	30
Perfluorodecanoic acid (PFDA)	40.0	45.3		ng/L		113	71 - 129	3	30
Perfluoroundecanoic acid (PFUnA)	40.0	50.7		ng/L		127	69 - 133	3	30
Perfluorododecanoic acid (PFDoA)	40.0	39.9		ng/L		100	72 - 134	4	30
Perfluorotridecanoic acid (PFTriA)	40.0	45.9		ng/L		115	65 - 144	3	30
Perfluorotetradecanoic acid (PFTeA)	40.0	45.6		ng/L		114	71 - 132	5	30
Perfluorobutanesulfonic acid (PFBS)	35.4	35.4		ng/L		100	72 - 130	12	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	41.3		ng/L		113	68 - 131	6	30
Perfluorooctanesulfonic acid (PFOS)	37.1	38.5		ng/L		104	65 - 140	2	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	42.1		ng/L		105	65 - 136	5	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	40.4		ng/L		101	61 - 135	1	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	44.0		ng/L		118	77 - 137	4	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	39.6		ng/L		99	72 - 132	14	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	37.7	43.1		ng/L		114	76 - 136	3	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	46.8		ng/L		124	81 - 141	7	30

LCSD LCSD

	LOOD LOOD	
Isotope Dilution	%Recovery Qualifie	er Limits
13C2 PFHxA	100	50 - 150
13C4PFHpA	97	50 - 150
13C4PFOA	91	50 - 150
13C5 PFNA	98	50 - 150
13C2 PFDA	93	50 - 150
13C2 PFUnA	85	50 - 150
13C2 PFDoA	99	50 - 150
13C2 PFTeDA	106	50 - 150
13C3 PFBS	98	50 - 150
18 O2 PFHxS	96	50-150
13C4PFOS	87	50 - 150
d3-NMeFOSAA	88	50 - 150
d5-NEtFOSAA	88	50 - 150
13C3 HFPO-DA	99	50 - 150
13C3 HFPO-DA	99	50

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS - DRM

Job ID: 320-71800-1

LCMS

Prep Batch: 475229

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-71800-3	PW-200-Sink	Total/NA	Water	3535	_
320-71800-6	PW-200-C Port Composite	Total/NA	Water	3535	
320-71800-7	PW-200	Total/NA	Water	3535	
MB 320-475229/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-475229/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-475229/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 476504

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-71800-3	PW-200-Sink	Total/NA	Water	EPA 537(Mod)	475229
320-71800-6	PW-200-C Port Composite	Total/NA	Water	EPA 537(Mod)	475229
320-71800-7	PW-200	Total/NA	Water	EPA 537(Mod)	475229
MB 320-475229/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	475229
LCS 320-475229/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	475229
LCSD 320-475229/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	475229

7

ŏ

4.6

11

14

14

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-71800-1

Project/Site: GUS PFAS - DRM

Client Sample ID: PW-200-Sink Lab Sample ID: 320-71800-3

Date Collected: 03/23/21 14:38 Matrix: Water Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			294.3 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 17:43	RS1	TAL SAC

Client Sample ID: PW-200-C Port Composite

Date Collected: 03/23/21 15:10

Lab Sample ID: 320-71800-6

Matrix: Water

Date Collected: 03/23/21 15:10 Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			296.6 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 18:11	RS1	TAL SAC

Client Sample ID: PW-200 Lab Sample ID: 320-71800-7

Date Collected: 03/23/21 15:16

Date Received: 03/29/21 11:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			298 mL	10.00 mL	475229	03/31/21 04:16	MA	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			476504	04/04/21 18:21	RS1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

5

3

4

5

7

9

10

Matrix: Water

12

1 A

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-71800-1

Project/Site: GUS PFAS - DRM

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

3

Δ

5

9

11

12

14

Method Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS - DRM Job ID: 320-71800-1

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Δ

6

Q

9

11

12

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS - DRM

Job ID: 320-71800-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
320-71800-3	PW-200-Sink	Water	03/23/21 14:38	03/29/21 11:55	
320-71800-6	PW-200-C Port Composite	Water	03/23/21 15:10	03/29/21 11:55	
320-71800-7	PW-200	Water	03/23/21 15:16	03/29/21 11:55	

3

5

7

8

10

11

13

14

	SHANNON & WILSON GEOTECHNICAL AND ENVIRONMENTAL CO. 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600	N, INC. CHAIL	N-OF-CUS			Labor Attn:	D. All hicker
HOW *HOW HOW HOW	(907) 479-0600 www.shannonwilson.com Turn Around Time: Normal Rush Please Specify Sample Identity PW-200-Unit 2-CPort PW-200-F Port ** PW-200-Unit 3-CPort PW-200-Unit 3-CPort PW-200-Unit 3-CPort	Quote No: J-Flags: Yes No Lab No. Time Sai H * HOLD* 1453 3/2 1438 1515 3/2 1438 1515 3/2 14450 3/2 1450 3/2 1461 4 HOLD* 1450 3/2 1461 4 HOLD* 1504 3/2 1461 4 HOLD* 1504 3/2 1461 4 HOLD* 1504 3/2 1461 4 HOLD* 1504 3/2	Date mpled X 3/21	Analytical Methods (included in the control of the	de preservative	Remarks/Matrix Composition/Grab? Sample Containers	
Page 18 of 19	PW-200 PW-200-Unit 4-C Par	1516 3/2 (+ *Hold* 1507 3/2	23/21 X 23/21 X			2	
	Project Information	Sample Receipt	Reliquished E	By: 1.	Reliquished By:	2.	Reliquished By: 3.
	Name: GUSPFAS - DRM Contact: KRF	Total No. of Containers: COC Seals/Intact? Y/N/NA Received Good Cond./Cold Temp:	Signature: Printed Name: A. Mastas	Time: <u>0900</u>			Signature: Time: Printed Name: Date:
	Sampler: ARM	Delivery Method:	Company:	. 1	Company:	1	Company:
	Note	es:	Shannon + Will Received By Signature:		Received By:	2 .	Received By: 3. Signature: Time:
2		250	Printed Name ETA - SAC	Date: 03 29 21			Printed Name: Date:
4/6/2	Distribution: White - w/shipment - returned t Yellow - w/shipment - for consi Pink - Shannon & Wilson - job	ignee files	Company:		Company:		Company:

2021

No. 36385

Client: Shannon & Wilson, Inc Job Number: 320-71800-1

Login Number: 71800 List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Guzman, Juan

oreator. Guzman, Juan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seals on cooler
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Page 19 of 19 4/6/2021

Laboratory Data Review Checklist

Completed By:
Amber Masters
Citle:
Environmental Scientist
Date:
April 7, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-71800-1
Laboratory Report Date:
April 6. 2021
CS Site Name:
POET
ADEC File Number:
1507.38.017
Hazard Identification Number:
26904

May 2020 Page 1

Lat	poratory Report Date:		
	Note: Any N/A or No box checked must have an explanation in the comments box.		
l.	Laboratory		
	a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?		
	Yes \boxtimes No \square N/A \square Comments:		
	The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.		
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?		
	$Yes \square No \square N/A \boxtimes Comments:$		
	The requested analyses were conducted by TestAmerica of West Sacramento, CA.		
2.	Chain of Custody (CoC)		
	a. CoC information completed, signed, and dated (including released/received by)?		
	Yes⊠ No□ N/A□ Comments:		
	b. Correct analyses requested?		
	Yes \boxtimes No \square N/A \square Comments:		
3.	Laboratory Sample Receipt Documentation		
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?		
	Yes \boxtimes No \square N/A \square Comments:		
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?		
	Yes \boxtimes No \square N/A \square Comments:		
	Samples were preserved with Trizma TM .		
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?		
	$Yes \boxtimes No \square N/A \square$ Comments:		
	The sample receipt form notes the samples were received in good condition at a cooler temperature of 2.5° C.		

320-71800-1

Laboratory Report Date:		
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?		
Yes \square No \square N/A \boxtimes Comments:		
The receipt documentation does not note any discrepancies.		
e. Data quality or usability affected?		
Comments:		
The data quality and/or usability was not affected; see above.		
4. Case Narrative		
a. Present and understandable?		
$Yes \boxtimes No \square N/A \square$ Comments:		
b. Discrepancies, errors, or QC failures identified by the lab?		
Yes \boxtimes No \square N/A \square Comments:		
The case narrative indicates the following:		
The samples arrived in good condition and properly preserved. The temperature of the sample cooler received with this shipment was 2.5° C upon arrival at the laboratory.		
The following sample contained a small amount of sediment: PW-200.		
"I" qualifier means the transition mass ratio for PFBS was outside of the established ratio limit in sample <i>PW-200</i> . The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte.		
There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batch 320-475229.		
c. Were all corrective actions documented?		
Yes \boxtimes No \square N/A \square Comments:		
Analyst judgment was used to positively identify the analyte.		

320-71800-1

3	20-71800-1		
Labo	ratory Report Date:		
	d. What is the effect on data quality/usability according to the case narrative?		
	Comments:		
	The case narrative notes a potential high bias associated with the "I" flagged analyte in sample <i>PW-200</i> . Therefore, we consider the results to be estimated, with a high bias, and have flagged the result with a "JH" in the analytical table.		
5. <u>S</u>	amples Results		
	a. Correct analyses performed/reported as requested on COC?		
	Yes \boxtimes No \square N/A \square Comments:		
	b. All applicable holding times met?		
	Yes⊠ No□ N/A□ Comments:		
	c. All soils reported on a dry weight basis?		
	Yes \square No \square N/A \boxtimes Comments:		
Soil samples were not submitted with this work order.			
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?		
	Yes⊠ No□ N/A□ Comments:		
	The reporting limit (RL) is less than the applicable DEC regulatory limit for the project.		
	e. Data quality or usability affected?		
	The data quality and/or usability was not affected; see above.		
6. <u>C</u>	OC Samples		
	a. Method Blank		
	i. One method blank reported per matrix, analysis and 20 samples?		
	Yes⊠ No□ N/A□ Comments:		
	Teses two twite comments.		
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?		
	Yes⊠ No□ N/A□ Comments:		
	There were no detections in the method blank sample associated with these project samples.		

320-71800-1	
320-/1000-1	

Laboratory Report Date:

iii. If above LOQ or project specified objectives, what samples are affected? Comments: N/A; see above. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? $Yes \square No \square N/A \boxtimes$ Comments: v. Data quality or usability affected? Comments: No; see above. b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes \boxtimes No \square N/A \square Comments: ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes \square No \square N/A \boxtimes Comments: Metals and/or inorganics were not analyzed as part of this work order. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) $Yes \boxtimes No \square N/A \square$ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) $Yes \boxtimes No \square N/A \square$ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

May 2020 Page 5

N/A; see above.

ratory Report Date:	
vi. Do the affected sample(s)	have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes$	Comments:
Data is not affected; see above.	
vii. Data quality or usability at	ffected? (Use comment box to explain.)
The data quality and/or usability v	Comments:
The data quanty and/or usability v	was not affected; see above.
c. Matrix Spike/Matrix Spike Du Note: Leave blank if not req	
C	
1	Comments: vailable to perform a MS/MSD with the associated preparatory analyzed LCS and LCSD samples to assess laboratory accuracy and
ii. Metals/Inorganics – one M Yes□ No□ N/A⊠	MS and one MSD reported per matrix, analysis and 20 samples? Comments:
	t analyzed as part of this work order.
	ecoveries (%R) reported and within method or laboratory limits and
Yes \square No \square N/A \boxtimes	Comments:
MS and MSD samples were not as	nalyzed for this work order.
1	ercent differences (RPD) reported and less than method or laborator ed objectives, if applicable? RPD reported from MS/MSD, and or
$Yes \square No \square N/A \boxtimes$	Comments:
MS and MSD samples were not as	nalyzed for this work order.
v. If %R or RPD is outside of	of acceptable limits, what samples are affected? Comments:
NA; MS and MSD samples were	not analyzed for this work order.
vi Do the effected comple(e)	have data flags? If so, are the data flags clearly defined?
V ₁ . Do the affected sample(s)	have data flags? If so, are the data flags clearly defined?

MS and MSD samples were not analyzed for this work order.

320-71800-1

Laboratory Report Date:

vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? $Yes \boxtimes No \square N/A \square$ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \boxtimes No \square N/A \square$ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments: There were no IDA recovery failures associated with this work order. iv. Data quality or usability affected? Comments: The data quality and/or usability was not affected; see above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) $Yes \square No \square N/A \boxtimes$ Comments: PFAS are not volatile compounds. A trip blank is not required for the requested analysis. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: A trip blank is not required for the requested analysis. iii. All results less than LOQ and project specified objectives? $Yes \square No \square N/A \boxtimes$ Comments: A trip blank is not required for the requested analysis.

May 2020 Page 7

320-71800-1			
aboratory Report Date:			
iv. If above LOQ or project specified objectives, what samples are affected? Comments:			
NA; a trip blank is not required	for the requested analysis.		
v. Data quality or usabilit	v. Data quality or usability affected? Comments:		
The data quality and/or usability	y was not affected; see above.		
f. Field Duplicatei. One field duplicate substructionYes□ No⊠ N/A□	mitted per matrix, analysis and 10 project samples? Comments:		
A field duplicate was not submi	tted with this work order.		
ii. Submitted blind to lab? Yes□ No□ N/A⊠	Comments:		
N/A; see above.			
(Recommended: 30% w	percent differences (RPD) less than specified project objectives? vater, 50% soil) Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where $R_1 = \text{Sample Concentration}$ $R_2 = \text{Field Duplicate Concentration}$		
Yes□ No□ N/A⊠	Comments:		
N/A; see above.			
iv. Data quality or usability	y affected? (Use the comment box to explain why or why not.) Comments:		
The data quality and/or usability	y was not affected; see above.		
below)?	nent Blank (If not applicable, a comment stating why must be entered		
	Comments: ed for sample collection. Therefore, decontamination or equipment d. A peri-pump was used to collect the requested analytes.		
	Q and project specified objectives?		
$Yes \square No \square N/A \boxtimes$ See above.	Comments:		

	32	0-71800-1	
Lal	ora	atory Report Date:	
		ii. If above LOQ or proje	ect specified objectives, what samples are affected? Comments:
N/A; see above. iii. Data quality or usability affected? Comments:			
			·
No; see above.			
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)			
a. Defined and appropriate?			
		Yes□ No□ N/A⊠	Comments:

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-75574-1

Client Project/Site: DOT PFAS - MW - GST

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamil altina

Authorized for release by: 7/13/2021 7:52:26 AM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

8

11

12

Laboratory Job ID: 320-75574-1

Client: Shannon & Wilson, Inc Project/Site: DOT PFAS - MW - GST

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Isotope Dilution Summary	27
	29
QC Association Summary	32
Lab Chronicle	34
Certification Summary	38
Method Summary	39
Sample Summary	40
Chain of Custody	41
Receipt Checklists	43

3

4

9

10

12

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Qualifiers

LCMS

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Job ID: 320-75574-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Receipt

The samples were received on 6/29/2021 2:55 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.3° C.

LCMS

Method EPA 537(Mod): Results for sample MW-2-20 (320-75574-10) were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

Method EPA 537(Mod): Results for sample MW-102-20 (320-75574-8) was reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-503371.

Method 3535: The following samples are yellow and contain floating particulates at the bottom of the bottle prior to extraction: MW-109-30 (320-75574-1), MW-10-20 (320-75574-2), MW-4-20 (320-75574-5), MW-3-40 (320-75574-6), MW-8-20 (320-75574-7), MW-9-30 (320-75574-11), MW-7-20 (320-75574-11), MW-3-15 (320-75574-12), MW-1-40 (320-75574-13), MW-2-30 (320-75574-14) and MW-12-10 (320-75574-18).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

4

9

11

14

Client: Shannon & Wilson, Inc Job ID: 320-75574-1 Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-109-30	Lab Sample ID: 320-75574-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	7.0		1.7	0.51	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.2		1.7	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	0.97	J	1.7	0.74	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.78	J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	15		1.7	0.50	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	84		1.7	0.47	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-10-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	15		1.8	0.51	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	5.6		1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.0		1.8	0.74	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.87	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	21		1.8	0.50	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	95		1.8	0.47	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-5-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.1		1.8	0.53	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.96	J	1.8	0.23	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.1		1.8	0.78	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.51	J	1.8	0.25	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.45	J	1.8	0.18	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.8		1.8	0.52	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.5		1.8	0.50	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: MW-6-20

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	1.1 J	1.7	0.49 ng/L	1 EPA 537(Mod)	Total/NA

Client Sample ID: MW-4-20

_									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	0.19	J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.63	J	1.7	0.50	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-3-40

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.1		1.7	0.51	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.43	J	1.7	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.5	J	1.7	0.74	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.1	J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	15		1.7	0.50	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	15		1.7	0.47	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-8-20

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluoroheptanoic acid (PFHpA)	0.23 J	1.7	0.21 ng/L	1 EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.49 J	1.7	0.48 ng/L	1 EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Lab Sample ID: 320-75574-7

Page 5 of 43 7/13/2021

Lab Sample ID: 320-75574-2

Lab Sample ID: 320-75574-3

Lab Sample ID: 320-75574-4

Lab Sample ID: 320-75574-5

Lab Sample ID: 320-75574-6

Client: Shannon & Wilson, Inc
Project/Site: DOT PFAS - MW - GST

Job ID: 320-75574-1

Client Sample ID: MW-102-20 Lab Sample ID: 320-75574-8

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	45	1.8	0.52	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	26	1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	32	1.8	0.75	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	15	1.8	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.0	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	120	1.8	0.51	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) -	450	8.9	2.4	ng/L	5		EPA 537(Mod)	Total/NA

Client Sample ID: MW-9-30

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	6.7		1.8	0.51	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.2		1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.1	J	1.8	0.75	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.79	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	15		1.8	0.50	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	95		1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-2-20

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	48	1.8	0.52	ng/L		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	27	1.8	0.23	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	32	1.8	0.77	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	15	1.8	0.24	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.46 J	1.8	0.28	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	2.0	1.8	0.18	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	110	1.8	0.52	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS) -	430	9.0	2.4	ng/L	5	EPA 537(Mod)	Total/NA

Client Sample ID: MW-7-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.2		1.8	0.52	ng/L	1	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.96	J	1.8	0.22	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	6.7		1.8	0.76	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.46	J	1.8	0.18	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.0	J	1.8	0.51	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	6.2		1.8	0.48	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: MW-3-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.62	J	1.7	0.50	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.2	J	1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.0		1.7	0.47	ng/L	1		EPA 537(Mod)	Total/NA

	1100	4 Ca	- la	ID.	DAIA.	1 4 40
U	nen	ıı Sai	noie	ID:	IVI V	<i>I</i> -1-40

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.68 J	1.8	0.51 ng/L	1 EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Page 6 of 43 7/13/2021

4

6

Lab Sample ID: 320-75574-9

Lab Sample ID: 320-75574-10

Lab Sample ID: 320-75574-11

Lab Sample ID: 320-75574-12

Lab Sample ID: 320-75574-13

9

10

12

14

Client: Shannon & Wilson, Inc
Project/Site: DOT PFAS - MW - GST

Job ID: 320-75574-1

Client Sample ID: MW-2-30 Lab Sample ID: 320-75574-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.60	J	1.8	0.51	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-1-15 Lab Sample ID: 320-75574-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	O Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.61	J	1.7	0.49	ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.4	J	1.7	0.46	ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: MW-11-15 Lab Sample ID: 320-75574-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	15		1.8	0.51	ng/L			EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.0		1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.1		1.8	0.75	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.85	J	1.8	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.85	J	1.8	0.27	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.97	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	13		1.8	0.50	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	130		1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-111-15 Lab Sample ID: 320-75574-17

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	18	1.7	0.50	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.7	1.7	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.0	1.7	0.74	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.88 J	1.7	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorodecanoic acid (PFDA)	0.86 J	1.7	0.27	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.0 J	1.7	0.17	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	13	1.7	0.49	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	140	1.7	0.47	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-12-10 Lab Sample ID: 320-75574-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	5.6		1.8	0.52	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	5.5		1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.6		1.8	0.76	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorononanoic acid (PFNA)	0.66	J	1.8	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.61	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	14		1.8	0.51	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	50		1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: DOT-GAC Lab Sample ID: 320-75574-19

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type	
Perfluorohexanoic acid (PFHxA)	0.56 J	1.9	0.56 ng/L	1 EPA 537(Mod)	Total/NA	

This Detection Summary does not include radiochemical test results.

C

7

_

10

12

1 0

14

Le

.,

7/13/2021

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-75574-1 Client Sample ID: MW-109-30 Date Collected: 06/22/21 18:36 **Matrix: Water**

Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	7.0		1.7	0.51	ng/L		06/30/21 19:37	07/04/21 14:44	
Perfluoroheptanoic acid (PFHpA)	3.2		1.7	0.22	ng/L		06/30/21 19:37	07/04/21 14:44	•
Perfluorooctanoic acid (PFOA)	0.97	J	1.7	0.74	ng/L		06/30/21 19:37	07/04/21 14:44	•
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		06/30/21 19:37	07/04/21 14:44	
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		06/30/21 19:37	07/04/21 14:44	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		06/30/21 19:37	07/04/21 14:44	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		06/30/21 19:37	07/04/21 14:44	
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		06/30/21 19:37	07/04/21 14:44	•
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.64	ng/L		06/30/21 19:37	07/04/21 14:44	1
Perfluorobutanesulfonic acid (PFBS)	0.78	J	1.7	0.17	ng/L		06/30/21 19:37	07/04/21 14:44	1
Perfluorohexanesulfonic acid (PFHxS)	15		1.7	0.50	ng/L		06/30/21 19:37	07/04/21 14:44	1
Perfluorooctanesulfonic acid (PFOS)	84		1.7		ng/L		06/30/21 19:37	07/04/21 14:44	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.0	ng/L			07/04/21 14:44	,
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4		ng/L		06/30/21 19:37	07/04/21 14:44	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7		ng/L		06/30/21 19:37	07/04/21 14:44	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		06/30/21 19:37	07/04/21 14:44	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7		ng/L		06/30/21 19:37	07/04/21 14:44	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		06/30/21 19:37	07/04/21 14:44	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	85		50 - 150				06/30/21 19:37	07/04/21 14:44	
13C4 PFHpA	94		50 - 150				06/30/21 19:37	07/04/21 14:44	1
13C4 PFOA	96		50 - 150				06/30/21 19:37	07/04/21 14:44	1
13C5 PFNA	88		50 - 150				06/30/21 19:37	07/04/21 14:44	
13C2 PFDA	85		50 ₋ 150				06/30/21 19:37	07/04/21 14:44	
13C2 PFUnA	81		50 - 150				06/30/21 19:37	07/04/21 14:44	
13C2 PFDoA	89		50 - 150				06/30/21 19:37	07/04/21 14:44	
13C2 PFTeDA	92		50 ₋ 150				06/30/21 19:37	07/04/21 14:44	
13C3 PFBS	101		50 ₋ 150					07/04/21 14:44	
1802 PFHxS	80		50 - 150					07/04/21 14:44	
13C4 PFOS	84		50 - 150					07/04/21 14:44	
	3 .								

06/30/21 19:37 07/04/21 14:44 06/30/21 19:37 07/04/21 14:44

06/30/21 19:37 07/04/21 14:44

50 - 150

50 - 150

50 - 150

83

81

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Date Received: 06/29/21 14:55

13C3 HFPO-DA

Client Sample ID: MW-10-20 Lab Sample ID: 320-75574-2 Date Collected: 06/22/21 17:52

Matrix: Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	15		1.8	0.51	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluoroheptanoic acid (PFHpA)	5.6		1.8	0.22	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorooctanoic acid (PFOA)	2.0		1.8	0.74	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.96	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.48	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.1	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.64	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorobutanesulfonic acid (PFBS)	0.87	J	1.8	0.18	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorohexanesulfonic acid (PFHxS)	21		1.8	0.50	ng/L		06/30/21 19:37	07/04/21 14:53	1
Perfluorooctanesulfonic acid (PFOS)	95		1.8	0.47	ng/L		06/30/21 19:37	07/04/21 14:53	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		06/30/21 19:37	07/04/21 14:53	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.1	ng/L		06/30/21 19:37	07/04/21 14:53	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		06/30/21 19:37	07/04/21 14:53	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		06/30/21 19:37	07/04/21 14:53	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 14:53	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		06/30/21 19:37	07/04/21 14:53	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	85		50 - 150					07/04/21 14:53	
13C4 PFHpA	93		50 ₋ 150				06/30/21 19:37	07/04/21 14:53	1
13C4 PFOA	89		50 ₋ 150				06/30/21 19:37	07/04/21 14:53	1
13C5 PFNA	83		50 - 150				06/30/21 19:37	07/04/21 14:53	1
13C2 PFDA	83		50 - 150					07/04/21 14:53	1
13C2 PFUnA	75		50 - 150					07/04/21 14:53	1
13C2 PFDoA	79		50 ₋ 150					07/04/21 14:53	1
13C2 PFTeDA	86		50 - 150					07/04/21 14:53	1
13C3 PFBS	91		50 ₋ 150					07/04/21 14:53	1
1802 PFHxS	77		50 - 150					07/04/21 14:53	1
13C4 PFOS	79		50 - 150					07/04/21 14:53	1
d3-NMeFOSAA	75		50 - 150 50 - 150					07/04/21 14:53	1

06/30/21 19:37 07/04/21 14:53

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-5-20 Lab Sample ID: 320-75574-3

Date Collected: 06/22/21 15:56 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	2.1		1.8	0.53	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluoroheptanoic acid (PFHpA)	0.96	J	1.8	0.23	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluorooctanoic acid (PFOA)	2.1		1.8	0.78	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluorononanoic acid (PFNA)	0.51	J	1.8	0.25	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluorobutanesulfonic acid (PFBS)	0.45	J	1.8	0.18	ng/L		06/30/21 19:37	07/04/21 15:02	
Perfluorohexanesulfonic acid (PFHxS)	2.8		1.8	0.52	ng/L		06/30/21 19:37	07/04/21 15:02	•
Perfluorooctanesulfonic acid (PFOS)	3.5		1.8	0.50	ng/L		06/30/21 19:37	07/04/21 15:02	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		06/30/21 19:37	07/04/21 15:02	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		06/30/21 19:37	07/04/21 15:02	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8		ng/L			07/04/21 15:02	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7		ng/L			07/04/21 15:02	•
11-Chloroeicosafluoro-3-oxaundecan	ND		1.8	0.29	ng/L		06/30/21 19:37	07/04/21 15:02	•
e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		06/30/21 19:37	07/04/21 15:02	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	88		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C4 PFHpA	94		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C4 PFOA	91		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C5 PFNA	89		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C2 PFDA	85		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C2 PFUnA	85		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C2 PFDoA	78		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C2 PFTeDA	88		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C3 PFBS	98		50 - 150				06/30/21 19:37	07/04/21 15:02	
1802 PFHxS	84		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C4 PFOS	77		50 - 150				06/30/21 19:37	07/04/21 15:02	
d3-NMeFOSAA	74		50 - 150				06/30/21 19:37	07/04/21 15:02	
d5-NEtFOSAA	73		50 - 150				06/30/21 19:37	07/04/21 15:02	
13C3 HFPO-DA	80		50 ₋ 150				06/30/21 19:37	07/04/21 15:02	

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-6-20 Lab Sample ID: 320-75574-4

Date Collected: 06/22/21 14:36 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.73	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.63	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorohexanesulfonic acid (PFHxS)	1.1	J	1.7	0.49	ng/L		06/30/21 19:37	07/04/21 15:11	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		06/30/21 19:37	07/04/21 15:11	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3		ng/L		06/30/21 19:37	07/04/21 15:11	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		06/30/21 19:37	07/04/21 15:11	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		06/30/21 19:37	07/04/21 15:11	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		06/30/21 19:37	07/04/21 15:11	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		06/30/21 19:37	07/04/21 15:11	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		06/30/21 19:37	07/04/21 15:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	81		50 - 150				06/30/21 19:37	07/04/21 15:11	
13C4 PFHpA	85		50 ₋ 150				06/30/21 19:37	07/04/21 15:11	1
13C4 PFOA	95		50 ₋ 150				06/30/21 19:37	07/04/21 15:11	1
13C5 PFNA	81		50 - 150				06/30/21 19:37	07/04/21 15:11	1
13C2 PFDA	87		50 ₋ 150				06/30/21 19:37	07/04/21 15:11	1
13C2 PFUnA	81		50 - 150				06/30/21 19:37	07/04/21 15:11	1
13C2 PFDoA	78		50 - 150				06/30/21 19:37	07/04/21 15:11	1
13C2 PFTeDA	87		50 ₋ 150				06/30/21 19:37	07/04/21 15:11	1
13C3 PFBS	92		50 ₋ 150				06/30/21 19:37	07/04/21 15:11	1
18O2 PFHxS	87		50 - 150					07/04/21 15:11	1
13C4 PFOS	77		50 - 150					07/04/21 15:11	1
d3-NMeFOSAA	76		50 ₋ 150					07/04/21 15:11	1
d5-NEtFOSAA	75		50 ₋ 150					07/04/21 15:11	1
	, 0								•

Job ID: 320-75574-1 Client: Shannon & Wilson, Inc

Project/Site: DOT PFAS - MW - GST

Date Received: 06/29/21 14:55

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-75574-5 Client Sample ID: MW-4-20 Date Collected: 06/21/21 18:47

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.64	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorobutanesulfonic acid (PFBS)	0.19	J	1.7	0.17	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorohexanesulfonic acid (PFHxS)	0.63	J	1.7	0.50	ng/L		06/30/21 19:37	07/04/21 15:21	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.47	ng/L		06/30/21 19:37	07/04/21 15:21	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.0	ng/L		06/30/21 19:37	07/04/21 15:21	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4		ng/L		06/30/21 19:37	07/04/21 15:21	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21			06/30/21 19:37	07/04/21 15:21	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5		ng/L		06/30/21 19:37	07/04/21 15:21	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7		ng/L		06/30/21 19:37	07/04/21 15:21	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		06/30/21 19:37	07/04/21 15:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	81		50 - 150				06/30/21 19:37	07/04/21 15:21	1
13C4 PFHpA	94		50 - 150				06/30/21 19:37	07/04/21 15:21	1
13C4 PFOA	88		50 - 150				06/30/21 19:37	07/04/21 15:21	1
13C5 PFNA	88		50 - 150				06/30/21 19:37	07/04/21 15:21	1
13C2 PFDA	89		50 - 150				06/30/21 19:37	07/04/21 15:21	1
13C2 PFUnA	74		50 ₋ 150				06/30/21 19:37	07/04/21 15:21	1
13C2 PFDoA	73		50 - 150				06/30/21 19:37	07/04/21 15:21	1
13C2 PFTeDA	87		50 - 150					07/04/21 15:21	1
13C3 PFBS	95		50 - 150				06/30/21 19:37	07/04/21 15:21	1
1802 PFHxS	83		50 - 150				06/30/21 19:37	07/04/21 15:21	1
13C4 PFOS	79		50 - 150				06/30/21 19:37	07/04/21 15:21	1
d3-NMeFOSAA	83		50 ₋ 150				00/00/04 40:07	07/04/21 15:21	1

06/30/21 19:37 07/04/21 15:21

06/30/21 19:37 07/04/21 15:21

50 - 150

50 - 150

81

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-3-40 Lab Sample ID: 320-75574-6

Date Collected: 06/21/21 12:13 Matrix: Water Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	2.1		1.7	0.51	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluoroheptanoic acid (PFHpA)	0.43	J	1.7	0.22	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluorooctanoic acid (PFOA)	1.5	J	1.7	0.74	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluorononanoic acid (PFNA)	ND		1.7	0.24	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.96	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.64	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluorobutanesulfonic acid (PFBS)	1.1	J	1.7	0.17	ng/L		06/30/21 19:37	07/04/21 15:30	
Perfluorohexanesulfonic acid (PFHxS)	15		1.7	0.50	ng/L		06/30/21 19:37	07/04/21 15:30	•
Perfluorooctanesulfonic acid (PFOS)	15		1.7	0.47	ng/L		06/30/21 19:37	07/04/21 15:30	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.0	ng/L		06/30/21 19:37	07/04/21 15:30	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4		ng/L		06/30/21 19:37	07/04/21 15:30	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		06/30/21 19:37	07/04/21 15:30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5		ng/L		06/30/21 19:37	07/04/21 15:30	,
11-Chloroeicosafluoro-3-oxaundecan	ND		1.7	0.28	ng/L		06/30/21 19:37	07/04/21 15:30	•
e-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		06/30/21 19:37	07/04/21 15:30	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	87		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C4 PFHpA	97		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C4 PFOA	94		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C5 PFNA	85		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C2 PFDA	90		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C2 PFUnA	69		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C2 PFDoA	88		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C2 PFTeDA	88		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C3 PFBS	93		50 - 150				06/30/21 19:37	07/04/21 15:30	
1802 PFHxS	86		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C4 PFOS	79		50 - 150				06/30/21 19:37	07/04/21 15:30	
d3-NMeFOSAA	81		50 - 150				06/30/21 19:37	07/04/21 15:30	
d5-NEtFOSAA	74		50 - 150				06/30/21 19:37	07/04/21 15:30	
13C3 HFPO-DA	87		50 ₋ 150				06/30/21 19:37	07/04/21 15:30	

2

3

5

7

9

12

1/1

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Lab Sample ID: 320-75574-7 Client Sample ID: MW-8-20

Date Collected: 06/22/21 16:44 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.49	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluoroheptanoic acid (PFHpA)	0.23	J	1.7	0.21	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.72	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.26	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.93	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.46	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.62	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorohexanesulfonic acid (PFHxS)	0.49	J	1.7	0.48	ng/L		06/30/21 19:37	07/04/21 15:39	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46	ng/L		06/30/21 19:37	07/04/21 15:39	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.2	1.0	ng/L		06/30/21 19:37	07/04/21 15:39	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.2	1.1	ng/L		06/30/21 19:37	07/04/21 15:39	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.20	ng/L		06/30/21 19:37	07/04/21 15:39	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		06/30/21 19:37	07/04/21 15:39	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		06/30/21 19:37	07/04/21 15:39	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		06/30/21 19:37	07/04/21 15:39	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	80		50 - 150				06/30/21 19:37	07/04/21 15:39	1
13C4 PFHpA	85		50 - 150				06/30/21 19:37	07/04/21 15:39	1
13C4 PFOA	91		50 - 150				06/30/21 19:37	07/04/21 15:39	1
13C5 PFNA	78		50 - 150				06/30/21 19:37	07/04/21 15:39	1
13C2 PFDA	83		50 - 150				06/30/21 19:37	07/04/21 15:39	1
13C2 PFUnA	79		50 - 150				06/30/21 19:37	07/04/21 15:39	1
13C2 PFDoA	80		50 - 150				06/30/21 19:37	07/04/21 15:39	1
13C2 PFTeDA	92		50 ₋ 150				06/30/21 19:37	07/04/21 15:39	1
13C3 PFBS	92		50 ₋ 150				06/30/21 19:37	07/04/21 15:39	1
1802 PFHxS	78		50 ₋ 150				06/30/21 19:37	07/04/21 15:39	1
13C4 PFOS	73		50 - 150					07/04/21 15:39	1
d3-NMeFOSAA	70		50 ₋ 150					07/04/21 15:39	1
d5-NEtFOSAA	69		50 - 150					07/04/21 15:39	1
13C3 HFPO-DA	79		50 ₋ 150					07/04/21 15:39	1

7/13/2021

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-102-20 Lab Sample ID: 320-75574-8

Date Collected: 06/21/21 13:53 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	45		1.8	0.52	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluoroheptanoic acid (PFHpA)	26		1.8	0.22	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluorooctanoic acid (PFOA)	32		1.8	0.75	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluorononanoic acid (PFNA)	15		1.8	0.24	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluorobutanesulfonic acid (PFBS)	2.0		1.8	0.18	ng/L		06/30/21 19:37	07/04/21 16:06	
Perfluorohexanesulfonic acid (PFHxS)	120		1.8	0.51			06/30/21 19:37	07/04/21 16:06	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4		ng/L			07/04/21 16:06	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4		ng/L			07/04/21 16:06	
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21				07/04/21 16:06	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6		ng/L			07/04/21 16:06	
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28				07/04/21 16:06	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		06/30/21 19:37	07/04/21 16:06	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	90		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C4 PFHpA	96		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C4 PFOA	91		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C5 PFNA	87		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C2 PFDA	88		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C2 PFUnA	90		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C2 PFDoA	85		50 ₋ 150				06/30/21 19:37	07/04/21 16:06	
13C2 PFTeDA	90		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C3 PFBS	96		50 - 150				06/30/21 19:37	07/04/21 16:06	
1802 PFHxS	80		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C4 PFOS	81		50 - 150				06/30/21 19:37	07/04/21 16:06	
d3-NMeFOSAA	82		50 - 150				06/30/21 19:37	07/04/21 16:06	
d5-NEtFOSAA	81		50 - 150				06/30/21 19:37	07/04/21 16:06	
13C3 HFPO-DA	82		50 - 150				06/30/21 19:37	07/04/21 16:06	
Method: EPA 537(Mod) - PFAS Analyte		3, Table B Qualifier	-15 - DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorooctanesulfonic acid (PFOS)	450	44411101	8.9		ng/L	=	06/30/21 19:37		
	0/5	Ovalifian	Limita				Dramarad	Analyzad	Dile
Isotope Dilution	%Recovery	Quaimer	Limits				Prepared	Analyzed	Dil Fa

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-9-30 Lab Sample ID: 320-75574-9

Date Collected: 06/22/21 18:46

Date Received: 06/29/21 14:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	6.7		1.8	0.51	ng/L		06/30/21 19:37	07/04/21 16:15	•
Perfluoroheptanoic acid (PFHpA)	3.2		1.8	0.22	ng/L		06/30/21 19:37	07/04/21 16:15	•
Perfluorooctanoic acid (PFOA)	1.1	J	1.8	0.75	ng/L		06/30/21 19:37	07/04/21 16:15	•
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		06/30/21 19:37	07/04/21 16:15	
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L		06/30/21 19:37	07/04/21 16:15	•
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		06/30/21 19:37	07/04/21 16:15	•
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.48	ng/L		06/30/21 19:37	07/04/21 16:15	
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.1	ng/L		06/30/21 19:37	07/04/21 16:15	•
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.64	ng/L		06/30/21 19:37	07/04/21 16:15	
Perfluorobutanesulfonic acid (PFBS)	0.79	J	1.8	0.18	ng/L		06/30/21 19:37	07/04/21 16:15	
Perfluorohexanesulfonic acid (PFHxS)	15		1.8	0.50	ng/L		06/30/21 19:37	07/04/21 16:15	•
Perfluorooctanesulfonic acid (PFOS)	95		1.8	0.48	ng/L		06/30/21 19:37	07/04/21 16:15	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		06/30/21 19:37	07/04/21 16:15	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4		ng/L		06/30/21 19:37	07/04/21 16:15	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		06/30/21 19:37	07/04/21 16:15	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		06/30/21 19:37	07/04/21 16:15	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 16:15	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		06/30/21 19:37	07/04/21 16:15	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	84		50 - 150				06/30/21 19:37	07/04/21 16:15	-
13C4 PFHpA	86		50 - 150				06/30/21 19:37	07/04/21 16:15	
13C4 PFOA	92		50 - 150				06/30/21 19:37	07/04/21 16:15	
13C5 PFNA	83		50 - 150				06/30/21 19:37	07/04/21 16:15	
13C2 PFDA	87		50 - 150				06/30/21 19:37	07/04/21 16:15	1
13C2 PFUnA	72		50 - 150				06/30/21 19:37	07/04/21 16:15	
13C2 PFDoA	73		50 - 150				06/30/21 19:37	07/04/21 16:15	
13C2 PFTeDA	85		50 - 150				06/30/21 19:37	07/04/21 16:15	
13C3 PFBS	96		50 ₋ 150				06/30/21 19:37	07/04/21 16:15	
1802 PFHxS	81		50 - 150				06/30/21 19:37	07/04/21 16:15	
13C4 PFOS	70		50 - 150				06/30/21 19:37	07/04/21 16:15	
d3-NMeFOSAA	72		50 ₋ 150					07/04/21 16:15	
d5-NEtFOSAA	71		50 - 150					07/04/21 16:15	
13C3 HFPO-DA	81		50 - 150					07/04/21 16:15	

7/13/2021

2

3

5

Ω

10

12

14

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

13C4 PFOS

Client Sample ID: MW-2-20 Lab Sample ID: 320-75574-10

Date Collected: 06/21/21 14:03 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	48		1.8	0.52	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluoroheptanoic acid (PFHpA)	27		1.8	0.23	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluorooctanoic acid (PFOA)	32		1.8	0.77	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluorononanoic acid (PFNA)	15		1.8	0.24	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluorodecanoic acid (PFDA)	0.46	J	1.8	0.28	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L		06/30/21 19:37	07/04/21 16:24	1
Perfluorobutanesulfonic acid	2.0		1.8	0.18	ng/L		06/30/21 19:37	07/04/21 16:24	1
(PFBS)									
Perfluorohexanesulfonic acid	110		1.8	0.52	ng/L		06/30/21 19:37	07/04/21 16:24	1
(PFHxS) N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		06/30/21 19:37	07/04/21 16:24	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		06/30/21 19:37	07/04/21 16:24	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	-		06/30/21 19:37	07/04/21 16:24	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L		06/30/21 19:37	07/04/21 16:24	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	-		06/30/21 19:37	07/04/21 16:24	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		06/30/21 19:37	07/04/21 16:24	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	88		50 - 150				06/30/21 19:37	07/04/21 16:24	
13C4 PFHpA	93		50 - 150				06/30/21 19:37	07/04/21 16:24	
13C4 PFOA	90		50 - 150				06/30/21 19:37	07/04/21 16:24	
13C5 PFNA	90		50 - 150				06/30/21 19:37	07/04/21 16:24	
13C2 PFDA	87		50 - 150				06/30/21 19:37	07/04/21 16:24	
13C2 PFUnA	81		50 - 150				06/30/21 19:37	07/04/21 16:24	1
13C2 PFDoA	91		50 - 150				06/30/21 19:37	07/04/21 16:24	
13C2 PFTeDA	100		50 - 150				06/30/21 19:37	07/04/21 16:24	
13C3 PFBS	92		50 - 150				06/30/21 19:37	07/04/21 16:24	
1802 PFHxS	87		50 - 150				06/30/21 19:37	07/04/21 16:24	
13C4 PFOS	79		50 - 150				06/30/21 19:37	07/04/21 16:24	
d3-NMeFOSAA	83		50 ₋ 150				06/30/21 19:37	07/04/21 16:24	-
d5-NEtFOSAA	84		50 - 150					07/04/21 16:24	1
	86		50 - 150				06/30/21 19:37	07/04/21 16:24	1
13C3 HFPO-DA									
	for QSM 5	.3, Table B	-15 - DL						
13C3 HFPO-DA <mark>Method: EPA 537(Mod) - PFAS</mark> Analyte		.3, Table B Qualifier	-15 - DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: EPA 537(Mod) - PFAS					Unit ng/L	<u>D</u>	Prepared 06/30/21 19:37		Dil Fac

06/30/21 19:37 07/07/21 01:14

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-7-20 Lab Sample ID: 320-75574-11

Date Collected: 06/22/21 08:44 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	1.2	J	1.8	0.52	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluoroheptanoic acid (PFHpA)	0.96	J	1.8	0.22	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluorooctanoic acid (PFOA)	6.7		1.8	0.76	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluorobutanesulfonic acid (PFBS)	0.46	J	1.8	0.18	ng/L		06/30/21 19:37	07/04/21 16:33	
Perfluorohexanesulfonic acid (PFHxS)	1.0	J	1.8	0.51	ng/L			07/04/21 16:33	•
Perfluorooctanesulfonic acid (PFOS)	6.2		1.8	0.48	ng/L			07/04/21 16:33	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5		ng/L			07/04/21 16:33	•
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5		ng/L			07/04/21 16:33	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8		ng/L			07/04/21 16:33	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		06/30/21 19:37	07/04/21 16:33	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		06/30/21 19:37	07/04/21 16:33	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		06/30/21 19:37	07/04/21 16:33	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	88		50 - 150				06/30/21 19:37	07/04/21 16:33	-
13C4 PFHpA	99		50 - 150				06/30/21 19:37	07/04/21 16:33	
13C4 PFOA	94		50 - 150				06/30/21 19:37	07/04/21 16:33	
13C5 PFNA	96		50 - 150				06/30/21 19:37	07/04/21 16:33	
13C2 PFDA	91		50 - 150				06/30/21 19:37	07/04/21 16:33	
13C2 PFUnA	77		50 - 150				06/30/21 19:37	07/04/21 16:33	
13C2 PFDoA	76		50 - 150				06/30/21 19:37	07/04/21 16:33	
13C2 PFTeDA	84		50 ₋ 150				06/30/21 19:37	07/04/21 16:33	
13C3 PFBS	103		50 ₋ 150				06/30/21 19:37	07/04/21 16:33	
1802 PFHxS	93		50 - 150				06/30/21 19:37	07/04/21 16:33	
13C4 PFOS	81		50 - 150					07/04/21 16:33	
d3-NMeFOSAA	72		50 ₋ 150					07/04/21 16:33	
d5-NEtFOSAA	76		50 - 150					07/04/21 16:33	
13C3 HFPO-DA	82		50 - 150					07/04/21 16:33	

7/13/2021

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Date Received: 06/29/21 14:55

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-75574-12 **Client Sample ID: MW-3-15** Date Collected: 06/21/21 11:24

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.62	J	1.7	0.50	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.74	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.63	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorohexanesulfonic acid (PFHxS)	1.2	J	1.7	0.49	ng/L		06/30/21 19:37	07/04/21 16:43	1
Perfluorooctanesulfonic acid (PFOS)	2.0		1.7	0.47	ng/L		06/30/21 19:37	07/04/21 16:43	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		06/30/21 19:37	07/04/21 16:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		06/30/21 19:37	07/04/21 16:43	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		06/30/21 19:37	07/04/21 16:43	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		06/30/21 19:37	07/04/21 16:43	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		06/30/21 19:37	07/04/21 16:43	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		06/30/21 19:37	07/04/21 16:43	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		50 - 150				06/30/21 19:37	07/04/21 16:43	1
13C4 PFHpA	91		50 - 150				06/30/21 19:37	07/04/21 16:43	1
13C4 PFOA	94		50 - 150				06/30/21 19:37	07/04/21 16:43	1
13C5 PFNA	90		50 - 150				06/30/21 19:37	07/04/21 16:43	1
13C2 PFDA	93		50 ₋ 150				06/30/21 19:37	07/04/21 16:43	1
13C2 PFUnA	84		50 - 150				06/30/21 19:37	07/04/21 16:43	1
13C2 PFDoA	89		50 - 150				06/30/21 19:37	07/04/21 16:43	1
13C2 PFTeDA	95		50 - 150				06/30/21 19:37	07/04/21 16:43	1
13C3 PFBS	100		50 - 150				06/30/21 19:37	07/04/21 16:43	1
1802 PFHxS	86		50 ₋ 150				06/30/21 19:37	07/04/21 16:43	1
13C4 PFOS	78		50 - 150				06/30/21 19:37	07/04/21 16:43	1

06/30/21 19:37 07/04/21 16:43

06/30/21 19:37 07/04/21 16:43

06/30/21 19:37 07/04/21 16:43

50 - 150

50 - 150

50 - 150

85

80

84

7/13/2021

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Date Received: 06/29/21 14:55

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-75574-13 **Client Sample ID: MW-1-40** Date Collected: 06/21/21 09:48

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.76	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorohexanesulfonic acid (PFHxS)	0.68	J	1.8	0.51	ng/L		06/30/21 19:37	07/04/21 16:52	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.48	ng/L		06/30/21 19:37	07/04/21 16:52	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		06/30/21 19:37	07/04/21 16:52	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		06/30/21 19:37	07/04/21 16:52	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		06/30/21 19:37	07/04/21 16:52	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L		06/30/21 19:37	07/04/21 16:52	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		06/30/21 19:37	07/04/21 16:52	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		06/30/21 19:37	07/04/21 16:52	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	82		50 - 150				06/30/21 19:37	07/04/21 16:52	1
13C4 PFHpA	89		50 - 150				06/30/21 19:37	07/04/21 16:52	1
13C4 PFOA	93		50 - 150				06/30/21 19:37	07/04/21 16:52	1
13C5 PFNA	87		50 - 150				06/30/21 19:37	07/04/21 16:52	1
13C2 PFDA	88		50 ₋ 150				06/30/21 19:37	07/04/21 16:52	1
13C2 PFUnA	75		50 - 150				06/30/21 19:37	07/04/21 16:52	1
13C2 PFDoA	84		50 - 150				06/30/21 19:37	07/04/21 16:52	1
13C2 PFTeDA	83		50 ₋ 150				06/30/21 19:37	07/04/21 16:52	1
13C3 PFBS	96		50 ₋ 150				06/30/21 19:37	07/04/21 16:52	1
1802 PFHxS	81		50 - 150					07/04/21 16:52	1
13C4 PFOS	75		50 - 150				06/30/21 19:37	07/04/21 16:52	1
d3-NMeFOSAA	83		50 ₋ 150				06/30/21 19:37	07/04/21 16:52	1

06/30/21 19:37 07/04/21 16:52

06/30/21 19:37 07/04/21 16:52

50 - 150

50 - 150

85

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Date Received: 06/29/21 14:55

Lab Sample ID: 320-75574-14 Client Sample ID: MW-2-30 Date Collected: 06/21/21 15:39

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.60	J	1.8	0.51	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.75	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.48	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.1	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.64	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.8	0.18	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.50	ng/L		06/30/21 19:37	07/04/21 17:01	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.47	ng/L		06/30/21 19:37	07/04/21 17:01	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		06/30/21 19:37	07/04/21 17:01	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4		ng/L		06/30/21 19:37	07/04/21 17:01	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		06/30/21 19:37	07/04/21 17:01	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		06/30/21 19:37	07/04/21 17:01	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 17:01	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		06/30/21 19:37	07/04/21 17:01	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				06/30/21 19:37	07/04/21 17:01	1
13C4 PFHpA	93		50 - 150				06/30/21 19:37	07/04/21 17:01	1
13C4 PFOA	94		50 - 150				06/30/21 19:37	07/04/21 17:01	1
13C5 PFNA	85		50 - 150				06/30/21 19:37	07/04/21 17:01	1
13C2 PFDA	85		50 ₋ 150				06/30/21 19:37	07/04/21 17:01	1
13C2 PFUnA	77		50 - 150				06/30/21 19:37	07/04/21 17:01	1
13C2 PFDoA	79		50 - 150				06/30/21 19:37	07/04/21 17:01	1
13C2 PFTeDA	91		50 ₋ 150				06/30/21 19:37	07/04/21 17:01	1
13C3 PFBS	99		50 ₋ 150				06/30/21 19:37	07/04/21 17:01	1
1802 PFHxS	91		50 ₋ 150					07/04/21 17:01	1
13C4 PFOS	80		50 - 150					07/04/21 17:01	. 1
d3-NMeFOSAA	76		50 - 150					07/04/21 17:01	1
									,
d5-NEtFOSAA	75		50 - 150				06/30/21 19:37	07/04/21 17:01	1

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Date Received: 06/29/21 14:55

13C3 HFPO-DA

Lab Sample ID: 320-75574-15 **Client Sample ID: MW-1-15** Date Collected: 06/21/21 08:44

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.21	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorooctanoic acid (PFOA)	ND		1.7	0.73	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorononanoic acid (PFNA)	ND		1.7	0.23	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorodecanoic acid (PFDA)	ND		1.7	0.27	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.63	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	0.17	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorohexanesulfonic acid (PFHxS)	0.61	J	1.7	0.49	ng/L		06/30/21 19:37	07/04/21 17:10	1
Perfluorooctanesulfonic acid (PFOS)	1.4	J	1.7	0.46	ng/L		06/30/21 19:37	07/04/21 17:10	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3		ng/L		06/30/21 19:37	07/04/21 17:10	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		06/30/21 19:37	07/04/21 17:10	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		06/30/21 19:37	07/04/21 17:10	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.4	1.3	ng/L		06/30/21 19:37	07/04/21 17:10	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.27	ng/L		06/30/21 19:37	07/04/21 17:10	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.34	ng/L		06/30/21 19:37	07/04/21 17:10	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	93		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C4 PFHpA	100		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C4 PFOA	94		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C5 PFNA	101		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C2 PFDA	102		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C2 PFUnA	94		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C2 PFDoA	83		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C2 PFTeDA	103		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C3 PFBS	103		50 - 150				06/30/21 19:37	07/04/21 17:10	1
1802 PFHxS	93		50 - 150				06/30/21 19:37	07/04/21 17:10	1
13C4 PFOS	84		50 - 150				06/30/21 19:37	07/04/21 17:10	1
d3-NMeFOSAA	84		50 - 150				06/30/21 19:37	07/04/21 17:10	1
d5-NEtFOSAA	83		50 - 150				06/30/21 19:37	07/04/21 17:10	1

06/30/21 19:37 07/04/21 17:10

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Date Received: 06/29/21 14:55

Client Sample ID: MW-11-15 Lab Sample ID: 320-75574-16 Date Collected: 06/23/21 10:13

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	15		1.8	0.51	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluoroheptanoic acid (PFHpA)	3.0		1.8	0.22	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorooctanoic acid (PFOA)	2.1		1.8	0.75	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorononanoic acid (PFNA)	0.85	J	1.8	0.24	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorodecanoic acid (PFDA)	0.85	J	1.8	0.27	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorobutanesulfonic acid (PFBS)	0.97	J	1.8	0.18	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorohexanesulfonic acid (PFHxS)	13		1.8	0.50	ng/L		06/30/21 19:37	07/04/21 17:19	1
Perfluorooctanesulfonic acid (PFOS)	130		1.8	0.48	ng/L		06/30/21 19:37	07/04/21 17:19	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L		06/30/21 19:37	07/04/21 17:19	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.4	1.2	ng/L		06/30/21 19:37	07/04/21 17:19	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		06/30/21 19:37	07/04/21 17:19	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		06/30/21 19:37	07/04/21 17:19	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 17:19	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L		06/30/21 19:37	07/04/21 17:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		50 - 150				06/30/21 19:37	07/04/21 17:19	1
1201 DEUm A	0.5		EO 1EO				00/00/04 40:07	07/04/04 47:40	

(ADONA)					
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	86	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C4 PFHpA	95	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C4 PFOA	93	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C5 PFNA	89	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C2 PFDA	96	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C2 PFUnA	83	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C2 PFDoA	88	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C2 PFTeDA	96	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C3 PFBS	99	50 - 150	06/30/21 19:37	07/04/21 17:19	1
1802 PFHxS	88	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C4 PFOS	83	50 - 150	06/30/21 19:37	07/04/21 17:19	1
d3-NMeFOSAA	86	50 - 150	06/30/21 19:37	07/04/21 17:19	1
d5-NEtFOSAA	81	50 - 150	06/30/21 19:37	07/04/21 17:19	1
13C3 HFPO-DA	81	50 - 150	06/30/21 19:37	07/04/21 17:19	1

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Date Received: 06/29/21 14:55

13C3 HFPO-DA

Client Sample ID: MW-111-15 Lab Sample ID: 320-75574-17 Date Collected: 06/23/21 10:03

Matrix: Water

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	18		1.7	0.50	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluoroheptanoic acid (PFHpA)	2.7		1.7	0.22	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorooctanoic acid (PFOA)	2.0		1.7	0.74	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorononanoic acid (PFNA)	0.88	J	1.7	0.23	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorodecanoic acid (PFDA)	0.86	J	1.7	0.27	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	0.48	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	1.1	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.63	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorobutanesulfonic acid (PFBS)	1.0	J	1.7	0.17	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorohexanesulfonic acid (PFHxS)	13		1.7	0.49	ng/L		06/30/21 19:37	07/04/21 17:28	1
Perfluorooctanesulfonic acid (PFOS)	140		1.7	0.47	ng/L		06/30/21 19:37	07/04/21 17:28	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.3	1.0	ng/L		06/30/21 19:37	07/04/21 17:28	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.3	1.1	ng/L		06/30/21 19:37	07/04/21 17:28	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.7	0.21	ng/L		06/30/21 19:37	07/04/21 17:28	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L		06/30/21 19:37	07/04/21 17:28	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.7	0.28	ng/L		06/30/21 19:37	07/04/21 17:28	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.7	0.35	ng/L		06/30/21 19:37	07/04/21 17:28	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	81		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C4 PFHpA	96		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C4 PFOA	97		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C5 PFNA	81		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C2 PFDA	90		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C2 PFUnA	82		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C2 PFDoA	91		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C2 PFTeDA	88		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C3 PFBS	102		50 - 150				06/30/21 19:37	07/04/21 17:28	1
1802 PFHxS	82		50 - 150				06/30/21 19:37	07/04/21 17:28	1
13C4 PFOS	76		50 - 150				06/30/21 19:37	07/04/21 17:28	1
d3-NMeFOSAA	77		50 - 150				06/30/21 19:37	07/04/21 17:28	1
d5-NEtFOSAA	81		50 - 150				06/30/21 19:37	07/04/21 17:28	1

06/30/21 19:37 07/04/21 17:28

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-12-10 Lab Sample ID: 320-75574-18

Date Collected: 06/23/21 08:50 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	5.6		1.8	0.52	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluoroheptanoic acid (PFHpA)	5.5		1.8	0.22	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluorooctanoic acid (PFOA)	2.6		1.8	0.76	ng/L		06/30/21 19:37	07/04/21 17:56	•
Perfluorononanoic acid (PFNA)	0.66	J	1.8	0.24	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluorobutanesulfonic acid (PFBS)	0.61	J	1.8	0.18	ng/L		06/30/21 19:37	07/04/21 17:56	
Perfluorohexanesulfonic acid (PFHxS)	14		1.8	0.51	ng/L		06/30/21 19:37	07/04/21 17:56	•
Perfluorooctanesulfonic acid (PFOS)	50		1.8		ng/L		06/30/21 19:37	07/04/21 17:56	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		06/30/21 19:37	07/04/21 17:56	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.5	1.2	ng/L		06/30/21 19:37	07/04/21 17:56	•
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.21	ng/L		06/30/21 19:37	07/04/21 17:56	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6		ng/L		06/30/21 19:37	07/04/21 17:56	•
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.8	0.29	ng/L		06/30/21 19:37	07/04/21 17:56	•
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		06/30/21 19:37	07/04/21 17:56	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C2 PFHxA	86		50 - 150				06/30/21 19:37	07/04/21 17:56	
13C4 PFHpA	92		50 - 150				06/30/21 19:37	07/04/21 17:56	
13C4 PFOA	93		50 - 150				06/30/21 19:37	07/04/21 17:56	
13C5 PFNA	90		50 - 150				06/30/21 19:37	07/04/21 17:56	
13C2 PFDA	89		50 - 150				06/30/21 19:37	07/04/21 17:56	
13C2 PFUnA	74		50 - 150				06/30/21 19:37	07/04/21 17:56	
13C2 PFDoA	77		50 ₋ 150				06/30/21 19:37	07/04/21 17:56	
13C2 PFTeDA	83		50 - 150				06/30/21 19:37	07/04/21 17:56	
13C3 PFBS	97		50 - 150				06/30/21 19:37	07/04/21 17:56	
1802 PFHxS	84		50 - 150				06/30/21 19:37	07/04/21 17:56	
13C4 PFOS	78		50 - 150				06/30/21 19:37	07/04/21 17:56	
d3-NMeFOSAA	72		50 - 150				06/30/21 19:37	07/04/21 17:56	
d5-NEtFOSAA	76		50 - 150					07/04/21 17:56	
13C3 HFPO-DA	78		50 ₋ 150				06/20/21 10:27	07/04/21 17:56	

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Lab Sample ID: 320-75574-19 **Client Sample ID: DOT-GAC** Date Collected: 06/23/21 20:17

Matrix: Water

	or QSM 5.3, Table B-1			1124	_	B	A l	D.1 E
Analyte	Result Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.56 J	1.9		ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluoroheptanoic acid (PFHpA)	ND	1.9		ng/L			07/04/21 18:05	1
Perfluorooctanoic acid (PFOA)	ND	1.9	0.82	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluorononanoic acid (PFNA)	ND	1.9	0.26	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluorodecanoic acid (PFDA)	ND	1.9	0.30	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluoroundecanoic acid (PFUnA)	ND	1.9	1.1	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.53	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluorotridecanoic acid (PFTriA)	ND	1.9	1.2	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.9	0.70	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.19	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.55	ng/L		06/30/21 19:37	07/04/21 18:05	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.9		ng/L		06/30/21 19:37	07/04/21 18:05	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.8	1.2	ng/L		06/30/21 19:37	07/04/21 18:05	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.8	1.2	ng/L		06/30/21 19:37	07/04/21 18:05	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.9	0.23	ng/L		06/30/21 19:37	07/04/21 18:05	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	3.8	1.4	ng/L		06/30/21 19:37	07/04/21 18:05	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.9	0.31	ng/L		06/30/21 19:37	07/04/21 18:05	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.38	ng/L		06/30/21 19:37	07/04/21 18:05	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	86	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C4 PFHpA	101	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C4 PFOA	99	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C5 PFNA	91	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C2 PFDA	97	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C2 PFUnA	93	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C2 PFDoA	89	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C2 PFTeDA	99	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C3 PFBS	111	50 - 150	06/30/21 19:37	07/04/21 18:05	1
1802 PFHxS	91	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C4 PFOS	88	50 - 150	06/30/21 19:37	07/04/21 18:05	1
d3-NMeFOSAA	86	50 - 150	06/30/21 19:37	07/04/21 18:05	1
d5-NEtFOSAA	89	50 - 150	06/30/21 19:37	07/04/21 18:05	1
13C3 HFPO-DA	88	50 - 150	06/30/21 19:37	07/04/21 18:05	1

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Project/Site: DOT PFAS - MW - GST

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150
320-75574-1	MW-109-30	85	94	96	88	85	81	89	92
320-75574-2	MW-10-20	85	93	89	83	83	75	79	86
320-75574-3	MW-5-20	88	94	91	89	85	85	78	88
320-75574-4	MW-6-20	81	85	95	81	87	81	78	87
320-75574-5	MW-4-20	81	94	88	88	89	74	73	87
320-75574-6	MW-3-40	87	97	94	85	90	69	88	88
320-75574-7	MW-8-20	80	85	91	78	83	79	80	92
320-75574-8	MW-102-20	90	96	91	87	88	90	85	90
320-75574-8 - DL	MW-102-20								
320-75574-9	MW-9-30	84	86	92	83	87	72	73	85
320-75574-10	MW-2-20	88	93	90	90	87	81	91	100
320-75574-10 - DL	MW-2-20								
320-75574-11	MW-7-20	88	99	94	96	91	77	76	84
320-75574-12	MW-3-15	86	91	94	90	93	84	89	95
320-75574-13	MW-1-40	82	89	93	87	88	75	84	83
320-75574-14	MW-2-30	84	93	94	85	85	77	79	91
320-75574-15	MW-1-15	93	100	94	101	102	94	83	103
320-75574-16	MW-11-15	86	95	93	89	96	83	88	96
320-75574-17	MW-111-15	81	96	97	81	90	82	91	88
320-75574-18	MW-12-10	86	92	93	90	89	74	77	83
320-75574-19	DOT-GAC	86	101	99	91	97	93	89	99
LCS 320-503371/2-A	Lab Control Sample	95	98	97	96	99	89	94	104
LCSD 320-503371/3-A	Lab Control Sample Dup	88	105	97	90	99	93	90	94
MB 320-503371/1-A	Method Blank	93	102	97	102	103	87	94	109

NID 320-30337 1/1-A	wethod blank	93	102	97	102	103	07	94	109
			Perc	ent Isotope	Dilution Re	ecovery (Ac	ceptance Lir	mits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-75574-1	MW-109-30	101	80	84	83	81	80		
320-75574-2	MW-10-20	91	77	79	75	80	78		
320-75574-3	MW-5-20	98	84	77	74	73	80		
320-75574-4	MW-6-20	92	87	77	76	75	78		
320-75574-5	MW-4-20	95	83	79	83	81	82		
320-75574-6	MW-3-40	93	86	79	81	74	87		
320-75574-7	MW-8-20	92	78	73	70	69	79		
320-75574-8	MW-102-20	96	80	81	82	81	82		
320-75574-8 - DL	MW-102-20			78					
320-75574-9	MW-9-30	96	81	70	72	71	81		
320-75574-10	MW-2-20	92	87	79	83	84	86		
320-75574-10 - DL	MW-2-20			84					
320-75574-11	MW-7-20	103	93	81	72	76	82		
320-75574-12	MW-3-15	100	86	78	85	80	84		
320-75574-13	MW-1-40	96	81	75	83	85	84		
320-75574-14	MW-2-30	99	91	80	76	75	81		
320-75574-15	MW-1-15	103	93	84	84	83	85		
320-75574-16	MW-11-15	99	88	83	86	81	81		
320-75574-17	MW-111-15	102	82	76	77	81	86		
320-75574-18	MW-12-10	97	84	78	72	76	78		
320-75574-19	DOT-GAC	111	91	88	86	89	88		
LCS 320-503371/2-A	Lab Control Sample	110	90	87	89	84	90		
I control of the cont									

Eurofins TestAmerica, Sacramento

Page 27 of 43

Job ID: 320-75574-1

7/13/2021

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
LCSD 320-503371/3-A	Lab Control Sample Dup	103	89	88	83	77	94
MB 320-503371/1-A	Method Blank	99	92	90	82	79	98

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sam	ple ID:	MB 320-	-503371/1-A
---------	---------	---------	-------------

Matrix: Water

Analysis Batch: 504280

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 503371

							. Top Batom	
MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		2.0	0.58	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.25	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.85	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.27	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.31	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	1.1	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.55	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	1.3	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.73	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.20	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.57	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.54	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		5.0	1.2	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		5.0	1.3	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.24	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		4.0	1.5	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.32	ng/L		06/30/21 19:37	07/04/21 14:17	1
ND		2.0	0.40	ng/L		06/30/21 19:37	07/04/21 14:17	1
	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 2.0 ND 5.0 ND 5.0 ND 2.0 ND 4.0 ND 2.0	Result Qualifier RL MDL ND 2.0 0.58 ND 2.0 0.25 ND 2.0 0.85 ND 2.0 0.27 ND 2.0 0.31 ND 2.0 0.55 ND 2.0 0.55 ND 2.0 0.73 ND 2.0 0.57 ND 2.0 0.54 ND 5.0 1.3 ND 5.0 1.3 ND 2.0 0.24 ND 4.0 1.5 ND 2.0 0.32	Result Qualifier RL MDL Unit ND 2.0 0.58 ng/L ND 2.0 0.25 ng/L ND 2.0 0.85 ng/L ND 2.0 0.27 ng/L ND 2.0 0.31 ng/L ND 2.0 0.55 ng/L ND 2.0 0.73 ng/L ND 2.0 0.20 ng/L ND 2.0 0.57 ng/L ND 2.0 0.54 ng/L ND 5.0 1.2 ng/L ND 5.0 1.3 ng/L ND 2.0 0.24 ng/L ND 4.0 1.5 ng/L ND 4.0 1.5 ng/L ND 2.0 0.32 ng/L	Result Qualifier RL MDL Unit D ND 2.0 0.58 ng/L ng/L ND 2.0 0.25 ng/L ng/L ND 2.0 0.25 ng/L ng/L ND ND 2.0 0.27 ng/L ND ND 2.0 0.31 ng/L ND ND <td>Result Qualifier RL MDL Unit D Prepared ND 2.0 0.58 ng/L 06/30/21 19:37 ND 2.0 0.25 ng/L 06/30/21 19:37 ND 2.0 0.85 ng/L 06/30/21 19:37 ND 2.0 0.27 ng/L 06/30/21 19:37 ND 2.0 0.31 ng/L 06/30/21 19:37 ND 2.0 0.55 ng/L 06/30/21 19:37 ND 2.0 0.55 ng/L 06/30/21 19:37 ND 2.0 0.73 ng/L 06/30/21 19:37 ND 2.0 0.57 ng/L 06/30/21 19:37 ND 2.0 0.57 ng/L 06/30/21 19:37 ND 2.0 0.54 ng/L 06/30/21 19:37 ND 5.0 1.2 ng/L 06/30/21 19:37 ND 5.0 1.3 ng/L 06/30/21 19:37 ND 5.0 1.3 ng/L</td> <td>MB Result Qualifier RL MDL Unit D Prepared Analyzed ND 2.0 0.58 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.25 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.85 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.27 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.31 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.31 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 1.1 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.55 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.55 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.57 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.57 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.54 ng/L 06/30/21 19:37 07/04/21 14:17</td>	Result Qualifier RL MDL Unit D Prepared ND 2.0 0.58 ng/L 06/30/21 19:37 ND 2.0 0.25 ng/L 06/30/21 19:37 ND 2.0 0.85 ng/L 06/30/21 19:37 ND 2.0 0.27 ng/L 06/30/21 19:37 ND 2.0 0.31 ng/L 06/30/21 19:37 ND 2.0 0.55 ng/L 06/30/21 19:37 ND 2.0 0.55 ng/L 06/30/21 19:37 ND 2.0 0.73 ng/L 06/30/21 19:37 ND 2.0 0.57 ng/L 06/30/21 19:37 ND 2.0 0.57 ng/L 06/30/21 19:37 ND 2.0 0.54 ng/L 06/30/21 19:37 ND 5.0 1.2 ng/L 06/30/21 19:37 ND 5.0 1.3 ng/L 06/30/21 19:37 ND 5.0 1.3 ng/L	MB Result Qualifier RL MDL Unit D Prepared Analyzed ND 2.0 0.58 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.25 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.85 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.27 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.31 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.31 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 1.1 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.55 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.55 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.57 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.57 ng/L 06/30/21 19:37 07/04/21 14:17 ND 2.0 0.54 ng/L 06/30/21 19:37 07/04/21 14:17

MB MB

	IVID	IVID				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	93		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C4 PFHpA	102		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C4 PFOA	97		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C5 PFNA	102		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C2 PFDA	103		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C2 PFUnA	87		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C2 PFDoA	94		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C2 PFTeDA	109		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C3 PFBS	99		50 - 150	06/30/21 19:37	07/04/21 14:17	1
1802 PFHxS	92		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C4 PFOS	90		50 - 150	06/30/21 19:37	07/04/21 14:17	1
d3-NMeFOSAA	82		50 - 150	06/30/21 19:37	07/04/21 14:17	1
d5-NEtFOSAA	79		50 - 150	06/30/21 19:37	07/04/21 14:17	1
13C3 HFPODA	98		50 - 150	06/30/21 19:37	07/04/21 14:17	1

Lab Sample ID: LCS 320-503371/2-A

Matrix: Water

Analysis Batch: 504280

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 503371

١		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Perfluorohexanoic acid (PFHxA)	40.0	44.4		ng/L		111	72 - 129	
١	Perfluoroheptanoic acid (PFHpA)	40.0	45.3		ng/L		113	72 - 130	
١	Perfluorooctanoic acid (PFOA)	40.0	43.4		ng/L		108	71 - 133	
	Perfluorononanoic acid (PFNA)	40.0	43.7		ng/L		109	69 - 130	

Eurofins TestAmerica, Sacramento

Page 29 of 43

2

3

4

6

8

10

11

13

14

Job ID: 320-75574-1

Client: Shannon & Wilson, Inc Project/Site: DOT PFAS - MW - GST

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-503371/2-A

Matrix: Water

Analysis Batch: 504280

Client Sample ID: Lab Control Sample

Prep Type: Total/NA
Prep Batch: 503371
0/ D

Analysis Baton. 004200	Spike	LCS L	cs		%Rec.
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits
Perfluorodecanoic acid (PFDA)	40.0	42.6	ng/L	106	71 - 129
Perfluoroundecanoic acid	40.0	48.4	ng/L	121	69 - 133
(PFUnA)			-		
Perfluorododecanoic acid	40.0	45.9	ng/L	115	72 - 134
(PFDoA)					
Perfluorotridecanoic acid	40.0	44.4	ng/L	111	65 - 144
(PFTriA)					
Perfluorotetradecanoic acid	40.0	47.6	ng/L	119	71 - 132
(PFTeA)					
Perfluorobutanesulfonic acid	35.4	33.2	ng/L	94	72 - 130
(PFBS)	00.4	40.7		447	00 404
Perfluorohexanesulfonic acid	36.4	42.7	ng/L	117	68 - 131
(PFHxS)	27.4	40.0		447	65 - 140
Perfluorooctanesulfonic acid (PFOS)	37.1	43.3	ng/L	117	00 - 140
N-methylperfluorooctanesulfona	40.0	44.7	ng/L	112	65 - 136
midoacetic acid (NMeFOSAA)	40.0	44.7	TIG/L	112	00 - 100
N-ethylperfluorooctanesulfonami	40.0	47.9	ng/L	120	61 - 135
doacetic acid (NEtFOSAA)	10.0	11.0	119/2	.20	01-100
9-Chlorohexadecafluoro-3-oxan	37.3	46.8	ng/L	126	77 - 137
onane-1-sulfonic acid			J		
Hexafluoropropylene Oxide	40.0	48.1	ng/L	120	72 - 132
Dimer Acid (HFPO-DA)			-		
11-Chloroeicosafluoro-3-oxaund	37.7	45.4	ng/L	121	76 - 136
ecane-1-sulfonic acid					
4,8-Dioxa-3H-perfluorononanoic	37.7	50.8	ng/L	135	81 - 141
acid (ADONA)					

LCS LCS

	LUS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	95		50 - 150
13C4 PFHpA	98		50 - 150
13C4 PFOA	97		50 - 150
13C5 PFNA	96		50 - 150
13C2 PFDA	99		50 - 150
13C2 PFUnA	89		50 - 150
13C2 PFDoA	94		50 - 150
13C2 PFTeDA	104		50 - 150
13C3 PFBS	110		50 - 150
1802 PFHxS	90		50 - 150
13C4 PFOS	87		50 - 150
d3-NMeFOSAA	89		50 - 150
d5-NEtFOSAA	84		50 - 150
13C3 HFPODA	90		50 - 150

Lab Sample ID: LCSD 320-503371/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 504280							Prep Ba	itch: 50)3371
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	46.7		ng/L		117	72 - 129	5	30
Perfluoroheptanoic acid (PFHpA)	40.0	42.9		ng/L		107	72 - 130	5	30
Perfluorooctanoic acid (PFOA)	40.0	42.2		ng/L		106	71 - 133	3	30

Eurofins TestAmerica, Sacramento

Page 30 of 43

QC Sample Results

Job ID: 320-75574-1 Client: Shannon & Wilson, Inc

Project/Site: DOT PFAS - MW - GST

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-50337	371/3-A
-------------------------------	---------

Matrix: Water

acid (ADONA)

Analysis Batch: 504280

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 503371

Analysis Batch: 504260							Prep Ba	iten: 50	J33/1
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorononanoic acid (PFNA)	40.0	49.7		ng/L		124	69 - 130	13	30
Perfluorodecanoic acid (PFDA)	40.0	43.7		ng/L		109	71 - 129	3	30
Perfluoroundecanoic acid (PFUnA)	40.0	48.0		ng/L		120	69 - 133	1	30
Perfluorododecanoic acid (PFDoA)	40.0	42.5		ng/L		106	72 - 134	8	30
Perfluorotridecanoic acid (PFTriA)	40.0	38.0		ng/L		95	65 - 144	15	30
Perfluorotetradecanoic acid (PFTeA)	40.0	49.0		ng/L		123	71 - 132	3	30
Perfluorobutanesulfonic acid (PFBS)	35.4	35.4		ng/L		100	72 - 130	6	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	40.8		ng/L		112	68 - 131	5	30
Perfluorooctanesulfonic acid (PFOS)	37.1	44.1		ng/L		119	65 - 140	2	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	42.4		ng/L		106	65 - 136	5	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	46.7		ng/L		117	61 - 135	3	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	41.8		ng/L		112	77 ₋ 137	11	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	46.7		ng/L		117	72 - 132	3	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	37.7	40.8		ng/L		108	76 - 136	11	30
4,8-Dioxa-3H-perfluorononanoic	37.7	47.8		ng/L		127	81 - 141	6	30

LCSD LCSD

	LCJD	LUJD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	88		50 - 150
13C4 PFHpA	105		50 - 150
13C4 PFOA	97		50 - 150
13C5 PFNA	90		50 - 150
13C2 PFDA	99		50 - 150
13C2 PFUnA	93		50 - 150
13C2 PFDoA	90		50 - 150
13C2 PFTeDA	94		50 - 150
13C3 PFBS	103		50 - 150
1802 PFHxS	89		50 - 150
13C4 PFOS	88		50 - 150
d3-NMeFOSAA	83		50 - 150
d5-NEtFOSAA	77		50 - 150
13C3 HFPODA	94		50 - 150

Eurofins TestAmerica, Sacramento

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-75574-1 Project/Site: DOT PFAS - MW - GST

LCMS

Prep Batch: 503371

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75574-1	MW-109-30	Total/NA	Water	3535	_
320-75574-2	MW-10-20	Total/NA	Water	3535	
320-75574-3	MW-5-20	Total/NA	Water	3535	
320-75574-4	MW-6-20	Total/NA	Water	3535	
320-75574-5	MW-4-20	Total/NA	Water	3535	
320-75574-6	MW-3-40	Total/NA	Water	3535	
320-75574-7	MW-8-20	Total/NA	Water	3535	
320-75574-8 - DL	MW-102-20	Total/NA	Water	3535	
320-75574-8	MW-102-20	Total/NA	Water	3535	
320-75574-9	MW-9-30	Total/NA	Water	3535	
320-75574-10	MW-2-20	Total/NA	Water	3535	
320-75574-10 - DL	MW-2-20	Total/NA	Water	3535	
320-75574-11	MW-7-20	Total/NA	Water	3535	
320-75574-12	MW-3-15	Total/NA	Water	3535	
320-75574-13	MW-1-40	Total/NA	Water	3535	
320-75574-14	MW-2-30	Total/NA	Water	3535	
320-75574-15	MW-1-15	Total/NA	Water	3535	
320-75574-16	MW-11-15	Total/NA	Water	3535	
320-75574-17	MW-111-15	Total/NA	Water	3535	
320-75574-18	MW-12-10	Total/NA	Water	3535	
320-75574-19	DOT-GAC	Total/NA	Water	3535	
MB 320-503371/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-503371/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-503371/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 504280

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75574-1	MW-109-30	Total/NA	Water	EPA 537(Mod)	503371
320-75574-2	MW-10-20	Total/NA	Water	EPA 537(Mod)	503371
320-75574-3	MW-5-20	Total/NA	Water	EPA 537(Mod)	503371
320-75574-4	MW-6-20	Total/NA	Water	EPA 537(Mod)	503371
320-75574-5	MW-4-20	Total/NA	Water	EPA 537(Mod)	503371
320-75574-6	MW-3-40	Total/NA	Water	EPA 537(Mod)	503371
320-75574-7	MW-8-20	Total/NA	Water	EPA 537(Mod)	503371
320-75574-8	MW-102-20	Total/NA	Water	EPA 537(Mod)	503371
320-75574-9	MW-9-30	Total/NA	Water	EPA 537(Mod)	503371
320-75574-10	MW-2-20	Total/NA	Water	EPA 537(Mod)	503371
320-75574-11	MW-7-20	Total/NA	Water	EPA 537(Mod)	503371
320-75574-12	MW-3-15	Total/NA	Water	EPA 537(Mod)	503371
320-75574-13	MW-1-40	Total/NA	Water	EPA 537(Mod)	503371
320-75574-14	MW-2-30	Total/NA	Water	EPA 537(Mod)	503371
320-75574-15	MW-1-15	Total/NA	Water	EPA 537(Mod)	503371
320-75574-16	MW-11-15	Total/NA	Water	EPA 537(Mod)	503371
320-75574-17	MW-111-15	Total/NA	Water	EPA 537(Mod)	503371
320-75574-18	MW-12-10	Total/NA	Water	EPA 537(Mod)	503371
320-75574-19	DOT-GAC	Total/NA	Water	EPA 537(Mod)	503371
MB 320-503371/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	503371
LCS 320-503371/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	503371
LCSD 320-503371/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	503371

Eurofins TestAmerica, Sacramento

Page 32 of 43

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: DOT PFAS - MW - GST

Job ID: 320-75574-1

LCMS

Analysis Batch: 504628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75574-10 - DL	MW-2-20	Total/NA	Water	EPA 537(Mod)	503371

Analysis Batch: 505107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75574-8 - DL	MW-102-20	Total/NA	Water	EPA 537(Mod)	503371

3

4

5

7

8

9

11

13

14

Job ID: 320-75574-1

Client: Shannon & Wilson, Inc Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-109-30 Date Collected: 06/22/21 18:36

Lab Sample ID: 320-75574-1

Matrix: Water

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			286.2 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 14:44	RS1	TAL SAC

Client Sample ID: MW-10-20 Lab Sample ID: 320-75574-2

Date Collected: 06/22/21 17:52 **Matrix: Water**

Date Received: 06/29/21 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			285.3 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 14:53	RS1	TAL SAC

Client Sample ID: MW-5-20 Lab Sample ID: 320-75574-3 **Matrix: Water**

Date Collected: 06/22/21 15:56 Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			272.6 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 15:02	RS1	TAL SAC

Client Sample ID: MW-6-20 Lab Sample ID: 320-75574-4 Date Collected: 06/22/21 14:36 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			290.9 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 15:11	RS1	TAL SAC

Lab Sample ID: 320-75574-5 Client Sample ID: MW-4-20 Date Collected: 06/21/21 18:47 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			287.2 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 15:21	RS1	TAL SAC

Lab Sample ID: 320-75574-6 Client Sample ID: MW-3-40 Date Collected: 06/21/21 12:13 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			286.9 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 15:30	RS1	TAL SAC

Page 34 of 43

Job ID: 320-75574-1

Client: Shannon & Wilson, Inc Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-8-20

Date Collected: 06/22/21 16:44 Date Received: 06/29/21 14:55

Lab Sample ID: 320-75574-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			296.1 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 15:39	RS1	TAL SAC

Client Sample ID: MW-102-20 Lab Sample ID: 320-75574-8 **Matrix: Water**

Date Collected: 06/21/21 13:53 Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535	DL	·	281.5 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)	DL	5			505107	07/08/21 16:41	S1M	TAL SAC
Total/NA	Prep	3535			281.5 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 16:06	RS1	TAL SAC

Client Sample ID: MW-9-30 Lab Sample ID: 320-75574-9 Date Collected: 06/22/21 18:46 **Matrix: Water**

Date Received: 06/29/21 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			284.2 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 16:15	RS1	TAL SAC

Client Sample ID: MW-2-20 Lab Sample ID: 320-75574-10 Date Collected: 06/21/21 14:03 **Matrix: Water**

Date Received: 06/29/21 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA Total/NA	Prep Analysis	3535 EPA 537(Mod)		1	276.6 mL	10.0 mL	503371 504280	06/30/21 19:37 07/04/21 16:24		TAL SAC
Total/NA Total/NA	Prep Analysis	3535 EPA 537(Mod)	DL DL	5	276.6 mL	10.0 mL	503371 504628	06/30/21 19:37 07/07/21 01:14	-	TAL SAC TAL SAC

Client Sample ID: MW-7-20 Lab Sample ID: 320-75574-11 Date Collected: 06/22/21 08:44

Date Received: 06/29/21 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			280.2 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 16:33	RS1	TAL SAC

Client Sample ID: MW-3-15 Lab Sample ID: 320-75574-12 Date Collected: 06/21/21 11:24 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			289 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 16:43	RS1	TAL SAC

Eurofins TestAmerica, Sacramento

Page 35 of 43

Matrix: Water

7/13/2021

2

10

Job ID: 320-75574-1

Client: Shannon & Wilson, Inc Project/Site: DOT PFAS - MW - GST

Client Sample ID: MW-1-40

Date Collected: 06/21/21 09:48 Date Received: 06/29/21 14:55 Lab Sample ID: 320-75574-13

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			278.7 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 16:52	RS1	TAL SAC

Client Sample ID: MW-2-30 Lab Sample ID: 320-75574-14

Matrix: Water

Matrix: Water

Date Collected: 06/21/21 15:39 Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			284.6 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 17:01	RS1	TAL SAC

Client Sample ID: MW-1-15 Lab Sample ID: 320-75574-15

Date Collected: 06/21/21 08:44 Matrix: Water

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			291.3 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 17:10	RS1	TAL SAC

Client Sample ID: MW-11-15 Lab Sample ID: 320-75574-16

Date Collected: 06/23/21 10:13 Matrix: Water
Date Received: 06/29/21 14:55

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Method Factor Amount Amount Number or Analyzed Analyst Type Run Lab Total/NA 3535 503371 06/30/21 19:37 PV Prep 282.2 mL 10.0 mL TAL SAC Total/NA Analysis EPA 537(Mod) 1 504280 07/04/21 17:19 RS1 TAL SAC

Client Sample ID: MW-111-15 Lab Sample ID: 320-75574-17

Date Collected: 06/23/21 10:03 Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			288.5 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 17:28	RS1	TAL SAC

Client Sample ID: MW-12-10

Date Collected: 06/23/21 08:50

Lab Sample ID: 320-75574-18

Matrix: Water

Date Received: 06/29/21 14:55

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3535 279.4 mL 10.0 mL 503371 06/30/21 19:37 PV TAL SAC Total/NA Analysis EPA 537(Mod) 504280 07/04/21 17:56 RS1 TAL SAC

Eurofins TestAmerica, Sacramento

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Client Sample ID: DOT-GAC Lab Sample ID: 320-75574-19

Matrix: Water

Date Collected: 06/23/21 20:17 Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			260.7 mL	10.0 mL	503371	06/30/21 19:37	PV	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504280	07/04/21 18:05	RS1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

2

5

8

10

11

13

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-75574-1

Project/Site: DOT PFAS - MW - GST

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

3

4

5

7

8

10

11

13

14

Method Summary

Client: Shannon & Wilson, Inc

Project/Site: DOT PFAS - MW - GST

Job ID: 320-75574-1

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

2

3

5

7

8

10

11

13

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: DOT PFAS - MW - GST

Job ID: 320-75574-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-75574-1	MW-109-30	Water	06/22/21 18:36	06/29/21 14:55	
20-75574-2	MW-10-20	Water	06/22/21 17:52	06/29/21 14:55	
20-75574-3	MW-5-20	Water	06/22/21 15:56	06/29/21 14:55	
0-75574-4	MW-6-20	Water	06/22/21 14:36	06/29/21 14:55	
0-75574-5	MW-4-20	Water	06/21/21 18:47	06/29/21 14:55	
20-75574-6	MW-3-40	Water	06/21/21 12:13	06/29/21 14:55	
0-75574-7	MW-8-20	Water	06/22/21 16:44	06/29/21 14:55	
0-75574-8	MW-102-20	Water	06/21/21 13:53	06/29/21 14:55	
0-75574-9	MW-9-30	Water	06/22/21 18:46	06/29/21 14:55	
0-75574-10	MW-2-20	Water	06/21/21 14:03	06/29/21 14:55	
)-75574-11	MW-7-20	Water	06/22/21 08:44	06/29/21 14:55	
0-75574-12	MW-3-15	Water	06/21/21 11:24	06/29/21 14:55	
0-75574-13	MW-1-40	Water	06/21/21 09:48	06/29/21 14:55	
0-75574-14	MW-2-30	Water	06/21/21 15:39	06/29/21 14:55	
0-75574-15	MW-1-15	Water	06/21/21 08:44	06/29/21 14:55	
0-75574-16	MW-11-15	Water	06/23/21 10:13	06/29/21 14:55	
0-75574-17	MW-111-15	Water	06/23/21 10:03	06/29/21 14:55	
0-75574-18	MW-12-10	Water	06/23/21 08:50	06/29/21 14:55	
0-75574-19	DOT-GAC	Water	06/23/21 20:17	06/29/21 14:55	

4

7

0

10

11

49

14

_
-
ī
2
_

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709	ON, INC. CHAIN	N-OF-CUSTODY	j	Page of Laboratory Test Amorica Attn: D. All trocky
(907) 479-0600 www.shannonwilson.con	n		Analytical Methods (include prese	
Turn Around Time: Normal Rush	Quote No: J-Flags: Yes No	+		Remarks/Matrix Composition/Grab? Sample Containers
Please Specify		189/		Remarks/Matrix
Sample Identity		ate npled		Composition/Grab? Sample Containers
MW-109-30	1000	2/11 ×		2 groundwater
MW-10-20	1752 6/2	.2/21 ×		2 0
MW-5-20	1556 6/2	244 ×	10 (10 A A A A A A A A A A A A A A A A A A A	2
mw.6-20	1436 6/2	2/21 ×		2
MW-4-20	1847 6/2	1/21 ×		2
MW-3-40	1213 6/2	1/2/ > 320-75574 Ch	ain of Custody	2
mw-8-20	1644 6/2	2/21 ×		2
mw 102-20	1353 6/	21/21 ×		2
MW-9-30	1846 6/2	2/21 >		2
MW-2-20	1403 6/2	1/4 ×		2
Project Information	Sample Receipt	Reliquished By: 1.	Reliquished By: 2.	Reliquished By: 3.
Number: 102599-012	Total No. of Containers:	Signature: Time 200	Signature: Time:	Signature: Time:
Name: DOTOFAS - MW-G	COC Seals/Intact? Y/N/NA			
Contact: KUF	Received Good Cond./Cold	Printed Name; Date	Printed Name Date:	Printed Name: Date:
Ongoing Project? Yes No	Temp: 4.3/	Company:	Company:	Company:
Sampler: ATUM SILL	Delivery Method:	Theyment W. Son Inc	Company.	Company.
No	tes:	Received By: 1.	Received By: 2.	Received By: 3.
		Signature Time:	Signature: Time:	Signature: Time:
		Printed Name Date:	Printed Name: Date:	Printed Name: Date:
Distribution: White - w/shipment - returned Yellow - w/shipment - for con Pink - Shannon & Wilson - jol		Company	Company:	Company:

No. 36328

_
_
٥
Ň
ċ
7
_

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709	ON, INC. CHA	N-OF-CUS			Attn:	Page 2 of 2 pratory Test Awarica
(907) 479-0600 www.shannonwilson.com	n			Analytical Methods	(include preservativ	ve il used)
Turn Around Time:	Quote No:					Remarks/Matrix Composition/Grab? Sample Containers
	o riago.					/ Italia
Please Specify		Date (82)				Remarks/Matrix Composition/Grab?
Sample Identity	Lab No. Time	Date Sampled				Sample Containers
mw-7-20	0844 6	12/21 X			2	- Mound water
mu/-3-15	11246	(21/21 ×			2	
M41-1-4()	09486	1-21/21			2	
MW-2-30	1539 6	/21/21 X			2	
MW-1-15	0844 6	121/4 x			2	
11-15	1013 6	123/21 -			1	-
m 11/111-15	1403 6	/23/21 X			2	
mw-12-11)	0850 6	123h1 ×			2	
DOT-GAC	2017 6	23/21 X			2	
Project Information	Sample Receipt	Reliquished B	and the same of th	Reliquished	d By: 2.	Reliquished By: 3.
Number: 1029	Total No. of Containers:	Signature	Time:	Signature:	Time:	Signature: Time:
Name: GUS PIAS - DOT MU	COC Seals/Intact? Y/N/NA	Printed Name:	Date: 1/2014	Printed Name:	Date:	Printed Name: Date:
Contact: C Yes No No	Received Good Cond./Cold	- Marks	Date:	Frinted Name.	Date	Printed Name.
Sampler: A C	Temp: 4/3	Company:		Company:		Company:
		Shannent u	1 bon lac			
No	tes:	Received By	: 1.	Received	By: 2	Received By: 3.
		Signature:	Time: 133	Signature:	Time:	Signature: Time:
		Printed Name	Date:	Printed Name:	Date:	Printed Name: Date:
Distribution: White - w/shipment - returned Yellow - w/shipment - for con Pink - Shannon & Wilson - joi	signee files	ort Company:		Company:		Company:

No. 36329

1 6

တ

O

Client: Shannon & Wilson, Inc

Job Number: 320-75574-1

Login Number: 75574

List Source: Eurofins TestAmerica, Sacramento

List Number: 1 Creator: Her, David A

orditor, nor, buttu A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	SEALS
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:
Justin Risley
Γitle:
Engineering Staff
Date:
August 7, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-755741-1
Laboratory Report Date:
July 13, 2021
CS Site Name:
DOT&PF Gustavus Airport Statewide PFAS
ADEC File Number:
1507.38.017
Hazard Identification Number:
26904

May 2020 Page 1

Laboratory Report Date:				
Note: Any N/A or No box checked must have an explanation in the comments box.				
1. <u>Laboratory</u>				
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?				
Yes \boxtimes No \square N/A \square Comments:				
The DEC certified TestAmerica of West Sacramento, CA for the analysis of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on February 6, 2018 by method 537. These compounds were included in the DEC's Contaminated Sites Laboratory Approval 17-020.				
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?				
$Yes \square No \square N/A \boxtimes Comments:$				
The requested analyses were conducted by TestAmerica of West Sacramento, CA.				
2. Chain of Custody (CoC)				
CoC information completed signed and detect (in abotion malesced/massived bay)?				
a. CoC information completed, signed, and dated (including released/received by)?				
$Yes \boxtimes No \square N/A \square$ Comments:				
b. Correct analyses requested?				
Yes⊠ No□ N/A□ Comments:				
3. <u>Laboratory Sample Receipt Documentation</u>				
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?				
Yes \boxtimes No \square N/A \square Comments:				
The temperature of the cooler at receipt was 4.3°C.				
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?				
Yes \square No \square N/A \boxtimes Comments:				
Samples do not require preservation other than temperature.				
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?				
Yes \boxtimes No \square N/A \square Comments:				
The sample receipt form notes that the samples were received in good condition.				

320-755741-1

Laboratory Report Date:				
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?				
$Yes \square No \square N/A \boxtimes Comments:$				
No discrepancies were noted.				
e. Data quality or usability affected?				
Comments:				
The data quality and/or usability was not affected; see above.				
4. <u>Case Narrative</u>				
a. Present and understandable?				
Yes⊠ No□ N/A□ Comments:				
TESM NOW N/AW Comments.				
b. Discrepancies, errors, or QC failures identified by the lab? Yes⊠ No□ N/A□ Comments:				
The case narrative indicates the following:				
Method EPA 537(Mod): Results for sample <i>MW-2-20</i> were reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.				
Method EPA 537(Mod): Results for sample <i>MW-102-20</i> was reported from the analysis of a diluted extract due to high concentration of the target analyte in the analysis of the undiluted extract. The dilution factor was applied to the labeled internal standard area counts and these area counts were within acceptance limits.				
Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-503371.				
Method 3535: The following samples are yellow and contain floating particulates at the bottom of the bottle prior to extraction: <i>MW-109-30</i> , <i>MW-10-20</i> , <i>MW-4-20</i> , <i>MW-3-40</i> , <i>MW-8-20</i> , <i>MW-9-30</i> , <i>MW-7-20</i> , <i>MW-3-15</i> , <i>MW-1-40</i> , <i>MW-2-30</i> , and <i>MW-12-10</i> .				
c. Were all corrective actions documented?				
$Yes \boxtimes No \square N/A \square$ Comments:				
See above.				

320-755741-1

	320-755741-1						
Lal	poratory Report Date:						
	d. What is the effect on data quality/usability according to the case narrative?						
	Comments:						
	The case narrative does not note an effect on data quality or usability.						
5.	Samples Results						
	a. Correct analyses performed/reported as requested on COC?						
	Yes⊠ No□ N/A□ Comments:						
	b. All applicable holding times met?						
	$Yes \boxtimes No \square N/A \square$ Comments:						
	a. All sails remarked on a dray vysight hosis?						
	c. All soils reported on a dry weight basis? Yes□ No□ N/A⊠ Comments:						
	Soil samples were not submitted with this work order.						
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?						
	Yes \boxtimes No \square N/A \square Comments:						
	The reporting limit (RL) is less than the applicable DEC regulatory limit for the project.						
	e. Data quality or usability affected?						
	The data quality and/or usability was not affected; see above.						
6.	QC Samples						
	a. Method Blank						
	i. One method blank reported per matrix, analysis and 20 samples?						
	Yes \boxtimes No \square N/A \square Comments:						
	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?						
	Yes \boxtimes No \square N/A \square Comments: There were no detections in the method blank sample associated with these project samples.						
	There were no detections in the method brank sample associated with these project samples.						

Laboratory Report Date:

iii. If above LOQ or project specified objectives, what samples are affected? Comments: N/A; see above. iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? $No \square N/A \boxtimes$ Comments: See above. v. Data quality or usability affected? Comments: The data quality and/or usability was not affected; see above. b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) Yes \boxtimes No \square N/A \square Comments: ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples? Yes \square No \square N/A \boxtimes Comments: Metals and/or inorganics were not analyzed as part of this work order. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) $Yes \boxtimes No \square N/A \square$ Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) $Yes \boxtimes No \square N/A \square$ Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

May 2020 Page 5

N/A; see above.

rato	ory Report Date:
	vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?
_	Yes \square No \square N/A \boxtimes Comments:
5	See above.
	vii. Data quality or usability affected? (Use comment box to explain.)
_	Comments:
-	The data quality and/or usability was not affected; see above.
(c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)
	Note: Leave blank if not required for project
	i. Organics - One MS/MSD reported per matrix, analysis and 20 samples?
	Yes \square No \boxtimes N/A \square Comments:
	Insufficient sample volume was available to perform a MS/MSD with the associated preparatory
	patch. However, the laboratory analyzed LCS and LCSD samples to assess laboratory accuracy and precision.
	ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?
	Yes No N/A Comments:
Г _т	Metals and/or inorganics were not analyzed as part of this work order.
	victals and/of morganics were not analyzed as part of this work order.
	iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and
	project specified objectives, if applicable?
Г	Yes \square No \square N/A \boxtimes Comments:
l	MS and MSD samples were not analyzed for this work order.
	iv. Precision – All relative percent differences (RPD) reported and less than method or laborator
	limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.
	sample/sample duplicate.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

Comments:

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

May 2020 Page 6

MS and MSD samples were not analyzed for this work order.

 $Yes \square No \square N/A \boxtimes$

N/A; MS and MSD samples were not analyzed for this work order.

Laboratory Report Date:

vii. Data quality or usability affected? (Use comment box to explain.) Comments: The data quality and/or usability was not affected; see above. d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples? $Yes \boxtimes No \square N/A \square$ Comments: ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages) $Yes \boxtimes No \square N/A \square$ Comments: iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined? $Yes \square No \boxtimes N/A \square$ Comments: No: see above. iv. Data quality or usability affected? Comments: The data quality and/or usability was affected; see above. e. Trip Blanks i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) $Yes \square No \square N/A \boxtimes$ Comments: PFAS are not volatile compounds. A trip blank is not required for the requested analysis. ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) $Yes \square No \square N/A \boxtimes$ Comments: A trip blank is not required for the requested analysis. iii. All results less than LOQ and project specified objectives? Yes \square No \square N/A \boxtimes Comments:

May 2020 Page 7

A trip blank is not required for the requested analysis.

320-755741-1	
Laboratory Report Date:	
iv. If above LOQ or project specified objectives, what samples are affected? Comments:	
N/A; a trip blank is not required for the requested analysis.	
v. Data quality or usability affected? Comments:	
The data quality and/or usability was not affected; see above.	
f. Field Duplicate	
i. One field duplicate submitted per matrix, analysis and 10 project samples?	
$Yes \boxtimes No \square N/A \square$ Comments:	
ii. Submitted blind to lab?	
Yes \boxtimes No \square N/A \square Comments:	
Field duplicate pairs <i>MW-2-20/MW-102-20</i> , <i>MW-9-30/MW-109-30</i> , and <i>MW-11-15/MW-111-15</i> submitted with this work order.	were
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$	
Where $R_1 = $ Sample Concentration $R_2 = $ Field Duplicate Concentration	
Yes \boxtimes No \square N/A \square Comments:	
RPDs were less than the DQO (30%), where calculable.	
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:	
The data quality and/or usability was not affected; see above.	
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be ento below)?	ered
Yes□ No□ N/A⊠ Comments:	
Reusable equipment was not used for sample collection. Therefore, decontamination or equipme blank samples were not required. A peri-pump was used to collect the requested analytes.	nt
i. All results less than LOQ and project specified objectives?	
Yes \square No \square N/A \boxtimes Comments:	

See above.

	32	0-755741-1	
Lał	ora	ntory Report Date:	
		ii. If above LOQ or proje	ect specified objectives, what samples are affected? Comments:
		N/A; see above.	
		iii. Data quality or usabili	ty affected? Comments:
		No; see above.	
7.	<u>Ot</u>	her Data Flags/Qualifiers (ACO	E, AFCEE, Lab Specific, etc.)
		a. Defined and appropriate?	
	1	$Yes \square No \square N/A \boxtimes$	Comments:

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-75575-1 Client Project/Site: GUS PFAS-DOT

Revision: 1

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamil Oltiman

Authorized for release by: 7/12/2021 1:27:29 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

7

10

15

13

14

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT Laboratory Job ID: 320-75575-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Isotope Dilution Summary	28
QC Sample Results	30
QC Association Summary	36
Lab Chronicle	38
Certification Summary	42
Method Summary	43
Sample Summary	44
Chain of Custody	45
Receipt Checklists	47

1

6

8

10

12

13

14

Definitions/Glossary

Client: Shannon & Wilson, Inc Job ID: 320-75575-1

Project/Site: GUS PFAS-DOT

Qualifiers

		N/I	C
ш	U	IVI	J

POS

PQL

QC

RER

RPD

TEF

TEQ TNTC

RL

PRES

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Qualifier	Qualifier Description
*+	LCS and/or LCSD is outside acceptance limits, high biased.
1	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent

Case Narrative

Client: Shannon & Wilson, Inc

Job ID: 320-75575-1

Project/Site: GUS PFAS-DOT

Job ID: 320-75575-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Revision 7-12-2021: This report has been revised to update case narrate comment with affected sample list

Receipt

The samples were received on 6/29/2021 2:55 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.3° C.

LCMS

Method EPA 537(Mod): The laboratory control sample (LCS) for 320-503377 recovered outside control limits for N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA). This analyte was biased high in the LCS and were not detected in the associated sample; therefore, the data have been reported.

Method EPA 537(Mod): The laboratory control sample duplicate (LCSD) for 320-503377 recovered outside control limits for Perfluorotetradecanoic acid (PFTeA). This analyte was biased high in the LCSD and were not detected in the associated sample; therefore, the data have been reported.

Method EPA 537(Mod): The laboratory control sample (LCS) for preparation batch 320-503375 and analytical batch 320-504274 recovered outside control limits for the following analytes: Hexafluoropropylene Oxide Dimer Acid (HFPO-DA). These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte was outside of the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-503375.

Method 3535: The following samples were preserved with trizma: PW-062 (320-75575-1), PW-038 (320-75575-2), PW-501 (320-75575-3), PW-037 (320-75575-4), PW-208.1 (320-75575-5), PW-040 (320-75575-6), PW-401 (320-75575-7), PW-039 (320-75575-8), PW-321 (320-75575-9), PW-221 (320-75575-10), PW-203 (320-75575-11), PW-045 (320-75575-12), PW-211 (320-75575-13), PW-419 (320-75575-14), PW-010 (320-75575-15), PW-112 (320-75575-16), PW-205.1 (320-75575-17), PW-012 (320-75575-18), PW-204.1 (320-75575-19) and PW-059 (320-75575-20). Thus, the MB, LCS and LCSD also contain trizma. Batch 320-503375

Method 3535: The following samples were yellow prior to extraction: PW-062 (320-75575-1), PW-501 (320-75575-3), PW-037 (320-75575-4), PW-321 (320-75575-9), PW-112 (320-75575-16), PW-205.1 (320-75575-17) and PW-012 (320-75575-18).

Method 3535: The following samples contained a thin layer of sediment at the bottom of the bottle prior to extraction: PW-062 (320-75575-1), PW-501 (320-75575-3), PW-401 (320-75575-7), PW-221 (320-75575-10), PW-203 (320-75575-11), PW-045 (320-75575-12), PW-419 (320-75575-14), PW-112 (320-75575-16), PW-205.1 (320-75575-17) and PW-012 (320-75575-18).

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-503377

Method 3535: The following sample was yellow and contained a thin layer of sediment at the bottom of the bottle prior to extraction: PW-010 (320-75575-15).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

E

6

0

9

11

12

14

1

9

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT Job ID: 320-75575-1

Lab Sample ID: 320-75575-1
Lau Sailible ID. 320-73373-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.63	J	2.0	0.57	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.39	J	2.0	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.23	J	2.0	0.20	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.2	J	2.0	0.53	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-038 Lab Sample ID: 320-75575-2

No Detections.

Client Sample ID: PW-501 Lab Sample ID: 320-75575-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.1	J	2.0	0.57	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.32	J	2.0	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.8	J	2.0	0.56	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	13		2.0	0.53	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-037 Lab Sample ID: 320-75575-4

No Detections.

Client Sample ID: PW-208.1 Lab Sample ID: 320-75575-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.0		2.0	0.58	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.7	J	2.0	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.6		2.0	0.86	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.74	J	2.0	0.20	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	11		2.0	0.57	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	67		2.0	0.54	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-040 Lab Sample ID: 320-75575-6

No Detections.

Client Sample ID: PW-401 Lab Sample ID: 320-75575-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	0.56	ng/L		_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.32	JI	1.9	0.24	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.28	J	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.2		1.9	0.55	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	14		1.9	0.53	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-039 Lab Sample ID: 320-75575-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	0.92	J	1.9	0.55	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-321 Lab Sample ID: 320-75575-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanesulfonic acid (PFHxS)	0.60	J	2.0	0.57	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.97	J	2.0	0.54	ng/L	1		EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

Detection Summary Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT Client Sample ID: PW-221 Lab Sample ID: 320-75575-10 Result Qualifier Analyte RL MDL Unit Dil Fac D Method Prep Type Perfluorohexanesulfonic acid (PFHxS) 0.59 J 19 0.55 ng/L EPA 537(Mod) Total/NA EPA 537(Mod) Perfluorooctanesulfonic acid (PFOS) 0.98 J 1.9 0.52 ng/L Total/NA Lab Sample ID: 320-75575-11 Client Sample ID: PW-203 No Detections. Client Sample ID: PW-045 Lab Sample ID: 320-75575-12 Analyte Result Qualifier RLMDL Unit Dil Fac D Method Prep Type Perfluorohexanesulfonic acid (PFHxS) 0.94 J 1.9 0.55 ng/L EPA 537(Mod) Total/NA Perfluorooctanesulfonic acid (PFOS) 0.99 J 1.9 0.52 ng/L EPA 537(Mod) Total/NA Client Sample ID: PW-211 Lab Sample ID: 320-75575-13 Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Perfluorohexanesulfonic acid (PFHxS) 0.76 J 2.0 0.57 ng/L 1 EPA 537(Mod) Total/NA Client Sample ID: PW-419 Lab Sample ID: 320-75575-14 Result Qualifier Unit Dil Fac D Method Analyte RL MDL Prep Type Perfluorohexanesulfonic acid (PFHxS) 20 0.93 J 0.57 ng/L EPA 537(Mod) Total/NA Perfluorooctanesulfonic acid (PFOS) 1.5 J 2.0 0.54 ng/L EPA 537(Mod) Total/NA Client Sample ID: PW-010 Lab Sample ID: 320-75575-15 No Detections. **Client Sample ID: PW-112** Lab Sample ID: 320-75575-16 Result Qualifier **MDL** Unit Analyte RL Dil Fac D Method Prep Type Perfluorobutanesulfonic acid (PFBS) 0.27 J 2.1 0.21 ng/L EPA 537(Mod) Total/NA Perfluorohexanesulfonic acid (PFHxS) 5.2 2.1 0.60 ng/L EPA 537(Mod) Total/NA Perfluorooctanesulfonic acid (PFOS) 5.5 2 1 0.57 ng/L EPA 537(Mod) Total/NA Client Sample ID: PW-205.1 Lab Sample ID: 320-75575-17 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type Perfluorohexanoic acid (PFHxA) 0.78 J 2 1 0.60 ng/L EPA 537(Mod) Total/NA 1 Perfluorobutanesulfonic acid (PFBS) 0.27 J 2.1 0.21 ng/L EPA 537(Mod) Total/NA 1 Perfluorohexanesulfonic acid (PFHxS) 2.1 EPA 537(Mod) Total/NA 1.5 J 0.59 ng/L 1 Perfluorooctanesulfonic acid (PFOS) 2.2 2.1 0.56 ng/L EPA 537(Mod) Total/NA Client Sample ID: PW-012 Lab Sample ID: 320-75575-18 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type Perfluorobutanesulfonic acid (PFBS) 0.21 2.0 0.20 ng/L EPA 537(Mod) Total/NA Perfluorohexanesulfonic acid (PFHxS) EPA 537(Mod) 4.8 2.0 0.57 ng/L 1 Total/NA

Client Sample ID: PW-204.1 Lab Sample ID: 320-75575-19

2.0

0.54 ng/L

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Perfluorohexanoic acid (PFHxA)		2.0	0.58 ng/L	1 EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	3.8	2.0	0.25 ng/L	1 EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	2.8	2.0	0.85 ng/L	1 EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

5.6

Perfluorooctanesulfonic acid (PFOS)

Eurofins TestAmerica, Sacramento

EPA 537(Mod)

Total/NA

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-204.1 (Continued)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanesulfonic acid (PFBS)	2.4	2.0	0.20 ng/L		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	30	2.0	0.57 ng/L	1	EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	49	2.0	0.54 ng/L	1	EPA 537(Mod)	Total/NA

Client Sample ID: PW-059

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.3	J	2.0	0.58	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.33	J	2.0	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.81	J	2.0	0.20	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.1		2.0	0.57	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.4	J	2.0	0.54	ng/L	1		EPA 537(Mod)	Total/NA

Lab Sample ID: 320-75575-19

Lab Sample ID: 320-75575-20

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-062

Lab Sample ID: 320-75575-1

Date Collected: 06/22/21 17:08 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.63	J	2.0	0.57	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluoroheptanoic acid (PFHpA)	0.39	J	2.0	0.25	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.83	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.30	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.54	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.72	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorobutanesulfonic acid (PFBS)	0.23	J	2.0	0.20	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.56	ng/L		07/01/21 04:16	07/04/21 10:10	1
Perfluorooctanesulfonic acid (PFOS)	1.2	J	2.0	0.53	ng/L		07/01/21 04:16	07/04/21 10:10	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.9	1.2	ng/L		07/01/21 04:16	07/04/21 10:10	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.9	1.3	ng/L		07/01/21 04:16	07/04/21 10:10	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 10:10	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.9	1.5	ng/L		07/01/21 04:16	07/04/21 10:10	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 10:10	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.39	ng/L		07/01/21 04:16	07/04/21 10:10	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	76		50 - 150				07/01/21 04:16	07/04/21 10:10	1
13C4 PFHpA	83		50 - 150				07/01/21 04:16	07/04/21 10:10	1
13C4 PFOA	86		50 - 150				07/01/21 04:16	07/04/21 10:10	1
13C5 PFNA	83		50 - 150				07/01/21 04:16	07/04/21 10:10	1
13C2 PFDA	83		50 ₋ 150				07/01/21 04:16	07/04/21 10:10	1
13C2 PFUnA	78		50 ₋ 150				07/01/21 04:16	07/04/21 10:10	1
13C2 PFDoA	75		50 - 150				07/01/21 04:16	07/04/21 10:10	1
13C2 PFTeDA	84		50 ₋ 150				07/01/21 04:16	07/04/21 10:10	1
13C3 PFBS	89		50 - 150				07/01/21 04:16	07/04/21 10:10	1
1802 PFHxS	81		50 - 150				07/01/21 04:16	07/04/21 10:10	1
13C4 PFOS	75		50 - 150				07/01/21 04:16	07/04/21 10:10	1
d3-NMeFOSAA	77		50 - 150				07/01/21 04:16	07/04/21 10:10	1
d5-NEtFOSAA	83		50 - 150				07/01/21 04:16	07/04/21 10:10	1
13C3 HFPO-DA	75		50 - 150				07/01/21 04:16	07/04/21 10:10	1

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-038

Date Received: 06/29/21 14:55

Lab Sample ID: 320-75575-2 Date Collected: 06/23/21 10:25

Matrix: Water

Analyte	Result Qu	ialifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	1.9	0.56	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluoroheptanoic acid (PFHpA)	ND	1.9	0.24	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorooctanoic acid (PFOA)	ND	1.9	0.82	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorononanoic acid (PFNA)	ND	1.9	0.26	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorodecanoic acid (PFDA)	ND	1.9	0.30	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluoroundecanoic acid (PFUnA)	ND	1.9	1.1	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorododecanoic acid (PFDoA)	ND	1.9	0.53	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorotridecanoic acid (PFTriA)	ND	1.9	1.3	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.9	0.71	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	0.19	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	0.55	ng/L		07/01/21 04:16	07/04/21 10:20	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	0.52	ng/L		07/01/21 04:16	07/04/21 10:20	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	4.8	1.2	ng/L		07/01/21 04:16	07/04/21 10:20	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	4.8	1.3	ng/L		07/01/21 04:16	07/04/21 10:20	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	1.9	0.23	ng/L		07/01/21 04:16	07/04/21 10:20	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND *+	3.9	1.4	ng/L		07/01/21 04:16	07/04/21 10:20	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	1.9	0.31	ng/L		07/01/21 04:16	07/04/21 10:20	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	1.9	0.39	ng/L		07/01/21 04:16	07/04/21 10:20	1
Isotope Dilution	%Recovery Qu	ıalifier Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	90	50 - 150				07/01/21 04:16	07/04/21 10:20	1
13C4 PFHpA	89	50 - 150				07/01/21 04:16	07/04/21 10:20	1
13C4 PFOA	90	50 ₋ 150				07/01/21 04:16	07/04/21 10:20	1
13C5 PFNA	92	50 - 150				07/01/21 04:16	07/04/21 10:20	1
13C2 PFDA	89	50 - 150				07/01/21 04:16	07/04/21 10:20	1
13C2 PFUnA	93	50 ₋ 150				07/01/21 04:16	07/04/21 10:20	1
13C2 PFDoA	89	50 - 150				07/01/21 04:16	07/04/21 10:20	1
13C2 PFTeDA	90	50 ₋ 150				07/01/21 04:16	07/04/21 10:20	1
13C3 PFBS	110	50 ₋ 150				07/01/21 04:16	07/04/21 10:20	1
1802 PFHxS	90	50 ₋ 150				07/01/21 04:16	07/04/21 10:20	1
13C4 PFOS	83	50 ₋ 150					07/04/21 10:20	1
d3-NMeFOSAA	85	50 ₋ 150					07/04/21 10:20	1
d5-NEtFOSAA	89	50 - 150					07/04/21 10:20	1
13C3 HFPO-DA	84	50 ₋ 150					07/04/21 10:20	1

Job ID: 320-75575-1 Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Client Sample ID: PW-501

Date Received: 06/29/21 14:55

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-75575-3 Date Collected: 06/23/21 08:08

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.1	J	2.0	0.57	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluoroheptanoic acid (PFHpA)	0.32	J	2.0	0.25	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.83	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.30	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.54	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.72	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorohexanesulfonic acid (PFHxS)	1.8	J	2.0	0.56	ng/L		07/01/21 04:16	07/04/21 10:29	1
Perfluorooctanesulfonic acid (PFOS)	13		2.0	0.53	ng/L		07/01/21 04:16	07/04/21 10:29	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.9	1.2	ng/L		07/01/21 04:16	07/04/21 10:29	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.9	1.3	ng/L		07/01/21 04:16	07/04/21 10:29	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 10:29	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.9	1.5	ng/L		07/01/21 04:16	07/04/21 10:29	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 10:29	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.39	ng/L		07/01/21 04:16	07/04/21 10:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				07/01/21 04:16	07/04/21 10:29	1
13C4 PFHpA	88		50 - 150				07/01/21 04:16	07/04/21 10:29	1
13C4 PFOA	88		50 ₋ 150				07/01/21 04:16	07/04/21 10:29	1
13C5 PFNA	89		50 - 150				07/01/21 04:16	07/04/21 10:29	1
13C2 PFDA	92		50 ₋ 150				07/01/21 04:16	07/04/21 10:29	1
13C2 PFUnA	83		50 ₋ 150				07/01/21 04:16	07/04/21 10:29	1
13C2 PFDoA	90		50 - 150				07/01/21 04:16	07/04/21 10:29	1
13C2 PFTeDA	87		50 ₋ 150					07/04/21 10:29	1
13C3 PFBS	99		50 ₋ 150					07/04/21 10:29	1
1802 PFHxS	83		50 ₋ 150					07/04/21 10:29	1
13C4 PFOS	79		50 - 150					07/04/21 10:29	1
d3-NMeFOSAA	87		50 ₋ 150					07/04/21 10:29	1

07/01/21 04:16 07/04/21 10:29

07/01/21 04:16 07/04/21 10:29

50 - 150

50 - 150

82

78

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-037

Date Received: 06/29/21 14:55

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-75575-4 Date Collected: 06/23/21 10:48

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.57	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.83	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.26	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.30	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.54	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.72	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.56	ng/L		07/01/21 04:16	07/04/21 10:38	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.53	ng/L		07/01/21 04:16	07/04/21 10:38	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.9	1.2	ng/L		07/01/21 04:16	07/04/21 10:38	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.9	1.3	ng/L		07/01/21 04:16	07/04/21 10:38	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 10:38	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.9	1.5	ng/L		07/01/21 04:16	07/04/21 10:38	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 10:38	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.39	ng/L		07/01/21 04:16	07/04/21 10:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	86		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C4 PFHpA	91		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C4 PFOA	91		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C5 PFNA	83		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C2 PFDA	86		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C2 PFUnA	83		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C2 PFDoA	88		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C2 PFTeDA	92		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C3 PFBS	105		50 - 150				07/01/21 04:16	07/04/21 10:38	1
1802 PFHxS	84		50 - 150				07/01/21 04:16	07/04/21 10:38	1
13C4 PFOS	81		50 - 150				07/01/21 04:16	07/04/21 10:38	1
d3-NMeFOSAA	80		50 ₋ 150				07/01/21 04:16	07/04/21 10:38	1

07/01/21 04:16 07/04/21 10:38

07/01/21 04:16 07/04/21 10:38

50 - 150

50 - 150

88

81

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-208.1

Date Received: 06/29/21 14:55

Lab Sample ID: 320-75575-5 Date Collected: 06/21/21 10:03

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.0		2.0	0.58	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluoroheptanoic acid (PFHpA)	1.7	J	2.0	0.25	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorooctanoic acid (PFOA)	2.6		2.0	0.86	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorobutanesulfonic acid (PFBS)	0.74	J	2.0	0.20	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorohexanesulfonic acid (PFHxS)	11		2.0	0.57	ng/L		07/01/21 04:16	07/04/21 10:47	1
Perfluorooctanesulfonic acid (PFOS)	67		2.0	0.54	ng/L		07/01/21 04:16	07/04/21 10:47	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 04:16	07/04/21 10:47	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:16	07/04/21 10:47	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 10:47	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.0	1.5	ng/L		07/01/21 04:16	07/04/21 10:47	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 10:47	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 04:16	07/04/21 10:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		50 - 150				07/01/21 04:16	07/04/21 10:47	1
13C4 PFHpA	86		50 - 150				07/01/21 04:16	07/04/21 10:47	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
13C2 PFHxA	83	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C4 PFHpA	86	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C4 PFOA	92	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C5 PFNA	85	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C2 PFDA	84	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C2 PFUnA	71	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C2 PFDoA	84	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C2 PFTeDA	97	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C3 PFBS	96	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
18O2 PFHxS	87	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C4 PFOS	76	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
d3-NMeFOSAA	81	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
d5-NEtFOSAA	84	50 - 150	07/01/21 04:16 07/04/21 10:4	7 1
13C3 HFPO-DA	83	50 ₋ 150	07/01/21 04:16 07/04/21 10:4	7 1

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-040

Date Received: 06/29/21 14:55

13C3 HFPO-DA

Lab Sample ID: 320-75575-6 Date Collected: 06/23/21 12:02

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND	2.1	0.61	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluoroheptanoic acid (PFHpA)	ND	2.1	0.26	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorooctanoic acid (PFOA)	ND	2.1	0.90	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorononanoic acid (PFNA)	ND	2.1	0.29	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorodecanoic acid (PFDA)	ND	2.1	0.33	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluoroundecanoic acid (PFUnA)	ND	2.1	1.2	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorododecanoic acid (PFDoA)	ND	2.1	0.58	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorotridecanoic acid (PFTriA)	ND	2.1	1.4	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorotetradecanoic acid (PFTeA)	ND	2.1	0.77	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorobutanesulfonic acid (PFBS)	ND	2.1	0.21	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorohexanesulfonic acid (PFHxS)	ND	2.1	0.60	ng/L		07/01/21 04:16	07/04/21 10:56	1
Perfluorooctanesulfonic acid (PFOS)	ND	2.1	0.57	ng/L		07/01/21 04:16	07/04/21 10:56	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	5.3	1.3	ng/L		07/01/21 04:16	07/04/21 10:56	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	5.3		ng/L			07/04/21 10:56	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND	2.1		ng/L			07/04/21 10:56	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND *+	4.2		ng/L		07/01/21 04:16	07/04/21 10:56	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	2.1		ng/L		07/01/21 04:16	07/04/21 10:56	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.1	0.42	ng/L		07/01/21 04:16	07/04/21 10:56	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	85	50 - 150				07/01/21 04:16	07/04/21 10:56	1
13C4 PFHpA	87	50 - 150				07/01/21 04:16	07/04/21 10:56	1
13C4 PFOA	92	50 - 150				07/01/21 04:16	07/04/21 10:56	1
13C5 PFNA	83	50 - 150				07/01/21 04:16	07/04/21 10:56	1
13C2 PFDA	85	50 - 150				07/01/21 04:16	07/04/21 10:56	1
13C2 PFUnA	73	50 ₋ 150				07/01/21 04:16	07/04/21 10:56	1
13C2 PFDoA	82	50 - 150				07/01/21 04:16	07/04/21 10:56	1
13C2 PFTeDA	88	50 ₋ 150				07/01/21 04:16	07/04/21 10:56	1
13C3 PFBS	97	50 ₋ 150				07/01/21 04:16	07/04/21 10:56	1
1802 PFHxS	83	50 - 150				07/01/21 04:16	07/04/21 10:56	1
13C4 PFOS	84	50 ₋ 150				07/01/21 04:16	07/04/21 10:56	1
d3-NMeFOSAA	82	50 ₋ 150				07/01/21 04:16	07/04/21 10:56	1
d5-NEtFOSAA	80	50 - 150				07/01/21 04:16	07/04/21 10:56	1

07/01/21 04:16 07/04/21 10:56

50 - 150

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-401

Date Received: 06/29/21 14:55

Lab Sample ID: 320-75575-7 Date Collected: 06/23/21 08:18

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.2	J	1.9	0.56	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluoroheptanoic acid (PFHpA)	0.32	JI	1.9	0.24	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.83	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.54	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.71	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorobutanesulfonic acid (PFBS)	0.28	J	1.9	0.19	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorohexanesulfonic acid (PFHxS)	2.2		1.9	0.55	ng/L		07/01/21 04:16	07/04/21 11:05	1
Perfluorooctanesulfonic acid (PFOS)	14		1.9	0.53	ng/L		07/01/21 04:16	07/04/21 11:05	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.9	1.2	ng/L		07/01/21 04:16	07/04/21 11:05	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.9	1.3	ng/L		07/01/21 04:16	07/04/21 11:05	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		07/01/21 04:16	07/04/21 11:05	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.9	1.5	ng/L		07/01/21 04:16	07/04/21 11:05	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31	ng/L		07/01/21 04:16	07/04/21 11:05	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.39	ng/L		07/01/21 04:16	07/04/21 11:05	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				07/01/21 04:16	07/04/21 11:05	1
13C4 PFHpA	89		50 ₋ 150				07/01/21 04:16	07/04/21 11:05	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	84	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C4 PFHpA	89	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C4 PFOA	93	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C5 PFNA	90	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C2 PFDA	88	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C2 PFUnA	91	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C2 PFDoA	92	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C2 PFTeDA	91	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C3 PFBS	95	50 - 150	07/01/21 04:16	07/04/21 11:05	1
18O2 PFHxS	86	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C4 PFOS	77	50 - 150	07/01/21 04:16	07/04/21 11:05	1
d3-NMeFOSAA	89	50 - 150	07/01/21 04:16	07/04/21 11:05	1
d5-NEtFOSAA	87	50 - 150	07/01/21 04:16	07/04/21 11:05	1
13C3 HFPO-DA	82	50 ₋ 150	07/01/21 04:16	07/04/21 11:05	1

Client: Shannon & Wilson, Inc Job ID: 320-75575-1

Project/Site: GUS PFAS-DOT

Client Sample ID: PW-039 Lab Sample ID: 320-75575-8

Date Collected: 06/23/21 11:32 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.92	J	1.9	0.55	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.24	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.81	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.70	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.54	ng/L		07/01/21 04:16	07/04/21 11:33	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.52	ng/L		07/01/21 04:16	07/04/21 11:33	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.1	ng/L		07/01/21 04:16	07/04/21 11:33	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8	1.2	ng/L		07/01/21 04:16	07/04/21 11:33	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		07/01/21 04:16	07/04/21 11:33	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.8	1.4	ng/L		07/01/21 04:16	07/04/21 11:33	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31	ng/L		07/01/21 04:16	07/04/21 11:33	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		07/01/21 04:16	07/04/21 11:33	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	92		50 - 150				07/01/21 04:16	07/04/21 11:33	1
13C4 PFHpA	96		50 - 150				07/01/21 04:16	07/04/21 11:33	1
13C4 PFOA	90		50 - 150				07/01/21 04:16	07/04/21 11:33	1
13C5 PFNA	87		50 - 150				07/01/21 04:16	07/04/21 11:33	1
13C2 PFDA	88		50 - 150				07/01/21 04:16	07/04/21 11:33	1
13C2 PFUnA	78		50 ₋ 150				07/01/21 04:16	07/04/21 11:33	1
13C2 PFDoA	80		50 - 150				07/01/21 04:16	07/04/21 11:33	1
13C2 PFTeDA	83		50 ₋ 150					07/04/21 11:33	1
13C3 PFBS	102		50 ₋ 150				07/01/21 04:16	07/04/21 11:33	1
1802 PFHxS	85		50 - 150					07/04/21 11:33	1
13C4 PFOS	77		50 - 150					07/04/21 11:33	1
d3-NMeFOSAA	81		50 - 150					07/04/21 11:33	1
d5-NEtFOSAA	80		50 ₋ 150					07/04/21 11:33	
13C3 HFPO-DA	85		50 ₋ 150					07/04/21 11:33	1

Client: Shannon & Wilson, Inc Job ID: 320-75575-1

Project/Site: GUS PFAS-DOT

Date Received: 06/29/21 14:55

Client Sample ID: PW-321 Lab Sample ID: 320-75575-9 Date Collected: 06/22/21 12:17

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorohexanesulfonic acid	0.60	J	2.0	0.57	ng/L		07/01/21 04:16	07/04/21 11:42	1
Perfluorooctanesulfonic acid (PFOS)	0.97	J	2.0	0.54	ng/L		07/01/21 04:16	07/04/21 11:42	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 04:16	07/04/21 11:42	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:16	07/04/21 11:42	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 11:42	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.0	1.5	ng/L		07/01/21 04:16	07/04/21 11:42	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 11:42	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 04:16	07/04/21 11:42	1
lsotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	87	<u> </u>	50 - 150				07/01/21 04:16	07/04/21 11:42	1
13C4 PFHpA	89		50 - 150				07/01/21 04:16	07/04/21 11:42	1
13C4 PFOA	91		50 ₋ 150					07/04/21 11:42	1
13C5 PFNA	88		50 ₋ 150					07/04/21 11:42	
13C2 PFDA	94		50 ₋ 150					07/04/21 11:42	1
13C2 PFUnA	84		50 - 150					07/04/21 11:42	1
13C2 PFDoA	93		50 - 150					07/04/21 11:42	
13C2 PFTeDA	85		50 - 150					07/04/21 11:42	
13C3 PFBS	98		50 - 150 50 - 150					07/04/21 11:42	
1802 PFHxS	90		50 - 150					07/04/21 11:42	
13C4 PFOS	90 81		50 - 150 50 - 150					07/04/21 11:42	1
d3-NMeFOSAA	85		50 - 150 50 - 150					07/04/21 11:42	1
d5-NEtFOSAA	82		50 - 150 50 - 150					07/04/21 11:42	
JU-INEIFUSAA	62		30 - 13U				01/01/21 04.10	01/0 4 /21 11.42	7

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS-DOT

Job ID: 320-75575-1

Client Sample ID: PW-221 Lab Sample ID: 320-75575-10

Date Collected: 06/22/21 12:27

Date Received: 06/29/21 14:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.56	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.24	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.82	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.71	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorohexanesulfonic acid (PFHxS)	0.59	J	1.9	0.55	ng/L		07/01/21 04:16	07/04/21 11:51	1
Perfluorooctanesulfonic acid (PFOS)	0.98	J	1.9	0.52	ng/L		07/01/21 04:16	07/04/21 11:51	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.2	ng/L		07/01/21 04:16	07/04/21 11:51	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8		ng/L		07/01/21 04:16	07/04/21 11:51	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L			07/04/21 11:51	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.9	1.5	ng/L		07/01/21 04:16	07/04/21 11:51	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9	0.31	ng/L		07/01/21 04:16	07/04/21 11:51	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.39	ng/L		07/01/21 04:16	07/04/21 11:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				07/01/21 04:16	07/04/21 11:51	1
13C4 PFHpA	91		50 - 150				07/01/21 04:16	07/04/21 11:51	1
13C4 PFOA	87		50 - 150				07/01/21 04:16	07/04/21 11:51	1
13C5 PFNA	79		50 - 150				07/01/21 04:16	07/04/21 11:51	1
13C2 PFDA	84		50 - 150				07/01/21 04:16	07/04/21 11:51	1
13C2 PFUnA	77		50 ₋ 150				07/01/21 04:16	07/04/21 11:51	1
13C2 PFDoA	84		50 - 150				07/01/21 04:16	07/04/21 11:51	1
13C2 PFTeDA	88		50 ₋ 150				07/01/21 04:16	07/04/21 11:51	1
13C3 PFBS	94		50 ₋ 150				07/01/21 04:16	07/04/21 11:51	1
1802 PFHxS	81		50 - 150				07/01/21 04:16	07/04/21 11:51	1
13C4 PFOS	77		50 ₋ 150				07/01/21 04:16	07/04/21 11:51	1
d3-NMeFOSAA	80		50 ₋ 150					07/04/21 11:51	1
d5-NEtFOSAA	86		50 - 150					07/04/21 11:51	1

7/12/2021 (Rev. 1)

2

3

6

8

10

11

13

14

12

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-203 Lab Sample ID: 320-75575-11

Date Collected: 06/21/21 09:13 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.59	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.26	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.87	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.28	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.56	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.75	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.58	ng/L		07/01/21 04:16	07/04/21 12:00	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 12:00	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.1	1.2	ng/L		07/01/21 04:16	07/04/21 12:00	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.1	1.3	ng/L		07/01/21 04:16	07/04/21 12:00	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.25	ng/L		07/01/21 04:16	07/04/21 12:00	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.1	1.5	ng/L		07/01/21 04:16	07/04/21 12:00	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.33	ng/L		07/01/21 04:16	07/04/21 12:00	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.41	ng/L		07/01/21 04:16	07/04/21 12:00	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				07/01/21 04:16	07/04/21 12:00	1

isotope Dilution	%Recovery Quai	inter Limits	Prepared	Anaiyzea	DII Fac
13C2 PFHxA	84	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C4 PFHpA	86	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C4 PFOA	88	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C5 PFNA	89	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C2 PFDA	79	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C2 PFUnA	73	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C2 PFDoA	80	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C2 PFTeDA	91	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C3 PFBS	98	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
18O2 PFHxS	81	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C4 PFOS	75	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
d3-NMeFOSAA	80	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
d5-NEtFOSAA	82	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1
13C3 HFPO-DA	75	50 - 150	07/01/21 04:16 0	7/04/21 12:00	1

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-045 Lab Sample ID: 320-75575-12

Date Collected: 06/22/21 11:42 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.56	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.24	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.82	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.70	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorohexanesulfonic acid (PFHxS)	0.94	J	1.9		ng/L		07/01/21 04:16	07/04/21 12:09	1
Perfluorooctanesulfonic acid (PFOS)	0.99	J	1.9		ng/L		07/01/21 04:16	07/04/21 12:09	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.2	ng/L		07/01/21 04:16	07/04/21 12:09	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.8		ng/L			07/04/21 12:09	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9		ng/L			07/04/21 12:09	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.9		ng/L			07/04/21 12:09	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9		ng/L			07/04/21 12:09	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.39	ng/L		07/01/21 04:16	07/04/21 12:09	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	83		50 - 150				07/01/21 04:16	07/04/21 12:09	1
13C4 PFHpA	87		50 - 150				07/01/21 04:16	07/04/21 12:09	1
13C4 PFOA	95		50 - 150				07/01/21 04:16	07/04/21 12:09	1
13C5 PFNA	90		50 - 150				07/01/21 04:16	07/04/21 12:09	1
13C2 PFDA	93		50 ₋ 150				07/01/21 04:16	07/04/21 12:09	1
13C2 PFUnA	78		50 ₋ 150				07/01/21 04:16	07/04/21 12:09	1
13C2 PFDoA	88		50 - 150				07/01/21 04:16	07/04/21 12:09	1
13C2 PFTeDA	95		50 ₋ 150				07/01/21 04:16	07/04/21 12:09	1
13C3 PFBS	97		50 ₋ 150					07/04/21 12:09	1
1802 PFHxS	89		50 - 150					07/04/21 12:09	1
13C4 PFOS	84		50 - 150					07/04/21 12:09	1
d3-NMeFOSAA	84		50 - 150					07/04/21 12:09	1
									1
d5-NEtFOSAA	80		50 ₋ 150				07/01/21 04:16	07/04/21 12:09	,

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-211

Lab Sample ID: 320-75575-13 Date Collected: 06/21/21 08:24 **Matrix: Water**

Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorohexanesulfonic acid (PFHxS)	0.76	J	2.0	0.57	ng/L		07/01/21 04:16	07/04/21 12:18	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		07/01/21 04:16	07/04/21 12:18	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0		ng/L		07/01/21 04:16	07/04/21 12:18	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:16	07/04/21 12:18	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 12:18	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.0	1.5	ng/L		07/01/21 04:16	07/04/21 12:18	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 12:18	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 04:16	07/04/21 12:18	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	82		50 - 150				07/01/21 04:16	07/04/21 12:18	1
13C4 PFHpA	90		50 ₋ 150				07/01/21 04:16	07/04/21 12:18	1
13C4 PFOA	89		50 ₋ 150				07/01/21 04:16	07/04/21 12:18	1
13C5 PFNA	89		50 - 150				07/01/21 04:16	07/04/21 12:18	1
13C2 PFDA	88		50 ₋ 150				07/01/21 04:16	07/04/21 12:18	1
13C2 PFUnA	82		50 - 150				07/01/21 04:16	07/04/21 12:18	1
13C2 PFDoA	95		50 - 150				07/01/21 04:16	07/04/21 12:18	1
13C2 PFTeDA	96		50 ₋ 150				07/01/21 04:16	07/04/21 12:18	1
13C3 PFBS	97		50 ₋ 150				07/01/21 04:16	07/04/21 12:18	1
1802 PFHxS	81		50 - 150				07/01/21 04:16	07/04/21 12:18	1
13C4 PFOS	77		50 - 150					07/04/21 12:18	1
d3-NMeFOSAA	84		50 ₋ 150					07/04/21 12:18	1
	80								1
d5-NEtFOSAA	<i>60</i>		50 ₋ 150				07/01/21 04:16	07/04/21 12:18	1

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-419

Date Received: 06/29/21 14:55

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-75575-14 Date Collected: 06/22/21 14:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorohexanesulfonic acid (PFHxS)	0.93	J	2.0	0.57	ng/L		07/01/21 04:16	07/04/21 12:27	1
Perfluorooctanesulfonic acid (PFOS)	1.5	J	2.0	0.54	ng/L		07/01/21 04:16	07/04/21 12:27	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 04:16	07/04/21 12:27	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:16	07/04/21 12:27	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 12:27	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.0	1.5	ng/L		07/01/21 04:16	07/04/21 12:27	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 12:27	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 04:16	07/04/21 12:27	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	77		50 - 150				07/01/21 04:16	07/04/21 12:27	1
13C4 PFHpA	85		50 - 150				07/01/21 04:16	07/04/21 12:27	1
13C4 PFOA	89		50 - 150				07/01/21 04:16	07/04/21 12:27	1
13C5 PFNA	79		50 - 150				07/01/21 04:16	07/04/21 12:27	1
13C2 PFDA	81		50 - 150				07/01/21 04:16	07/04/21 12:27	1
13C2 PFUnA	71		50 - 150				07/01/21 04:16	07/04/21 12:27	1
13C2 PFDoA	76		50 - 150				07/01/21 04:16	07/04/21 12:27	1
13C2 PFTeDA	86		50 ₋ 150				07/01/21 04:16	07/04/21 12:27	1
13C3 PFBS	86		50 - 150				07/01/21 04:16	07/04/21 12:27	1
1802 PFHxS	73		50 - 150				07/01/21 04:16	07/04/21 12:27	1
13C4 PFOS	69		50 ₋ 150				07/01/21 04:16	07/04/21 12:27	1

50 - 150

50 - 150

50 - 150

72

78

76

07/01/21 04:16 07/04/21 12:27

07/01/21 04:16 07/04/21 12:27

07/01/21 04:16 07/04/21 12:27

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-010

Lab Sample ID: 320-75575-15

Date Collected: 06/22/21 12:52 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.55	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.24	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.81	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorotetradecanoic acid (PFTeA)	ND	*+	1.9	0.69	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.54	ng/L		07/01/21 04:58	07/03/21 16:41	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.51	ng/L		07/01/21 04:58	07/03/21 16:41	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.1	ng/L		07/01/21 04:58	07/03/21 16:41	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	*+	4.8		ng/L		07/01/21 04:58	07/03/21 16:41	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9		ng/L		07/01/21 04:58		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8		ng/L			07/03/21 16:41	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		1.9		ng/L		07/01/21 04:58	07/03/21 16:41	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		07/01/21 04:58	07/03/21 16:41	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				07/01/21 04:58	07/03/21 16:41	1
13C4 PFHpA	77		50 - 150				07/01/21 04:58	07/03/21 16:41	1
13C4 PFOA	88		50 - 150				07/01/21 04:58	07/03/21 16:41	1
13C5 PFNA	81		50 - 150				07/01/21 04:58	07/03/21 16:41	1
13C2 PFDA	91		50 - 150				07/01/21 04:58	07/03/21 16:41	1
13C2 PFUnA	88		50 ₋ 150					07/03/21 16:41	
13C2 PFDoA	90		50 - 150				07/01/21 04:58	07/03/21 16:41	
13C2 PFTeDA	98		50 ₋ 150				07/01/21 04:58	07/03/21 16:41	1
13C3 PFBS	89		50 ₋ 150				07/01/21 04:58	07/03/21 16:41	1
1802 PFHxS	84		50 - 150				07/01/21 04:58	07/03/21 16:41	
13C4 PFOS	82		50 ₋ 150				07/01/21 04:58	07/03/21 16:41	
d3-NMeFOSAA	88		50 ₋ 150					07/03/21 16:41	1
d5-NEtFOSAA	81		50 ₋ 150					07/03/21 16:41	1
13C3 HFPO-DA	75		50 ₋ 150					07/03/21 16:41	1

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-112 Lab Sample ID: 320-75575-16

Date Collected: 06/21/21 13:30 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.1	0.61	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluoroheptanoic acid (PFHpA)	ND		2.1	0.26	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorooctanoic acid (PFOA)	ND		2.1	0.89	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorononanoic acid (PFNA)	ND		2.1	0.28	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorodecanoic acid (PFDA)	ND		2.1	0.33	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluoroundecanoic acid (PFUnA)	ND		2.1	1.2	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorododecanoic acid (PFDoA)	ND		2.1	0.58	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorotridecanoic acid (PFTriA)	ND		2.1	1.4	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.1	0.77	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorobutanesulfonic acid (PFBS)	0.27	J	2.1	0.21	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorohexanesulfonic acid (PFHxS)	5.2		2.1	0.60	ng/L		07/01/21 04:16	07/04/21 12:36	1
Perfluorooctanesulfonic acid (PFOS)	5.5		2.1	0.57	ng/L		07/01/21 04:16	07/04/21 12:36	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.2	1.3	ng/L		07/01/21 04:16	07/04/21 12:36	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.2	1.4	ng/L		07/01/21 04:16	07/04/21 12:36	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.1	0.25	ng/L		07/01/21 04:16	07/04/21 12:36	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.2	1.6	ng/L		07/01/21 04:16	07/04/21 12:36	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.1	0.34	ng/L		07/01/21 04:16	07/04/21 12:36	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.1	0.42	ng/L		07/01/21 04:16	07/04/21 12:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	80		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C4 PFHpA	85		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C4 PFOA	85		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C5 PFNA	80		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C2 PFDA	76		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C2 PFUnA	69		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C2 PFDoA	82		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C2 PFTeDA	84		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C3 PFBS	90		50 - 150				07/01/21 04:16	07/04/21 12:36	1
1802 PFHxS	73		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C4 PFOS	68		50 - 150				07/01/21 04:16	07/04/21 12:36	1
d3-NMeFOSAA	78		50 - 150				07/01/21 04:16	07/04/21 12:36	1
d5-NEtFOSAA	79		50 - 150				07/01/21 04:16	07/04/21 12:36	1
13C3 HFPO-DA	71		50 ₋ 150				07/01/21 04:16	07/04/21 12:36	1

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Date Received: 06/29/21 14:55

Client Sample ID: PW-205.1 Lab Sample ID: 320-75575-17 Date Collected: 06/21/21 14:22

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	0.78	J	2.1	0.60	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluoroheptanoic acid (PFHpA)	ND		2.1	0.26	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorooctanoic acid (PFOA)	ND		2.1	0.88	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorononanoic acid (PFNA)	ND		2.1	0.28	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorodecanoic acid (PFDA)	ND		2.1	0.32	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluoroundecanoic acid (PFUnA)	ND		2.1	1.1	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorododecanoic acid (PFDoA)	ND		2.1	0.57	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorotridecanoic acid (PFTriA)	ND		2.1	1.4	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.1	0.76	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorobutanesulfonic acid (PFBS)	0.27	J	2.1	0.21	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorohexanesulfonic acid (PFHxS)	1.5	J	2.1	0.59	ng/L		07/01/21 04:16	07/04/21 12:46	1
Perfluorooctanesulfonic acid (PFOS)	2.2		2.1	0.56	ng/L		07/01/21 04:16	07/04/21 12:46	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.2	1.2	ng/L		07/01/21 04:16	07/04/21 12:46	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.2	1.4	ng/L		07/01/21 04:16	07/04/21 12:46	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.1	0.25	ng/L		07/01/21 04:16	07/04/21 12:46	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.2	1.6	ng/L		07/01/21 04:16	07/04/21 12:46	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.1	0.33	ng/L		07/01/21 04:16	07/04/21 12:46	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.1	0.42	ng/L		07/01/21 04:16	07/04/21 12:46	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				07/01/21 04:16	07/04/21 12:46	1
13C4 PFHpA	91		50 ₋ 150				07/01/21 04:16	07/04/21 12:46	1

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C4 PFHpA	91		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C4 PFOA	91		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C5 PFNA	90		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C2 PFDA	84		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C2 PFUnA	84		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C2 PFDoA	83		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C2 PFTeDA	81		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C3 PFBS	105		50 - 150	07/01/21 04:16	07/04/21 12:46	1
1802 PFHxS	81		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C4 PFOS	76		50 - 150	07/01/21 04:16	07/04/21 12:46	1
d3-NMeFOSAA	81		50 - 150	07/01/21 04:16	07/04/21 12:46	1
d5-NEtFOSAA	76		50 - 150	07/01/21 04:16	07/04/21 12:46	1
13C3 HFPO-DA	83		50 - 150	07/01/21 04:16	07/04/21 12:46	1

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS-DOT

Job ID: 320-75575-1

Client Sample ID: PW-012 Lab Sample ID: 320-75575-18

Date Collected: 06/21/21 13:40 Matrix: Water
Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorobutanesulfonic acid (PFBS)	0.21	J	2.0	0.20	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorohexanesulfonic acid (PFHxS)	4.8		2.0	0.57	ng/L		07/01/21 04:16	07/04/21 12:55	1
Perfluorooctanesulfonic acid (PFOS)	5.6		2.0	0.54	ng/L		07/01/21 04:16	07/04/21 12:55	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 04:16	07/04/21 12:55	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:16	07/04/21 12:55	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 12:55	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.0	1.5	ng/L		07/01/21 04:16	07/04/21 12:55	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 12:55	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 04:16	07/04/21 12:55	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				07/01/21 04:16	07/04/21 12:55	1
13C4 PFHpA	99		50 ₋ 150				07/01/21 04:16	07/04/21 12:55	1
13C4 PFOA	83		50 - 150				07/01/21 04:16	07/04/21 12:55	1
13C5 PFNA	92		50 ₋ 150				07/01/21 04:16	07/04/21 12:55	1
13C2 PFDA	92		50 ₋ 150				07/01/21 04:16	07/04/21 12:55	1
13C2 PFUnA	82		50 - 150				07/01/21 04:16	07/04/21 12:55	1
13C2 PFDoA	94		50 ₋ 150				07/01/21 04:16	07/04/21 12:55	1
13C2 PFTeDA	89		50 - 150				07/01/21 04:16	07/04/21 12:55	1
13C3 PFBS	100		50 ₋ 150				07/01/21 04:16	07/04/21 12:55	1
1802 PFHxS	88		50 - 150				07/01/21 04:16	07/04/21 12:55	1
13C4 PFOS	80		50 - 150				07/01/21 04:16	07/04/21 12:55	1
d3-NMeFOSAA	86		50 ₋ 150				07/01/21 04:16	07/04/21 12:55	1
d5-NEtFOSAA	84		50 - 150				07/01/21 04:16	07/04/21 12:55	1
13C3 HFPO-DA	80		50 ₋ 150				07/01/21 04:16	07/04/21 12:55	1

3

6

0

10

12

14

13

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Client Sample ID: PW-204.1

Date Received: 06/29/21 14:55

Lab Sample ID: 320-75575-19 Date Collected: 06/21/21 07:48

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	11		2.0	0.58	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluoroheptanoic acid (PFHpA)	3.8		2.0	0.25	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorooctanoic acid (PFOA)	2.8		2.0	0.85	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorobutanesulfonic acid (PFBS)	2.4		2.0	0.20	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorohexanesulfonic acid (PFHxS)	30		2.0	0.57	ng/L		07/01/21 04:16	07/04/21 13:22	1
Perfluorooctanesulfonic acid (PFOS)	49		2.0	0.54	ng/L		07/01/21 04:16	07/04/21 13:22	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 04:16	07/04/21 13:22	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:16	07/04/21 13:22	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 13:22	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.0	1.5	ng/L		07/01/21 04:16	07/04/21 13:22	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 13:22	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 04:16	07/04/21 13:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	82		50 - 150				07/01/21 04:16	07/04/21 13:22	

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	82		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C4 PFHpA	84		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C4 PFOA	87		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C5 PFNA	81		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C2 PFDA	82		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C2 PFUnA	81		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C2 PFDoA	83		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C2 PFTeDA	87		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C3 PFBS	96		50 - 150	07/01/21 04:16	07/04/21 13:22	1
18O2 PFHxS	76		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C4 PFOS	74		50 - 150	07/01/21 04:16	07/04/21 13:22	1
d3-NMeFOSAA	82		50 - 150	07/01/21 04:16	07/04/21 13:22	1
d5-NEtFOSAA	80		50 - 150	07/01/21 04:16	07/04/21 13:22	1
13C3 HFPO-DA	78		50 - 150	07/01/21 04:16	07/04/21 13:22	1

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS-DOT

Job ID: 320-75575-1

Client Sample ID: PW-059 Lab Sample ID: 320-75575-20

Date Collected: 06/21/21 12:16

Date Received: 06/29/21 14:55

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.3	J	2.0	0.58	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluoroheptanoic acid (PFHpA)	0.33	J	2.0	0.25	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorobutanesulfonic acid (PFBS)	0.81	J	2.0	0.20	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorohexanesulfonic acid (PFHxS)	2.1		2.0	0.57	ng/L		07/01/21 04:16	07/04/21 13:31	1
Perfluorooctanesulfonic acid (PFOS)	1.4	J	2.0	0.54	ng/L		07/01/21 04:16	07/04/21 13:31	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 04:16	07/04/21 13:31	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:16	07/04/21 13:31	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 13:31	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	4.0	1.5	ng/L		07/01/21 04:16	07/04/21 13:31	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 13:31	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 04:16	07/04/21 13:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	84		50 - 150				07/01/21 04:16	07/04/21 13:31	1
13C4 PFHpA	94		50 - 150				07/01/21 04:16	07/04/21 13:31	1
13C4 PFOA	90		50 - 150				07/01/21 04:16	07/04/21 13:31	1
13C5 PFNA	86		50 - 150				07/01/21 04:16	07/04/21 13:31	1
13C2 PFDA	91		50 - 150				07/01/21 04:16	07/04/21 13:31	1
13C2 PFUnA	76		50 - 150				07/01/21 04:16	07/04/21 13:31	1
13C2 PFDoA	85		50 - 150				07/01/21 04:16	07/04/21 13:31	1
13C2 PFTeDA	85		50 ₋ 150				07/01/21 04:16	07/04/21 13:31	1
13C3 PFBS	101		50 - 150				07/01/21 04:16	07/04/21 13:31	1
1802 PFHxS	85		50 - 150				07/01/21 04:16	07/04/21 13:31	1
13C4 PFOS	77		50 - 150				07/01/21 04:16	07/04/21 13:31	1
d3-NMeFOSAA	79		50 - 150				07/01/21 04:16	07/04/21 13:31	1
d5-NEtFOSAA	73		50 - 150				07/01/21 04:16	07/04/21 13:31	1

50 - 150

13C3 HFPO-DA

3

4

6

8

10

12

14

15

07/01/21 04:16 07/04/21 13:31

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water Prep Type: Total/NA

		PFHxA	Perce C4PFHA	ent Isotope PFOA	Dilution Re	covery (Ac PFDA	ceptance Li PFUnA	mits) PFDoA	PFTDA
Lab Camala ID	Olient Comple ID	(50-150)		(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	
Lab Sample ID 320-75575-1	Client Sample ID PW-062	76	(50-150)	86	83	83	78	75	(50-150
320-75575-2	PW-038	90	89	90	92	89	93	75 89	90
320-75575-3	PW-501	84	88	88	92 89	92	93 83	90	87
									92
320-75575-4	PW-037	86	91	91	83	86	83	88	
320-75575-5	PW-208.1	83	86	92	85	84	71	84	97
320-75575-6	PW-040	85	87	92	83	85	73	82	88
320-75575-7	PW-401	84	89	93	90	88	91	92	91
320-75575-8	PW-039	92	96	90	87	88	78	80	83
320-75575-9	PW-321	87	89	91	88	94	84	93	85
320-75575-10	PW-221	84	91	87	79	84	77	84	88
320-75575-11	PW-203	84	86	88	89	79	73	80	91
320-75575-12	PW-045	83	87	95	90	93	78	88	95
320-75575-13	PW-211	82	90	89	89	88	82	95	96
320-75575-14	PW-419	77	85	89	79	81	71	76	86
320-75575-15	PW-010	84	77	88	81	91	88	90	98
320-75575-16	PW-112	80	85	85	80	76	69	82	84
320-75575-17	PW-205.1	84	91	91	90	84	84	83	81
320-75575-18	PW-012	84	99	83	92	92	82	94	89
320-75575-19	PW-204.1	82	84	87	81	82	81	83	87
320-75575-20	PW-059	84	94	90	86	91	76	85	85
LCS 320-503375/2-A	Lab Control Sample	85	91	92	92	88	78	94	104
LCS 320-503377/2-A	Lab Control Sample	79	81	86	83	80	77	87	97
LCSD 320-503375/3-A	Lab Control Sample Dup	100	102	93	90	98	98	94	110
LCSD 320-503377/3-A	Lab Control Sample Dup	91	88	89	87	88	87	96	95
MB 320-503375/1-A	Method Blank	96	92	92	94	97	101	108	105
MB 320-503377/1-A	Method Blank	87	87	89	88	96	87	97	107
			Perce	ent Isotope	Dilution Re	coverv (Ac	ceptance Li	imits)	
		C3PFBS	PFHxS	PFOS		d5NEFOS	•	,	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-75575-1	PW-062	89	81	75	77	83	75		
320-75575-2	PW-038	110	90	83	85	89	84		
320-75575-3	PW-501	99	83	79	87	82	78		
320-75575-4	PW-037	105	84	81	80	88	81		
320-75575-5	PW-208.1	96	87	76	81	84	83		
320-75575-6	PW-040	97	83	84	82	80	79		
320-75575-7	PW-401	95	86	77	89	87	82		
320-75575-8	PW-039	102	85	77	81	80	85		
320-75575-9	PW-321	98	90	81	85	82	84		
320-75575-10	PW-221	94	81	77	80	86	79		
320-75575-10	PW-203	98	81	7 <i>7</i>	80	82	75		
320-75575-11	PW-045	96 97	89	75 84	84	80	75 86		
320-75575-12	PW-211	97	81	77	84	80	79		
320-75575-13	PW-419	97 86	73	69	72	78	79 76		
320-75575-14	PW-010								
		89	84	82	88	81	75		
320-75575-16	PW-112	90 105	73 91	68 76	78 81	79 76	71		
320-75575-17	PW-205.1	105	81	76	81	76	83		
320-75575-18	PW-012	100	88	80	86	84	80		
320-75575-19	PW-204.1	96	76	74	82	80	78		
320-75575-20	PW-059	101	85	77	79	73	86		

Eurofins TestAmerica, Sacramento

2

А

5

7

9

11

13

14

Ш

Isotope Dilution Summary

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Matrix: Water Prep Type: Total/NA

Percent Isotope Dilution Recovery (Acceptance Limits)							
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA
b Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
S 320-503375/2-A	Lab Control Sample	102	86	84	86	84	80
320-503377/2-A	Lab Control Sample	94	88	79	85	78	79
O 320-503375/3-A	Lab Control Sample Dup	108	96	94	96	98	92
O 320-503377/3-A	Lab Control Sample Dup	97	89	85	93	87	86
320-503375/1-A	Method Blank	116	97	90	101	108	85
320-503377/1-A	Method Blank	97	93	90	91	86	84

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 1802 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

MB MB

Lab Sample ID: MB 320-503375/1-A

Matrix: Water

Analysis Batch: 504274

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 503375

		1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		07/01/21 04:16	07/04/21 09:43	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		07/01/21 04:16	07/04/21 09:43	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 04:16	07/04/21 09:43	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:16	07/04/21 09:43	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:16	07/04/21 09:43	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		07/01/21 04:16	07/04/21 09:43	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:16	07/04/21 09:43	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 04:16	07/04/21 09:43	1
	MB	MB							

	IVIB IVI	IB			
Isotope Dilution	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	96	50 - 150	07/01/21 04:16	07/04/21 09:43	1
13C4 PFHpA	92	50 ₋ 150	07/01/21 04:16	07/04/21 09:43	1
13C4 PFOA	92	50 ₋ 150	07/01/21 04:16	07/04/21 09:43	1
13C5 PFNA	94	50 - 150	07/01/21 04:16	07/04/21 09:43	1
13C2 PFDA	97	50 ₋ 150	07/01/21 04:16	07/04/21 09:43	1
13C2 PFUnA	101	50 - 150	07/01/21 04:16	07/04/21 09:43	1
13C2 PFDoA	108	50 - 150	07/01/21 04:16	07/04/21 09:43	1
13C2 PFTeDA	105	50 ₋ 150	07/01/21 04:16	07/04/21 09:43	1
13C3 PFBS	116	50 ₋ 150	07/01/21 04:16	07/04/21 09:43	1
1802 PFHxS	97	50 - 150	07/01/21 04:16	07/04/21 09:43	1
13C4 PFOS	90	50 - 150	07/01/21 04:16	07/04/21 09:43	1
d3-NMeFOSAA	101	50 ₋ 150	07/01/21 04:16	07/04/21 09:43	1
d5-NEtFOSAA	108	50 - 150	07/01/21 04:16	07/04/21 09:43	1
13C3 HFPO-DA	85	50 ₋ 150	07/01/21 04:16	07/04/21 09:43	1

Lab Sample ID: LCS 320-503375/2-A

Matrix: Water

Analysis Batch: 504274

Client Sample	ID: Lab (Control	Sample
	Pren	Type: 1	Total/NA

Prep Batch: 503375

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	45.2		ng/L		113	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	46.7		ng/L		117	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	41.7		ng/L		104	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	48.9		ng/L		122	69 - 130	

Eurofins TestAmerica, Sacramento

Page 30 of 47

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-503375/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 504274

Prep Type: Total/NA Prep Batch: 503375

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorodecanoic acid (PFDA)	40.0	46.2		ng/L		115	71 - 129	
Perfluoroundecanoic acid	40.0	49.4		ng/L		124	69 - 133	
(PFUnA)								
Perfluorododecanoic acid	40.0	46.6		ng/L		116	72 - 134	
(PFDoA)								
Perfluorotridecanoic acid	40.0	49.2		ng/L		123	65 - 144	
(PFTriA)								
Perfluorotetradecanoic acid	40.0	42.5		ng/L		106	71 - 132	
(PFTeA)								
Perfluorobutanesulfonic acid	35.4	34.4		ng/L		97	72 - 130	
(PFBS)								
Perfluorohexanesulfonic acid	36.4	39.7		ng/L		109	68 - 131	
(PFHxS)								
Perfluorooctanesulfonic acid	37.1	44.4		ng/L		120	65 - 140	
(PFOS)								
N-methylperfluorooctanesulfona	40.0	45.8		ng/L		115	65 - 136	
midoacetic acid (NMeFOSAA)								
N-ethylperfluorooctanesulfonami	40.0	45.2		ng/L		113	61 - 135	
doacetic acid (NEtFOSAA)								
9-Chlorohexadecafluoro-3-oxan	37.3	40.7		ng/L		109	77 ₋ 137	
onane-1-sulfonic acid				<u>-</u>				
Hexafluoropropylene Oxide	40.0	53.9	*+	ng/L		135	72 - 132	
Dimer Acid (HFPO-DA)				_				
11-Chloroeicosafluoro-3-oxaund	37.7	44.4		ng/L		118	76 - 136	
ecane-1-sulfonic acid								
4,8-Dioxa-3H-perfluorononanoic	37.7	49.2		ng/L		130	81 - 141	
acid (ADONA)								

LCS LCS

	LCS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	85		50 - 150
13C4 PFHpA	91		50 - 150
13C4 PFOA	92		50 - 150
13C5 PFNA	92		50 - 150
13C2 PFDA	88		50 - 150
13C2 PFUnA	78		50 - 150
13C2 PFDoA	94		50 - 150
13C2 PFTeDA	104		50 - 150
13C3 PFBS	102		50 - 150
1802 PFHxS	86		50 - 150
13C4 PFOS	84		50 - 150
d3-NMeFOSAA	86		50 - 150
d5-NEtFOSAA	84		50 - 150
13C3 HFPO-DA	80		50 - 150

Lab Sample ID: LCSD 320-503375/3-A

Matrix: Water

Analysis Batch: 504274

				Prep ly	•	
D				%Rec.		RPD
lifier	Unit	D	%Rec	Limits	RPD	Limit
	ng/L		112	72 - 129	1	30

Client Sample ID: Lab Control Sample Dup

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	44.7		ng/L		112	72 - 129	1	30
Perfluoroheptanoic acid (PFHpA)	40.0	47.9		ng/L		120	72 - 130	2	30
Perfluorooctanoic acid (PFOA)	40.0	45.5		ng/L		114	71 - 133	9	30

Eurofins TestAmerica, Sacramento

Page 31 of 47

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-503375/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Water**

Analysis Batch: 504274

Prep Type: Total/NA Prep Batch: 503375

	Spike	LCSD	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorononanoic acid (PFNA)	40.0	52.0		ng/L		130	69 - 130	6	30
Perfluorodecanoic acid (PFDA)	40.0	45.9		ng/L		115	71 - 129	1	30
Perfluoroundecanoic acid (PFUnA)	40.0	43.5		ng/L		109	69 - 133	13	30
Perfluorododecanoic acid (PFDoA)	40.0	50.2		ng/L		126	72 - 134	7	30
Perfluorotridecanoic acid (PFTriA)	40.0	56.1		ng/L		140	65 - 144	13	30
Perfluorotetradecanoic acid (PFTeA)	40.0	44.0		ng/L		110	71 - 132	4	30
Perfluorobutanesulfonic acid (PFBS)	35.4	33.2		ng/L		94	72 - 130	3	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	41.4		ng/L		114	68 - 131	4	30
Perfluorooctanesulfonic acid (PFOS)	37.1	46.2		ng/L		125	65 - 140	4	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	45.6		ng/L		114	65 - 136	0	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	45.3		ng/L		113	61 - 135	0	30
9-Chlorohexadecafluoro-3-oxan onane-1-sulfonic acid	37.3	43.8		ng/L		118	77 - 137	7	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	50.4		ng/L		126	72 - 132	7	30
11-Chloroeicosafluoro-3-oxaund ecane-1-sulfonic acid	37.7	45.7		ng/L		121	76 - 136	3	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	47.5		ng/L		126	81 - 141	3	30

LCSD LCSD

MB MB

Isotope Dilution	%Recovery Qualifier	r Limits				
13C2 PFHxA	100	50 - 150				
13C4 PFHpA	102	50 - 150				
13C4 PFOA	93	50 - 150				
13C5 PFNA	90	50 - 150				
13C2 PFDA	98	50 - 150				
13C2 PFUnA	98	50 - 150				
13C2 PFDoA	94	50 - 150				
13C2 PFTeDA	110	50 - 150				
13C3 PFBS	108	50 - 150				
1802 PFHxS	96	50 - 150				
13C4 PFOS	94	50 - 150				
d3-NMeFOSAA	96	50 - 150				
d5-NEtFOSAA	98	50 - 150				
13C3 HFPO-DA	92	50 - 150				

Lab Sample ID: MB 320-503377/1-A

Matrix: Water

Analysis Batch: 504170

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 503377

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		07/01/21 04:58	07/03/21 16:13	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		07/01/21 04:58	07/03/21 16:13	1

Eurofins TestAmerica, Sacramento

Page 32 of 47

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: MB 320-503377/1-A

Matrix: Water

Analysis Batch: 504170

Client S	Sample	ID: I	Method	В	laı	nl	K
	_	_	_				

Prep Type: Total/NA Prep Batch: 503377

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/01/21 04:58	07/03/21 16:13	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 04:58	07/03/21 16:13	
Perfluorodecanoic acid (PFDA)	0.356	J	2.0	0.31	ng/L		07/01/21 04:58	07/03/21 16:13	•
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 04:58	07/03/21 16:13	•
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 04:58	07/03/21 16:13	
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 04:58	07/03/21 16:13	•
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 04:58	07/03/21 16:13	•
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 04:58	07/03/21 16:13	
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		07/01/21 04:58	07/03/21 16:13	•
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		07/01/21 04:58	07/03/21 16:13	,
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 04:58	07/03/21 16:13	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 04:58	07/03/21 16:13	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 04:58	07/03/21 16:13	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		07/01/21 04:58	07/03/21 16:13	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 04:58	07/03/21 16:13	1
4,8-Dioxa-3H-perfluorononanoic acid	ND		2.0	0.40	ng/L		07/01/21 04:58	07/03/21 16:13	1

MB MB

	IVID I	IVID				
Isotope Dilution	%Recovery	Qualifier Limits		Prepared	Analyzed	Dil Fac
13C2 PFHxA	87	50 - 150	_	07/01/21 04:58	07/03/21 16:13	1
13C4 PFHpA	87	50 - 150)	07/01/21 04:58	07/03/21 16:13	1
13C4 PFOA	89	50 - 150)	07/01/21 04:58	07/03/21 16:13	1
13C5 PFNA	88	50 - 150		07/01/21 04:58	07/03/21 16:13	1
13C2 PFDA	96	50 - 150)	07/01/21 04:58	07/03/21 16:13	1
13C2 PFUnA	87	50 - 150)	07/01/21 04:58	07/03/21 16:13	1
13C2 PFDoA	97	50 - 150		07/01/21 04:58	07/03/21 16:13	1
13C2 PFTeDA	107	50 - 150)	07/01/21 04:58	07/03/21 16:13	1
13C3 PFBS	97	50 - 150)	07/01/21 04:58	07/03/21 16:13	1
1802 PFHxS	93	50 - 150		07/01/21 04:58	07/03/21 16:13	1
13C4 PFOS	90	50 - 150)	07/01/21 04:58	07/03/21 16:13	1
d3-NMeFOSAA	91	50 - 150)	07/01/21 04:58	07/03/21 16:13	1
d5-NEtFOSAA	86	50 - 150		07/01/21 04:58	07/03/21 16:13	1
13C3 HFPO-DA	84	50 - 150	1	07/01/21 04:58	07/03/21 16:13	1

Lab Sample ID: LCS 320-503377/2-A

Matrix: Water

(ADONA)

Analysis Batch: 504170

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Pron Batch: 503377

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	48.8		ng/L		122	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	48.6		ng/L		121	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	47.1		ng/L		118	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	46.6		ng/L		117	69 - 130	
Perfluorodecanoic acid (PFDA)	40.0	51.1		ng/L		128	71 - 129	
Perfluoroundecanoic acid (PFUnA)	40.0	51.9		ng/L		130	69 - 133	

Eurofins TestAmerica, Sacramento

Page 33 of 47

4

6

8

10

46

13

14

15

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-503377/2-A

Matrix: Water

Analysis Batch: 504170

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 503377

7 maryolo Batom 00-1170	Spike	LCS	LCS				%Rec.	•
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorododecanoic acid	40.0	47.8		ng/L		119	72 - 134	
(PFDoA)								
Perfluorotridecanoic acid	40.0	48.4		ng/L		121	65 - 144	
(PFTriA)								
Perfluorotetradecanoic acid	40.0	49.7		ng/L		124	71 - 132	
(PFTeA)								
Perfluorobutanesulfonic acid	35.4	33.9		ng/L		96	72 - 130	
(PFBS)								
Perfluorohexanesulfonic acid	36.4	39.7		ng/L		109	68 - 131	
(PFHxS)								
Perfluorooctanesulfonic acid	37.1	46.8		ng/L		126	65 - 140	
(PFOS)								
N-methylperfluorooctanesulfona	40.0	46.0		ng/L		115	65 - 136	
midoacetic acid (NMeFOSAA)								
N-ethylperfluorooctanesulfonami	40.0	55.3	*+	ng/L		138	61 - 135	
doacetic acid (NEtFOSAA)								
9-Chlorohexadecafluoro-3-oxan	37.3	46.9		ng/L		126	77 - 137	
onane-1-sulfonic acid								
Hexafluoropropylene Oxide	40.0	50.0		ng/L		125	72 - 132	
Dimer Acid (HFPO-DA)								
11-Chloroeicosafluoro-3-oxaund	37.7	48.2		ng/L		128	76 - 136	
ecane-1-sulfonic acid								
4,8-Dioxa-3H-perfluorononanoic	37.7	50.6		ng/L		134	81 - 141	
acid (ADONA)								

LCS LCS

Isotope Dilution	%Recovery Qua	lifier Limits
13C2 PFHxA	79	50 - 150
13C4 PFHpA	81	50 - 150
13C4 PFOA	86	50 - 150
13C5 PFNA	83	50 - 150
13C2 PFDA	80	50 - 150
13C2 PFUnA	77	50 - 150
13C2 PFDoA	87	50 - 150
13C2 PFTeDA	97	50 - 150
13C3 PFBS	94	50 - 150
1802 PFHxS	88	50 - 150
13C4 PFOS	79	50 - 150
d3-NMeFOSAA	85	50 - 150
d5-NEtFOSAA	78	50 - 150
13C3 HFPO-DA	79	50 - 150

Lab Sample ID: LCSD 320-503377/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 504170

Prep Type: Total/NA Prep Batch: 503377 %Rec. RPD

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	47.5		ng/L		119	72 - 129	3	30
Perfluoroheptanoic acid (PFHpA)	40.0	46.5		ng/L		116	72 - 130	4	30
Perfluorooctanoic acid (PFOA)	40.0	46.1		ng/L		115	71 - 133	2	30
Perfluorononanoic acid (PFNA)	40.0	49.8		ng/L		124	69 - 130	6	30
Perfluorodecanoic acid (PFDA)	40.0	48.6		ng/L		121	71 - 129	5	30

Eurofins TestAmerica, Sacramento

Page 34 of 47

QC Sample Results

Job ID: 320-75575-1 Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-503377/3-A

Matrix: Water

Analysis Batch: 504170

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 503377

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroundecanoic acid	40.0	50.6	-	ng/L		127	69 - 133	2	30
(PFUnA)									
Perfluorododecanoic acid	40.0	46.0		ng/L		115	72 - 134	4	30
(PFDoA)									
Perfluorotridecanoic acid	40.0	49.0		ng/L		123	65 - 144	1	30
(PFTriA)									
Perfluorotetradecanoic acid	40.0	54.8	*+	ng/L		137	71 - 132	10	30
(PFTeA)									
Perfluorobutanesulfonic acid	35.4	35.3		ng/L		100	72 - 130	4	30
(PFBS)									
Perfluorohexanesulfonic acid	36.4	41.9		ng/L		115	68 - 131	5	30
(PFHxS)									
Perfluorooctanesulfonic acid	37.1	46.7		ng/L		126	65 - 140	0	30
(PFOS)									
N-methylperfluorooctanesulfona	40.0	48.0		ng/L		120	65 - 136	4	30
midoacetic acid (NMeFOSAA)									
N-ethylperfluorooctanesulfonami	40.0	50.4		ng/L		126	61 - 135	9	30
doacetic acid (NEtFOSAA)								_	
9-Chlorohexadecafluoro-3-oxan	37.3	47.9		ng/L		128	77 - 137	2	30
onane-1-sulfonic acid									
Hexafluoropropylene Oxide	40.0	50.6		ng/L		127	72 - 132	1	30
Dimer Acid (HFPO-DA)								_	
11-Chloroeicosafluoro-3-oxaund	37.7	46.6		ng/L		124	76 - 136	3	30
ecane-1-sulfonic acid									
4,8-Dioxa-3H-perfluorononanoic	37.7	48.7		ng/L		129	81 - 141	4	30
acid (ADONA)									

LCSD LCSD

Isotope Dilution	%Recovery Qualifie	r Limits				
13C2 PFHxA	91	50 - 150				
13C4 PFHpA	88	50 - 150				
13C4 PFOA	89	50 - 150				
13C5 PFNA	87	50 - 150				
13C2 PFDA	88	50 - 150				
13C2 PFUnA	87	50 - 150				
13C2 PFDoA	96	50 - 150				
13C2 PFTeDA	95	50 - 150				
13C3 PFBS	97	50 - 150				
1802 PFHxS	89	50 - 150				
13C4 PFOS	85	50 - 150				
d3-NMeFOSAA	93	50 - 150				
d5-NEtFOSAA	87	50 - 150				
13C3 HFPO-DA	86	50 - 150				

QC Association Summary

Client: Shannon & Wilson, Inc Job ID: 320-75575-1 Project/Site: GUS PFAS-DOT

LCMS

Prep Batch: 503375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75575-1	PW-062	Total/NA	Water	3535	
320-75575-2	PW-038	Total/NA	Water	3535	
320-75575-3	PW-501	Total/NA	Water	3535	
320-75575-4	PW-037	Total/NA	Water	3535	
320-75575-5	PW-208.1	Total/NA	Water	3535	
320-75575-6	PW-040	Total/NA	Water	3535	
320-75575-7	PW-401	Total/NA	Water	3535	
320-75575-8	PW-039	Total/NA	Water	3535	
320-75575-9	PW-321	Total/NA	Water	3535	
320-75575-10	PW-221	Total/NA	Water	3535	
320-75575-11	PW-203	Total/NA	Water	3535	
320-75575-12	PW-045	Total/NA	Water	3535	
320-75575-13	PW-211	Total/NA	Water	3535	
320-75575-14	PW-419	Total/NA	Water	3535	
320-75575-16	PW-112	Total/NA	Water	3535	
320-75575-17	PW-205.1	Total/NA	Water	3535	
320-75575-18	PW-012	Total/NA	Water	3535	
320-75575-19	PW-204.1	Total/NA	Water	3535	
320-75575-20	PW-059	Total/NA	Water	3535	
MB 320-503375/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-503375/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-503375/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Prep Batch: 503377

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75575-15	PW-010	Total/NA	Water	3535	
MB 320-503377/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-503377/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-503377/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 504170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75575-15	PW-010	Total/NA	Water	EPA 537(Mod)	503377
MB 320-503377/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	503377
LCS 320-503377/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	503377
LCSD 320-503377/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	503377

Analysis Batch: 504274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75575-1	PW-062	Total/NA	Water	EPA 537(Mod)	503375
320-75575-2	PW-038	Total/NA	Water	EPA 537(Mod)	503375
320-75575-3	PW-501	Total/NA	Water	EPA 537(Mod)	503375
320-75575-4	PW-037	Total/NA	Water	EPA 537(Mod)	503375
320-75575-5	PW-208.1	Total/NA	Water	EPA 537(Mod)	503375
320-75575-6	PW-040	Total/NA	Water	EPA 537(Mod)	503375
320-75575-7	PW-401	Total/NA	Water	EPA 537(Mod)	503375
320-75575-8	PW-039	Total/NA	Water	EPA 537(Mod)	503375
320-75575-9	PW-321	Total/NA	Water	EPA 537(Mod)	503375
320-75575-10	PW-221	Total/NA	Water	EPA 537(Mod)	503375
320-75575-11	PW-203	Total/NA	Water	EPA 537(Mod)	503375
320-75575-12	PW-045	Total/NA	Water	EPA 537(Mod)	503375

Eurofins TestAmerica, Sacramento

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: GUS PFAS-DOT

Job ID: 320-75575-1

LCMS (Continued)

Analysis Batch: 504274 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75575-13	PW-211	Total/NA	Water	EPA 537(Mod)	503375
320-75575-14	PW-419	Total/NA	Water	EPA 537(Mod)	503375
320-75575-16	PW-112	Total/NA	Water	EPA 537(Mod)	503375
320-75575-17	PW-205.1	Total/NA	Water	EPA 537(Mod)	503375
320-75575-18	PW-012	Total/NA	Water	EPA 537(Mod)	503375
320-75575-19	PW-204.1	Total/NA	Water	EPA 537(Mod)	503375
320-75575-20	PW-059	Total/NA	Water	EPA 537(Mod)	503375
MB 320-503375/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	503375
LCS 320-503375/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	503375
LCSD 320-503375/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	503375

4

5

7

8

9

10

12

4.4

15

10

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Client Sample ID: PW-062

Date Collected: 06/22/21 17:08 Date Received: 06/29/21 14:55

Lab Sample ID: 320-75575-1

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			254.6 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 10:10	RS1	TAL SAC

Lab Sample ID: 320-75575-2 Client Sample ID: PW-038 **Matrix: Water**

Date Collected: 06/23/21 10:25 Date Received: 06/29/21 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			258.8 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 10:20	RS1	TAL SAC

Client Sample ID: PW-501 Lab Sample ID: 320-75575-3

Date Collected: 06/23/21 08:08

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			254.7 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 10:29	RS1	TAL SAC

Client Sample ID: PW-037 Lab Sample ID: 320-75575-4 Date Collected: 06/23/21 10:48 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			255 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 10:38	RS1	TAL SAC

Client Sample ID: PW-208.1 Lab Sample ID: 320-75575-5 Date Collected: 06/21/21 10:03 **Matrix: Water**

Date Received: 06/29/21 14:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			248.5 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 10:47	RS1	TAL SAC

Client Sample ID: PW-040 Lab Sample ID: 320-75575-6 Date Collected: 06/23/21 12:02 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			236.8 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 10:56	RS1	TAL SAC

Eurofins TestAmerica, Sacramento

10

Job ID: 320-75575-1

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Client Sample ID: PW-401 Lab Sample ID: 320-75575-7 Date Collected: 06/23/21 08:18

Matrix: Water

Matrix: Water

Matrix: Water

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			256.8 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 11:05	RS1	TAL SAC

Client Sample ID: PW-039 Lab Sample ID: 320-75575-8

Date Collected: 06/23/21 11:32 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			261.5 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 11:33	RS1	TAL SAC

Client Sample ID: PW-321 Lab Sample ID: 320-75575-9

Date Collected: 06/22/21 12:17 Date Received: 06/29/21 14:55

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method **Factor** Amount Amount Number or Analyzed Analyst Run Lab Total/NA Prep 3535 249.4 mL 10.0 mL 503375 07/01/21 04:16 EG TAL SAC Total/NA Analysis EPA 537(Mod) 504274 07/04/21 11:42 RS1 TAL SAC 1

Client Sample ID: PW-221 Lab Sample ID: 320-75575-10

Date Collected: 06/22/21 12:27 Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			258.1 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 11:51	RS1	TAL SAC

Lab Sample ID: 320-75575-11 Client Sample ID: PW-203 Date Collected: 06/21/21 09:13 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			244.4 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 12:00	RS1	TAL SAC

Client Sample ID: PW-045 Lab Sample ID: 320-75575-12 Date Collected: 06/22/21 11:42 **Matrix: Water**

Date Received: 06/29/21 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			258.9 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	FPA 537(Mod)		1			504274	07/04/21 12:09	RS1	TAL SAC

Eurofins TestAmerica, Sacramento

10

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Client Sample ID: PW-211

Date Received: 06/29/21 14:55

Lab Sample ID: 320-75575-13 Date Collected: 06/21/21 08:24

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed **Prep Type** Type Run **Factor Amount** Amount Analyst Lab 503375 07/01/21 04:16 TAL SAC Total/NA Prep 3535 251 mL 10.0 mL 07/04/21 12:18 RS1 Total/NA EPA 537(Mod) 504274 TAL SAC Analysis 1

Client Sample ID: PW-419 Lab Sample ID: 320-75575-14

Date Collected: 06/22/21 14:55 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			249.2 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 12:27	RS1	TAL SAC

Client Sample ID: PW-010 Lab Sample ID: 320-75575-15 **Matrix: Water**

Date Collected: 06/22/21 12:52 Date Received: 06/29/21 14:55

Batch Batch Dil Initial Final Batch **Prepared** Prep Type Type Method **Factor Amount** Amount Number or Analyzed Run Analyst Lab Total/NA Prep 3535 263.1 mL 10.0 mL 503377 07/01/21 04:58 EG TAL SAC Total/NA EPA 537(Mod) 504170 07/03/21 16:41 RS1 TAL SAC Analysis 1

Client Sample ID: PW-112 Lab Sample ID: 320-75575-16 Date Collected: 06/21/21 13:30 **Matrix: Water**

Date Received: 06/29/21 14:55

Batch Batch Dil Initial Final Batch Prepared Method Amount Amount Number Prep Type Type Run Factor or Analyzed Analyst Lab Total/NA Prep 3535 238.1 mL 10.0 mL 503375 07/01/21 04:16 EG TAL SAC Total/NA Analysis EPA 537(Mod) 1 504274 07/04/21 12:36 RS1 TAL SAC

Client Sample ID: PW-205.1 Lab Sample ID: 320-75575-17 Date Collected: 06/21/21 14:22 **Matrix: Water**

Date Received: 06/29/21 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			240.3 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 12:46	RS1	TAL SAC

Client Sample ID: PW-012 Lab Sample ID: 320-75575-18 Date Collected: 06/21/21 13:40 **Matrix: Water**

Date Received: 06/29/21 14:55

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 3535 248.9 mL 10.0 mL 503375 07/01/21 04:16 EG TAL SAC Total/NA Analysis EPA 537(Mod) 504274 07/04/21 12:55 RS1 TAL SAC

Eurofins TestAmerica, Sacramento

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-75575-1

Project/Site: GUS PFAS-DOT

Client Sample ID: PW-204.1 Lab Sample ID: 320-75575-19 Date Collected: 06/21/21 07:48

Matrix: Water

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			251.1 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 13:22	RS1	TAL SAC

Lab Sample ID: 320-75575-20 **Client Sample ID: PW-059**

Date Collected: 06/21/21 12:16 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			251 mL	10.0 mL	503375	07/01/21 04:16	EG	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504274	07/04/21 13:31	RS1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc Job ID: 320-75575-1

Project/Site: GUS PFAS-DOT

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

1

3

4

5

7

0

44

12

4.1

Method Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT

Protocol Laboratory

Method	Method Description	Protocol	Laboratory
EPA 537(Mod)	PFAS for QSM 5.3, Table B-15	EPA	TAL SAC
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-75575-1

<u>л</u>

4

5

8

9

11

10

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: GUS PFAS-DOT Job ID: 320-75575-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-75575-1	PW-062	Water	06/22/21 17:08	06/29/21 14:55
320-75575-2	PW-038	Water	06/23/21 10:25	06/29/21 14:55
320-75575-3	PW-501	Water	06/23/21 08:08	06/29/21 14:55
320-75575-4	PW-037	Water	06/23/21 10:48	06/29/21 14:55
320-75575-5	PW-208.1	Water	06/21/21 10:03	06/29/21 14:55
320-75575-6	PW-040	Water	06/23/21 12:02	06/29/21 14:55
320-75575-7	PW-401	Water	06/23/21 08:18	06/29/21 14:55
320-75575-8	PW-039	Water	06/23/21 11:32	06/29/21 14:55
20-75575-9	PW-321	Water	06/22/21 12:17	06/29/21 14:55
320-75575-10	PW-221	Water	06/22/21 12:27	06/29/21 14:55
320-75575-11	PW-203	Water	06/21/21 09:13	06/29/21 14:55
320-75575-12	PW-045	Water	06/22/21 11:42	06/29/21 14:55
320-75575-13	PW-211	Water	06/21/21 08:24	06/29/21 14:55
320-75575-14	PW-419	Water	06/22/21 14:55	06/29/21 14:55
320-75575-15	PW-010	Water	06/22/21 12:52	06/29/21 14:55
320-75575-16	PW-112	Water	06/21/21 13:30	06/29/21 14:55
320-75575-17	PW-205.1	Water	06/21/21 14:22	06/29/21 14:55
320-75575-18	PW-012	Water	06/21/21 13:40	06/29/21 14:55
320-75575-19	PW-204.1	Water	06/21/21 07:48	06/29/21 14:55
320-75575-20	PW-059	Water	06/21/21 12:16	06/29/21 14:55

3

4

5

7

0

10

11

4.0

14

SHANNON & WILSO 2355 Hill Road Fairbanks, AK 99709	ON, INC. CHAI	N-OF-CU			Attn:	Page of of D. All Pucter	2
(907) 479-0600 www.shannonwilson.con	n		A	nalytical Methods (ir	7 7		
Turn Around Time:	Quote No:					Remarks/Matrix Composition/Grab? Sample Containers	
Normal Rush	J-Flags: Yes N		\mathfrak{D}			Little of Co.	
Please Specify			/ / /		/ /	Remarks/Matrix	
Sample Identity	Lab No. Time S	Date Sampled				Composition/Grab? Sample Containers	
PW-062	1708 6	122/21 X			12	acundulator	
PW-00 038	1025 6	123121 ×		w	2	0 1	
PW-501		123/21 ×			2		
Pw-037	1.40	(23/2) ×			2		
PW-208.1	1003	121/21 X			2		
PULDUD	1202 6	123/21 ×	320-75575 Cha	ain of Custody	2		
PW- 401	ORIH C	12312 ×			2		
PW-039	1132	12212 >			2		
PIN-321	1217 4	122121 4			B		
PW-221	1227 6	12201 7			2		
Project Information	Sample Receipt	Reliquished	By: 1.	Reliquished I		Reliquished By: 3.	
1.4 1	Total No. of Containers:	Signature:	12.	Signature:	Time:		*
Name: 66 PFAS - DOT	COC Seals/Intact? Y/N/NA	- Signature.	Time. <u>1300</u>	Signature.	rime	Signature: Time:	
Contact: KRF	Received Good Cond./Cold	Printed Name:	Date: 6/28/4	Printed Name:	Date:	Printed Name: Date:	
Ongoing Project? Yes No	Temp: 5.30	H. Masters					
Sampler:	Delivery Method:	Company:	10	Company:		Company:	
Not	tes:	Shannon+Wi	AND DESCRIPTION OF THE PARTY OF	and the second of the second o			
110	100.	Received	By: W-F	Received By	y : 2.	Received By: 3.	
		Signature:	Time:	Signature:	Time:	Signature: Time:	
		Printed Name	Bate:	Printed Name:	Date:	Printed Name: Date:	
Distribution: White - w/shipment - returned Yellow - w/shipment - for con: Pink - Shannon & Wilson - jot	signee files	ort Company:		Company:		Company:	

No. 36327

| | |

7

ת מ

O

ယ

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709	DN, INC. CHAI	N-OF-CUSTO		Attn:	
(907) 479-0600 www.shannonwilson.com	n	,	Analytical M	ethods (include preservativ	
Turn Around Time:	Quote No:] /4			Zige ²⁵
Normal Rush	J-Flags: Yes No	_ / //			Remarks/Matrix Composition/Grab? Sample Containers
Please Specify					Remarks/Matrix
Sample Identity		Date ampled			Composition/Grab? Sample Containers
PWZO3	0913 6	121/2 X		2	avoundurate
PW-045	1143 61	22/11 X		2	
PW-211	0824 6	21/21 ×		9	
PW-419	1455 6	22/2		2	
PW-Olo	12526	122/LI X		2	
Pw-112	<i>[830 6]</i>	121/4 X		2	
PW WAY 205.1	1422 6	(4/4) ×		2	
PW-012	1840 6	/2i/21 ×		2	+
PW-204.1	0/48 6	(2/21 X		7	
PW 259	1218 6	/21/21 X		2	
Project Information	Sample Receipt	Reliquished By:	1. Reliq	uished By: 2.	Reliquished By: 3.
Number: (02599-013	Total No. of Containers:	Signature Time	: <u>(300</u> Signature:	Time:	Signature: Time:
Name: CUS P AS - DUT	COC Seals/Intact? Y/N/NA		//201-1-		
Ongoing Project? Yes No	Received Good Cond./Cold	Printed Name: Date A.Maskrs	Printed Name:	Date:	Printed Name: Date:
Ongoing Project? Yes No Sampler:	Temp: C3		Company:		Company:
		Shammat Wilson,)	nc,		
Not	tes:	Received By:	I. Red	eived By: 2.	Received By: 3.
		Signature: Time	Signature:	Time:	Signature: Time:
		Printed Name: Date	Printed Name:	Date:	Printed Name: Date:
Distribution: White - w/shipment - returned Yellow - w/shipment - for con Pink - Shannon & Wilson - jot	signee files	rt Company	Company:		Company:

No. 36331

Client: Shannon & Wilson, Inc

Job Number: 320-75575-1

Login Number: 75575

List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Her, David A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	SEALS
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	

True

N/A

Eurofins TestAmerica, Sacramento

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Laboratory Data Review Checklist

Completed By:
Amber Masters
Title:
Environmental Scientist
Date:
July 12, 2021
Consultant Firm:
Shannon & Wilson, Inc.
Laboratory Name:
Eurofins / TestAmerica Laboratories, Inc. (TestAmerica)
Laboratory Report Number:
320-75575-1 Rev(1)
Laboratory Report Date:
July 12, 2021
CS Site Name:
DOT&PF Gustavus Airport Statewide PFAS
ADEC File Number:
1507.38.017
Hazard Identification Number:
26904

May 2020 Page 1

Laboratory Report Date:
Note: Any N/A or No box checked must have an explanation in the comments box.
. <u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses?
Yes⊠ No□ N/A□ Comments: The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyfluorinated alkyl substances (PFAS) on February 11, 2021 by LCMSMS compliant with QSM Version 5.3 Table B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
$Yes \square No \square N/A \boxtimes Comments:$
The requested analyses were conducted by TestAmerica of West Sacramento, CA.
2. Chain of Custody (CoC)
a. CoC information completed, signed, and dated (including released/received by)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Correct analyses requested?
Yes⊠ No□ N/A□ Comments:
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
$Yes \boxtimes No \square N/A \square$ Comments:
Samples were preserved with Trizma.
c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?
Yes \boxtimes No \square N/A \square Comments:
L

May 2020 Page 2

320-75575-1 Rev(1)

	320-75575-1 Rev(1)						
La	poratory Report Date:						
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?						
	Yes \square No \square N/A \boxtimes Comments:						
	See above.						
	e. Data quality or usability affected?						
	Comments:						
The data quality and/or usability was not affected; see above.							
	4. <u>Case Narrative</u>						
	a. Present and understandable?						
	Yes \boxtimes No \square N/A \square Comments:						

May 2020 Page 3

Laboratory Report Date:

b. Discrepancies, errors, or QC failures identified by the lab?

Yes \boxtimes No \square N/A \square Comments:

The case narrative form notes the following:

The samples were received in good condition, properly preserved, and at a temperature of 5.3° C.

The laboratory control sample (LCS) for 320-503377 recovered outside control limits for N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA). This analyte was biased high in the LCS and were not detected in the associated sample; therefore, the data have been reported.

The laboratory control sample duplicate (LCSD) for 320-503377 recovered outside control limits for Perfluorotetradecanoic acid (PFTeA). This analyte was biased high in the LCSD and were not detected in the associated sample; therefore, the data have been reported.

The laboratory control sample (LCS) for preparation batch 320-503375 and analytical batch 320-504274 recovered outside control limits for the following analytes: Hexafluoropropylene Oxide Dimer Acid (HFPO-DA). These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

The laboratory applied an "I" qualifier to the PFHpA results of sample PW-401 to indicate the transition mass ratio was outside of established limits.

The following samples were preserved with trizma: *PW-062*, *PW-038*, *PW-501*, *PW-037*, *PW-208.1*, *PW-040*, *PW-401*, *PW-039*, *PW-010*, *PW-321*, *PW-221*, *PW-203*, *PW-045*, *PW-211*, *PW-419*, *PW-112*, *PW-205.1*, *PW-012*, *PW-204* and *PW-059*.

The following samples were yellow prior to extraction: *PW-062*, *PW-501*, *PW-037*, *PW-321*, *PW-112*, *PW-205.1*, and *PW-012*.

The following samples contained a thin layer of sediment at the bottom of the bottles prior to extraction: *PW-062*, *PW-501*, *PW-401*, *PW-221*, *PW-203*, *PW-045*, *PW-419*, *PW-112*, *PW-205.1*, *PW-012*.

PW-010 was yellow and contained a thin layer of sediment at the bottom of the bottle prior to extraction.

There was insufficient sample volume available to perform a matrix spike (MS) and MS duplicate (MSD) in conjunction with preparation batch 320-503377.

c. Were all corrective actions documented?

Yes \boxtimes No \square N/A \square Comments:

Analyst judgment was used to positively identify PFHpA in sample PW-401.

May 2020 Page 4

320-	-75575-1 Rev(1)
Laborat	Fory Report Date:
•	d. What is the effect on data quality/usability according to the case narrative?
	Comments:
(Due to the uncertainty associated with <i>PW-401</i> "I" flagged analyte (PFHpA), the PFHpA result is considered an estimate. The laboratory notes there may be a high bias; therefore, the analyte has been flagged 'JH*' in the analytical table.
5. <u>Sam</u>	nples Results
;	a. Correct analyses performed/reported as requested on COC?
	Yes⊠ No□ N/A□ Comments:
1	b. All applicable holding times met?
	Yes \boxtimes No \square N/A \square Comments:
_	c. All soils reported on a dry weight basis?
	Yes \square No \square N/A \boxtimes Comments:
;	Soil samples were not submitted with this work order.
	d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	Yes⊠ No□ N/A□ Comments:
,	The reporting limits (RL) are less than the applicable DEC regulatory limit for the project.
(e. Data quality or usability affected?
,	The data quality and/or usability was not affected; see above.
6. <u>QC</u>	Samples
•	a. Method Blank
•	i. One method blank reported per matrix, analysis and 20 samples?
	Yes \boxtimes No \square N/A \square Comments:
L	ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?

below the LOQ in method blank sample associated with preparatory batch 503377.

Comments:

No analytes were detected in method blank samples above the LOQ; however, PFDA was detected

May 2020 Page 5

Yes⊠ No□ N/A□

Laboratory Report Date:

iii. If above LOQ or project specified objectives, what samples are affected? Comments:
PFDA was not detected in the associated project sample. Results are not affected.
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes \square No \square N/A \boxtimes Comments:
Qualification of the data was not required. See above.
v. Data quality or usability affected? Comments:
Results are not affected. See above.
b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
Yes⊠ No□ N/A□ Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
$Yes \square No \square N/A \boxtimes Comments:$
Metals and/or inorganics were not analyzed as part of this work order.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
Yes□ No⊠ N/A□ Comments:
Percent recovery was above laboratory limits for HFPO-DA in the LCS sample associated with preparation batch 503375. Percent recovery was above laboratory limits for NEtFOSAA in the LCS sample associated with preparation batch 503377. Percent recovery was above laboratory limits for PFTeA in the LCSD sample associated with preparation batch 503377.
iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
Yes⊠ No□ N/A□ Comments:

May 2020 Page 6

v. If %R or RPD is outside of acceptable limits, what sar Comments: HFPO-DA was not detected in the project samples associated NEtFOSAA and PFTeA were not detected in the project samp 503377. Sample results are not affected. vi. Do the affected sample(s) have data flags? If so, are the Yes□ No□ N/A⊠ Comments:
Laboratory Report Date:
<u>.</u>
HFPO-DA was not detected in the project samples associated
NEtFOSAA and PFTeA were not detected in the project samp
503377.
Sample results are not affected.
vi. Do the affected sample(s) have data flags? If so, are the
Yes \square No \square N/A \boxtimes Comments:
Qualification of the data was not required; see above.
vii. Data quality or usability affected? (Use comment box
Comments:

mples are affected? with preparation batch 503375. ole associated with preparation batch ne data flags clearly defined? to explain.) The data quality and/or usability was not affected; see above. c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? $Yes \square No \boxtimes N/A \square$ Comments: Insufficient sample volume was available to perform a MS/MSD with the associated preparatory batches. However, the laboratory analyzed an LCS and LCSD to assess laboratory accuracy and precision. ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples? $Yes \square No \square N/A \square$ Comments: Metals and/or inorganics were not analyzed as part of this work order. iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? Yes \square No \square N/A \boxtimes Comments: MS and MSD samples were not analyzed for this work order. iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate. $Yes \square No \square N/A \boxtimes$ Comments: MS and MSD samples were not analyzed for this work order.

May 2020 Page 7

320-75575-1 Rev(1)	
020 /00/0 1100 (1)	

Laboratory Report Date:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
N/A; MS and MSD samples were not analyzed for this work order.
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes□ No□ N/A⊠ Comments:
MS and MSD samples were not analyzed for this work order.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
The data quality and/or usability was not affected; see above.
d. Surrogates - Organics Only or Isotope Dilution Analytes (IDA) - Isotope Dilution Methods Only
 i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laboratory samples?
Yes⊠ No□ N/A□ Comments:
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
Yes⊠ No□ N/A□ Comments:
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
$Yes \square No \square N/A \boxtimes Comments:$
There were no IDA recovery failures associated with this work order.
iv. Data quality or usability affected? Comments:
The data quality and/or usability was not affected; see above.
e. Trip Blanks
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
Yes□ No□ N/A⊠ Comments:
PFAS are not volatile compounds. A trip blank is not required for the requested analysis.

May 2020 Page 8

201	entowy Danart Data						
100	ratory Report Date:						
	ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC (If not, a comment explaining why must be entered below)						
	$Yes \square No \square N/A \boxtimes Comments:$						
	A trip blank is not required for the requested analysis.						
	iii. All results less than LOQ and project specified objectives?						
	Yes \square No \square N/A \boxtimes Comments:						
	A trip blank is not required for the requested analysis.						
	iv. If above LOQ or project specified objectives, what samples are affected? Comments:						
	N/A; a trip blank is not required for the requested analysis.						
	v. Data quality or usability affected? Comments:						
	The data quality and/or usability was not affected; see above.						
	f. Field Duplicate						
	i. One field duplicate submitted per matrix, analysis and 10 project samples?						
	$Yes \boxtimes No \square N/A \square$ Comments:						
	ii. Submitted blind to lab?						
	Yes \boxtimes No \square N/A \square Comments:						
	Field duplicate pairs <i>PW-012/PW-112</i> , <i>PW-221/PW-321</i> , and <i>PW-401/PW-501</i> were submitted with this work order.						

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

 $\begin{array}{ll} Where & R_1 = Sample \ Concentration \\ & R_2 = Field \ Duplicate \ Concentration \end{array}$

Yes \boxtimes No \square N/A \square Comments:

RPDs were within project specified range, where calculable.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

No; data quality and usability were not affected.

May 2020 Page 9

320-75575-1 Rev(1)									
Laboratory Report Date:									
g. Decontamination or Equipment below)?	nent Blank (If not applicable, a comment stating why must be entered								
Yes□ No□ N/A⊠	Comments:								
Decontamination or equipment	blank were not required for this project.								
i. All results less than LOQ and project specified objectives?									
Yes□ No□ N/A⊠	Comments:								
Decontamination or equipment	Decontamination or equipment blank were not required for this project.								
ii. If above LOQ or project	ct specified objectives, what samples are affected? Comments:								
Decontamination or equipment blank were not required for this project.									
iii. Data quality or usabilit	ty affected? Comments:								
The data quality and/or usability	y was not affected; see above.								
7. Other Data Flags/Qualifiers (ACOF	E, AFCEE, Lab Specific, etc.)								
a. Defined and appropriate?									

Comments:

 $Yes \square \quad No \square \quad N/A \boxtimes$

No additional data flags are required.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-75577-1 Client Project/Site: DRM FUS PFAS

For:

Shannon & Wilson, Inc 2355 Hill Rd. Fairbanks, Alaska 99709-5244

Attn: Kristen Freiburger

Jamin Ottom

Authorized for release by: 7/7/2021 3:08:53 PM

David Alltucker, Project Manager I (916)374-4383

David.Alltucker@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

_

6

2

9

10

12

13

Client: Shannon & Wilson, Inc Project/Site: DRM FUS PFAS Laboratory Job ID: 320-75577-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

__

6

8

10

11

13

14

Definitions/Glossary

Client: Shannon & Wilson, Inc
Project/Site: DRM FUS PFAS

Job ID: 320-75577-1

Qualifiers

LCMS

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

6

7

8

10

11

13

14

Case Narrative

Client: Shannon & Wilson, Inc
Project/Site: DRM FUS PFAS

Job ID: 320-75577-1

Job ID: 320-75577-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Receipt

The samples were received on 6/29/2021 2:55 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 5.3° C.

LCMS

Method EPA 537(Mod): The laboratory control sample duplicate (LCSD) for 320-503381 recovered outside control limits for B53 minor. This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method EPA 537(Mod): The laboratory control sample (LCS) for 320-503381 recovered outside control limits for several analytes. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-503381.

Method 3535: The following sample was light yellow and contained orange particulates in the sample bottle prior to extraction: PW-200 (320-75577-1).

Method 3535: The following samples were preserved with trizma: PW-200 (320-75577-1), PW-200-SINK (320-75577-2) and PW-200-CPort Composite (320-75577-8). Thus, the MB, LCS and LCSD also contain trizma.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

7

8

9

1 4

12

.

Detection Summary

Client: Shannon & Wilson, Inc Job ID: 320-75577-1 Project/Site: DRM FUS PFAS

Client Sample ID: PW-200

Lab Sample ID: 320-75577-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	8.1		1.8	0.52	ng/L	1	_	EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	2.8		1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	1.4	J	1.8	0.76	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.68	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	12		1.8	0.51	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	45		1.8	0.48	na/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: PW-200-SINK Lab Sample ID: 320-75577-2

No Detections.

Lab Sample ID: 320-75577-8 **Client Sample ID: PW-200-CPort Composite**

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-75577-1 Project/Site: DRM FUS PFAS

Client Sample ID: PW-200

Date Received: 06/29/21 14:55

13C3 HFPO-DA

Lab Sample ID: 320-75577-1 Date Collected: 06/22/21 16:15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	8.1		1.8	0.52	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluoroheptanoic acid (PFHpA)	2.8		1.8	0.22	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorooctanoic acid (PFOA)	1.4	J	1.8	0.76	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorotetradecanoic acid (PFTeA)	ND	*+	1.8	0.65	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorobutanesulfonic acid (PFBS)	0.68	J	1.8	0.18	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorohexanesulfonic acid (PFHxS)	12		1.8	0.51	ng/L		07/01/21 05:12	07/03/21 17:37	1
Perfluorooctanesulfonic acid (PFOS)	45		1.8	0.48	ng/L		07/01/21 05:12	07/03/21 17:37	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L		07/01/21 05:12	07/03/21 17:37	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	*+	4.5	1.2	ng/L		07/01/21 05:12	07/03/21 17:37	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L		07/01/21 05:12	07/03/21 17:37	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.6	1.3	ng/L		07/01/21 05:12	07/03/21 17:37	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.8	0.29	ng/L		07/01/21 05:12	07/03/21 17:37	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L		07/01/21 05:12	07/03/21 17:37	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	94		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C4 PFHpA	87		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C4 PFOA	92		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C5 PFNA	87		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C2 PFDA	97		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C2 PFUnA	94		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C2 PFDoA	98		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C2 PFTeDA	103		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C3 PFBS	104		50 - 150				07/01/21 05:12	07/03/21 17:37	1
1802 PFHxS	91		50 - 150				07/01/21 05:12	07/03/21 17:37	1
13C4 PFOS	91		50 - 150				07/01/21 05:12	07/03/21 17:37	1
d3-NMeFOSAA	100		50 ₋ 150				07/01/21 05:12	07/03/21 17:37	1
d5-NEtFOSAA	92		50 - 150				07/01/21 05:12	07/03/21 17:37	1
									•

7/7/2021

07/01/21 05:12 07/03/21 17:37

50 - 150

Client Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-75577-1 Project/Site: DRM FUS PFAS

Client Sample ID: PW-200-SINK

Lab Sample ID: 320-75577-2

Date Collected: 06/22/21 15:44 **Matrix: Water** Date Received: 06/29/21 14:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.56	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.24	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.81	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorotetradecanoic acid (PFTeA)	ND	*+	1.9	0.70	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.55	ng/L		07/01/21 05:12	07/03/21 17:46	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.52	ng/L		07/01/21 05:12	07/03/21 17:46	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.1	ng/L		07/01/21 05:12	07/03/21 17:46	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	*+	4.8		ng/L		07/01/21 05:12	07/03/21 17:46	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9		ng/L			07/03/21 17:46	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8		ng/L			07/03/21 17:46	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.9		ng/L		07/01/21 05:12	07/03/21 17:46	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		07/01/21 05:12	07/03/21 17:46	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150				07/01/21 05:12	07/03/21 17:46	1
13C4 PFHpA	92		50 - 150				07/01/21 05:12	07/03/21 17:46	1
13C4 PFOA	95		50 - 150				07/01/21 05:12	07/03/21 17:46	1
13C5 PFNA	89		50 - 150				07/01/21 05:12	07/03/21 17:46	1
13C2 PFDA	99		50 - 150				07/01/21 05:12	07/03/21 17:46	1
13C2 PFUnA	89		50 ₋ 150					07/03/21 17:46	1
13C2 PFDoA	95		50 - 150				07/01/21 05:12	07/03/21 17:46	1
13C2 PFTeDA	110		50 ₋ 150				07/01/21 05:12	07/03/21 17:46	1
13C3 PFBS	100		50 ₋ 150				07/01/21 05:12	07/03/21 17:46	1
1802 PFHxS	96		50 ₋ 150				07/01/21 05:12	07/03/21 17:46	1
13C4 PFOS	93		50 ₋ 150				07/01/21 05:12	07/03/21 17:46	1
d3-NMeFOSAA	95		50 ₋ 150					07/03/21 17:46	1
d5-NEtFOSAA	90		50 ₋ 150					07/03/21 17:46	1
13C3 HFPO-DA	88		50 ₋ 150					07/03/21 17:46	1

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DRM FUS PFAS

Job ID: 320-75577-1

Client Sample ID: PW-200-CPort Composite

Date Collected: 06/22/21 16:10
Date Received: 06/29/21 14:55

13C4 PFOS

d3-NMeFOSAA

d5-NEtFOSAA

13C3 HFPO-DA

Lab Sample ID: 320-75577-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.9	0.56	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.24	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorooctanoic acid (PFOA)	ND		1.9	0.82	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.26	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.30	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.1	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.53	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.3	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorotetradecanoic acid (PFTeA)	ND	*+	1.9	0.70	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9	0.19	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9	0.55	ng/L		07/01/21 05:12	07/03/21 17:56	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9	0.52	ng/L		07/01/21 05:12	07/03/21 17:56	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.8	1.2	ng/L		07/01/21 05:12	07/03/21 17:56	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	*+	4.8	1.3	ng/L		07/01/21 05:12	07/03/21 17:56	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.9	0.23	ng/L		07/01/21 05:12	07/03/21 17:56	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	*+	3.9	1.4	ng/L		07/01/21 05:12	07/03/21 17:56	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND	*+	1.9	0.31	ng/L		07/01/21 05:12	07/03/21 17:56	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.39	ng/L		07/01/21 05:12	07/03/21 17:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	95		50 - 150				07/01/21 05:12	07/03/21 17:56	1
13C4 PFHpA	100		50 - 150				07/01/21 05:12	07/03/21 17:56	1
13C4 PFOA	96		50 - 150				07/01/21 05:12	07/03/21 17:56	1
13C5 PFNA	100		50 - 150				07/01/21 05:12	07/03/21 17:56	1
13C2 PFDA	100		50 - 150				07/01/21 05:12	07/03/21 17:56	1
13C2 PFUnA	92		50 - 150				07/01/21 05:12	07/03/21 17:56	1
13C2 PFDoA	108		50 - 150				07/01/21 05:12	07/03/21 17:56	1
13C2 PFTeDA	110		50 - 150				07/01/21 05:12	07/03/21 17:56	1
13C3 PFBS	109		50 - 150				07/01/21 05:12	07/03/21 17:56	1
1802 PFHxS	98		50 - 150				07/01/21 05:12	07/03/21 17:56	1

50 - 150

50 - 150

50 - 150

50 - 150

98

96

97

90

7/7/2021

07/01/21 05:12 07/03/21 17:56

07/01/21 05:12 07/03/21 17:56

07/01/21 05:12 07/03/21 17:56

07/01/21 05:12 07/03/21 17:56

Isotope Dilution Summary

Client: Shannon & Wilson, Inc
Project/Site: DRM FUS PFAS

Job ID: 320-75577-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water Prep Type: Total/NA

			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA	PFDoA	PFTDA
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)
320-75577-1	PW-200	94	87	92	87	97	94	98	103
320-75577-2	PW-200-SINK	89	92	95	89	99	89	95	110
320-75577-8	PW-200-CPort Composite	95	100	96	100	100	92	108	110
LCS 320-503381/2-A	Lab Control Sample	90	89	95	88	91	84	94	100
LCSD 320-503381/3-A	Lab Control Sample Dup	92	99	90	92	90	91	100	104
MB 320-503381/1-A	Method Blank	89	92	93	92	87	89	97	102
			Perce	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		C3PFBS	PFHxS	PFOS	d3NMFOS	d5NEFOS	HFPODA		
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)	(50-150)		
320-75577-1	PW-200	104	91	91	100	92	83		
320-75577-2	PW-200-SINK	100	96	93	95	90	88		
320-75577-8	PW-200-CPort Composite	109	98	98	96	97	90		
LCS 320-503381/2-A	Lab Control Sample	105	91	90	95	87	84		
LCSD 320-503381/3-A	Lab Control Sample Dup	103	91	88	97	91	95		
MB 320-503381/1-A	Method Blank	101	92	87	93	87	90		
Surrogate Legend									

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

Eurofins TestAmerica, Sacramento

2

3

4

6

9

11

13

14

Client: Shannon & Wilson, Inc Job ID: 320-75577-1 Project/Site: DRM FUS PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

MB MB

Lab Sample ID: MB 320-503381/1-A

Matrix: Water

Analysis Batch: 504170

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 503381

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		07/01/21 05:12	07/03/21 17:09	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		07/01/21 05:12	07/03/21 17:09	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		07/01/21 05:12	07/03/21 17:09	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		07/01/21 05:12	07/03/21 17:09	1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		2.0	0.24	ng/L		07/01/21 05:12	07/03/21 17:09	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		07/01/21 05:12	07/03/21 17:09	1
11-Chloroeicosafluoro-3-oxaundecan e-1-sulfonic acid	ND		2.0	0.32	ng/L		07/01/21 05:12	07/03/21 17:09	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		07/01/21 05:12	07/03/21 17:09	1
	440	440							

MR MR

	IVIB	IVIB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C4 PFHpA	92		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C4 PFOA	93		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C5 PFNA	92		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C2 PFDA	87		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C2 PFUnA	89		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C2 PFDoA	97		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C2 PFTeDA	102		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C3 PFBS	101		50 - 150	07/01/21 05:12	07/03/21 17:09	1
1802 PFHxS	92		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C4 PFOS	87		50 - 150	07/01/21 05:12	07/03/21 17:09	1
d3-NMeFOSAA	93		50 - 150	07/01/21 05:12	07/03/21 17:09	1
d5-NEtFOSAA	87		50 - 150	07/01/21 05:12	07/03/21 17:09	1
13C3 HFPO-DA	90		50 - 150	07/01/21 05:12	07/03/21 17:09	1

Lab Sample ID: LCS 320-503381/2-A

Matrix: Water

Analysis Batch: 504170

Client Sample ID:	Lab Control Sample	
	Prep Type: Total/NA	

Prep Batch: 503381

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorohexanoic acid (PFHxA)	40.0	47.0		ng/L		118	72 - 129	
Perfluoroheptanoic acid (PFHpA)	40.0	46.5		ng/L		116	72 - 130	
Perfluorooctanoic acid (PFOA)	40.0	44.9		ng/L		112	71 - 133	
Perfluorononanoic acid (PFNA)	40.0	50.3		ng/L		126	69 - 130	

Eurofins TestAmerica, Sacramento

Page 10 of 19

Client: Shannon & Wilson, Inc Job ID: 320-75577-1 Project/Site: DRM FUS PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Matrix: Water

acid (ADONA)

Matrix: Water

Analysis Batch: 504170

Lab Sample ID: LCS 320-503381/2-A

Client Sample ID: Lab Control Sample

Prep	Type: Total/NA
Prep	Batch: 503381
%Rec	

Analysis Baton: 004170	Spike	LCS I	LCS				%Rec.
Analyte	Added	Result (Unit	D	%Rec	Limits
Perfluorodecanoic acid (PFDA)	40.0	48.9		ng/L		122	71 - 129
Perfluoroundecanoic acid	40.0	52.4		ng/L		131	69 - 133
(PFUnA)				Ü			
Perfluorododecanoic acid	40.0	47.6		ng/L		119	72 - 134
(PFDoA)							
Perfluorotridecanoic acid	40.0	48.7		ng/L		122	65 - 144
(PFTriA)							
Perfluorotetradecanoic acid	40.0	55.2 *	' +	ng/L		138	71 - 132
(PFTeA)							
Perfluorobutanesulfonic acid	35.4	36.8		ng/L		104	72 - 130
(PFBS)							
Perfluorohexanesulfonic acid	36.4	44.9		ng/L		123	68 - 131
(PFHxS)							
Perfluorooctanesulfonic acid	37.1	43.0		ng/L		116	65 - 140
(PFOS)							
N-methylperfluorooctanesulfona	40.0	45.9		ng/L		115	65 - 136
midoacetic acid (NMeFOSAA)							
N-ethylperfluorooctanesulfonami	40.0	54.6 *	` +	ng/L		136	61 - 135
doacetic acid (NEtFOSAA)	07.0					440	77 407
9-Chlorohexadecafluoro-3-oxan	37.3	44.1		ng/L		118	77 - 137
onane-1-sulfonic acid						404	70. 400
Hexafluoropropylene Oxide	40.0	53.5 *	`+	ng/L		134	72 - 132
Dimer Acid (HFPO-DA)	27.7	40.0		/1		400	70 400
11-Chloroeicosafluoro-3-oxaund	37.7	48.6		ng/L		129	76 - 136
ecane-1-sulfonic acid	37.7	46.6		na/l		104	81 - 141
4,8-Dioxa-3H-perfluorononanoic	37.7	40.6		ng/L		124	01 - 141

LCS LCS

	LUJ	LUJ	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	90		50 - 150
13C4 PFHpA	89		50 - 150
13C4 PFOA	95		50 - 150
13C5 PFNA	88		50 - 150
13C2 PFDA	91		50 - 150
13C2 PFUnA	84		50 - 150
13C2 PFDoA	94		50 - 150
13C2 PFTeDA	100		50 - 150
13C3 PFBS	105		50 - 150
1802 PFHxS	91		50 - 150
13C4 PFOS	90		50 - 150
d3-NMeFOSAA	95		50 - 150
d5-NEtFOSAA	87		50 - 150
13C3 HFPO-DA	84		50 - 150

Lab Sample ID: LCSD 320-503381/3-A

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 504170							Prep Batch: 50338		
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorohexanoic acid (PFHxA)	40.0	47.6		ng/L		119	72 - 129	1	30
Perfluoroheptanoic acid (PFHpA)	40.0	46.5		ng/L		116	72 - 130	0	30
Perfluorooctanoic acid (PFOA)	40.0	47.1		ng/L		118	71 - 133	5	30

Eurofins TestAmerica, Sacramento

Page 11 of 19

QC Sample Results

Client: Shannon & Wilson, Inc Job ID: 320-75577-1 Project/Site: DRM FUS PFAS

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-503381/3-A

Matrix: Water

acid (ADONA)

Analysis Batch: 504170

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 503381

LCSD LCSD **RPD** Spike %Rec. Added Result Qualifier Unit %Rec Limits RPD Limit Perfluorononanoic acid (PFNA) 40.0 48.6 ng/L 121 69 - 130 3 30 Perfluorodecanoic acid (PFDA) 40.0 50.3 ng/L 126 71 - 129 3 30 69 - 133 30 Perfluoroundecanoic acid 40.0 48.4 ng/L 121 8 (PFUnA) Perfluorododecanoic acid 40.0 40.9 ng/L 102 72 - 134 15 30 (PFDoA) 40.0 47.7 119 65 - 144 2 30 Perfluorotridecanoic acid ng/L (PFTriA) Perfluorotetradecanoic acid 40.0 51.8 ng/L 129 71 - 132 6 30 (PFTeA) Perfluorobutanesulfonic acid 35.4 35.4 100 72 - 130 30 ng/L (PFBS) 36.4 45.6 125 Perfluorohexanesulfonic acid ng/L 68 - 131 1 30 (PFHxS) Perfluorooctanesulfonic acid 37.1 46.4 125 65 - 140 8 30 ng/L (PFOS) N-methylperfluorooctanesulfona 40.0 47.3 118 65 - 136 ng/L midoacetic acid (NMeFOSAA) 40.0 128 30 N-ethylperfluorooctanesulfonami 51.3 ng/L 61 - 135 6 doacetic acid (NEtFOSAA) 9-Chlorohexadecafluoro-3-oxan 37.3 49.0 ng/L 132 77 - 13711 30 onane-1-sulfonic acid 40.0 43.5 ng/L 109 72 - 132 21 Hexafluoropropylene Oxide Dimer Acid (HFPO-DA) 11-Chloroeicosafluoro-3-oxaund 37.7 52.1 *+ 138 76 - 136 30 ng/L ecane-1-sulfonic acid 4,8-Dioxa-3H-perfluorononanoic 37.7 48.9 ng/L 130 81 - 141 30

LCSD LCSD

	LOOD	LUUD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFHxA	92		50 - 150
13C4 PFHpA	99		50 - 150
13C4 PFOA	90		50 - 150
13C5 PFNA	92		50 - 150
13C2 PFDA	90		50 - 150
13C2 PFUnA	91		50 - 150
13C2 PFDoA	100		50 - 150
13C2 PFTeDA	104		50 - 150
13C3 PFBS	103		50 - 150
1802 PFHxS	91		50 - 150
13C4 PFOS	88		50 - 150
d3-NMeFOSAA	97		50 - 150
d5-NEtFOSAA	91		50 - 150
13C3 HFPO-DA	95		50 - 150
=			

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: DRM FUS PFAS

Job ID: 320-75577-1

LCMS

Prep Batch: 503381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75577-1	PW-200	Total/NA	Water	3535	
320-75577-2	PW-200-SINK	Total/NA	Water	3535	
320-75577-8	PW-200-CPort Composite	Total/NA	Water	3535	
MB 320-503381/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-503381/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-503381/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 504170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-75577-1	PW-200	Total/NA	Water	EPA 537(Mod)	503381
320-75577-2	PW-200-SINK	Total/NA	Water	EPA 537(Mod)	503381
320-75577-8	PW-200-CPort Composite	Total/NA	Water	EPA 537(Mod)	503381
MB 320-503381/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	503381
LCS 320-503381/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	503381
LCSD 320-503381/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	503381

2

3

4

5

8

9

1

12

13

14

Lab Chronicle

Client: Shannon & Wilson, Inc Job ID: 320-75577-1 Project/Site: DRM FUS PFAS

Lab Sample ID: 320-75577-1 **Client Sample ID: PW-200**

Date Collected: 06/22/21 16:15 **Matrix: Water** Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			278.7 mL	10.0 mL	503381	07/01/21 05:12	NSS	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504170	07/03/21 17:37	RS1	TAL SAC

Client Sample ID: PW-200-SINK Lab Sample ID: 320-75577-2

Date Collected: 06/22/21 15:44 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			261.1 mL	10.0 mL	503381	07/01/21 05:12	NSS	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504170	07/03/21 17:46	RS1	TAL SAC

Lab Sample ID: 320-75577-8 **Client Sample ID: PW-200-CPort Composite**

Date Collected: 06/22/21 16:10 **Matrix: Water**

Date Received: 06/29/21 14:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			259.1 mL	10.0 mL	503381	07/01/21 05:12	NSS	TAL SAC
Total/NA	Analysis	EPA 537(Mod)		1			504170	07/03/21 17:56	RS1	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

7/7/2021

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc

Job ID: 320-75577-1

Project/Site: DRM FUS PFAS

Laboratory: Eurofins TestAmerica, Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

3

4

5

7

9

11

14

14

Method Summary

Client: Shannon & Wilson, Inc Project/Site: DRM FUS PFAS

 Method
 Method Description
 Protocol
 Laboratory

 EPA 537(Mod)
 PFAS for QSM 5.3, Table B-15
 EPA
 TAL SAC

 3535
 Solid-Phase Extraction (SPE)
 SW846
 TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-75577-1

4

5

7

8

46

11

12

14

Sample Summary

Client: Shannon & Wilson, Inc Project/Site: DRM FUS PFAS

Job ID: 320-75577-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset
320-75577-1	PW-200	Water	06/22/21 16:15	06/29/21 14:55	
320-75577-2	PW-200-SINK	Water	06/22/21 15:44	06/29/21 14:55	
320-75577-8	PW-200-CPort Composite	Water	06/22/21 16:10	06/29/21 14:55	

3

5

7

8

9

11

12

SHANNON & WILSO GEOTECHNICAL AND ENVIRONMENTAL 2355 Hill Road Fairbanks, AK 99709 (907) 479-0600 www.shannonwilson.com	3.	N-OF-CUST		RECORD	Attn: _		of
Turn Around Time: Normal Rush Please Specify	Quote No: MSA Number: J-Flags: No	1	320-7557	7 Chain of Custody		Remarks/ Compositio Sample Co	
Sample Identity PW-200 PW-200 -Sink	Lab No. Time Sar	pate mpled Q		/ Custody	123	Composition Sample Co	ntainers
Pw-200-Unit 2-Coort Pw-200-Unit 2-Coort Pw-200-Unit 3-Coort	x Har 1602	× ×			2 2		
PW-200-Unity-CPO PW-200 F Port PW-200 - CPOIT CO	* HOD * 1552	X			2 2		
			4 28	Polissished Day			
Number: 101543-001 Name: Dan Cus PRAS	Sample Receipt Total No. of Containers: COC Seals/Intact? Y/N/NA	Reliquished By:		Reliquished By:	2. me:S	Reliquished B	y: 3. Time:
Contact: COPPORT Ongoing Project? Yes No No	Received Good Cond./Cold Temp:	A. Mastos				Printed Name:	Date:
Sampler: ACM No	Delivery Method:	Shannon (V. Ison Received By:	1. (nc.	Received By:	2.	Received By	: 3.
		Signature T	blash	Signature: Ti		Signature: Printed Name:	Time:
Distribution: White - w/shipment - returned Yellow - w/shipment - for con Pink - Shannon & Wilson - jo		David Har		Company:		Company:	

Job Number: 320-75577-1

Client: Shannon & Wilson, Inc

List Source: Eurofins TestAmerica, Sacramento

Login Number: 75577 List Number: 1

Creator: Her, David A

Creator: Her, David A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	SEALS
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Laboratory Data Review Checklist

Completed By:	
Rachel Willis	
Title:	
Environmental Scientist	
Date:	
July 16, 2021	
Consultant Firm:	
Shannon & Wilson, Inc.	
Laboratory Name:	
Eurofins / TestAmerica Laboratories (TestAmerica)	
Laboratory Report Number:	
320-75577-1	
Laboratory Report Date:	
July 7, 2021	
CS Site Name:	
DRM Gustavus PFAS	
ADEC File Number:	
1507.38.017	
Hazard Identification Number:	
26904	

320-75577-1
Laboratory Report Date:
July 7, 2021
CS Site Name:
DRM Gustavus PFAS
Note: Any N/A or No box checked must have an explanation in the comments box.
1. <u>Laboratory</u>
a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses?
Yes \boxtimes No \square N/A \square Comments:
The DEC certified TestAmerica of West Sacramento, CA for the analysis of per- and polyfluorinated alkyl substances (PFAS) on February 11, 2021 by PFAS LCMSMS compliant with QSM Version 5.3 Table B-15. These reported analytes were included in the DEC's Contaminated Sites Laboratory Approval 17-020.
b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
Yes \square No \square N/A \boxtimes Comments:
The samples were analyzed by TestAmerica Laboratories of West Sacramento, CA.
2. Chain of Custody (CoC)
- enamer elabora, (elej
a. CoC information completed, signed, and dated (including released/received by)?
$Yes \boxtimes No \square N/A \square$ Comments:
b. Correct analyses requested?
$Yes \boxtimes No \square N/A \square$ Comments:
3. <u>Laboratory Sample Receipt Documentation</u>
a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
Yes \boxtimes No \square N/A \square Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
$Yes \boxtimes No \square N/A \square$ Comments:

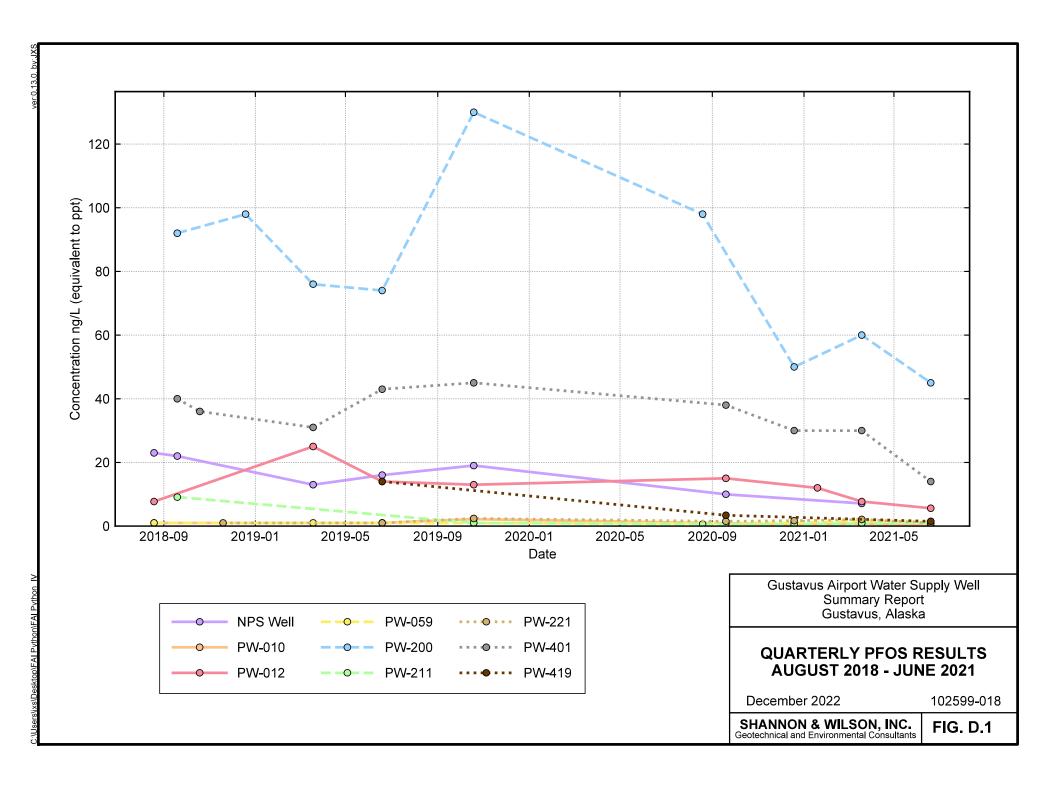
,	320-75577-1		
Lab	oratory Report Date:		
•	July 7, 2021		
CS S	Site Name:		
	DRM Gustavus PFAS		
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes⊠ No□ N/A□ Comments:		
	The sample receipt form notes that the samples were received in good condition.		
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?		
	$Yes \square No \square N/A \boxtimes Comments:$		
	e. Data quality or usability affected?		
	Comments:		
	Data quality and/or usability are not affected.		
4	4. <u>Case Narrative</u>		
	a. Present and understandable?		
	$Yes \boxtimes No \square N/A \square$ Comments:		
	b. Discrepancies, errors, or QC failures identified by the lab?		
	Yes \boxtimes No \square N/A \square Comments:		
	The LCS and LCSD for 320-503381 was recovered outside control limits for multiple PFAS. The laboratory also notes there was insufficient volume for an MS/MSD sample.		
	c. Were all corrective actions documented?		
	Yes□ No□ N/A⊠ Comments:		
	The laboratory does not discuss any corrective actions.		
	d. What is the effect on data quality/usability according to the case narrative?		
	Comments:		
	The case narrative does not note an effect on the data quality or usability.		

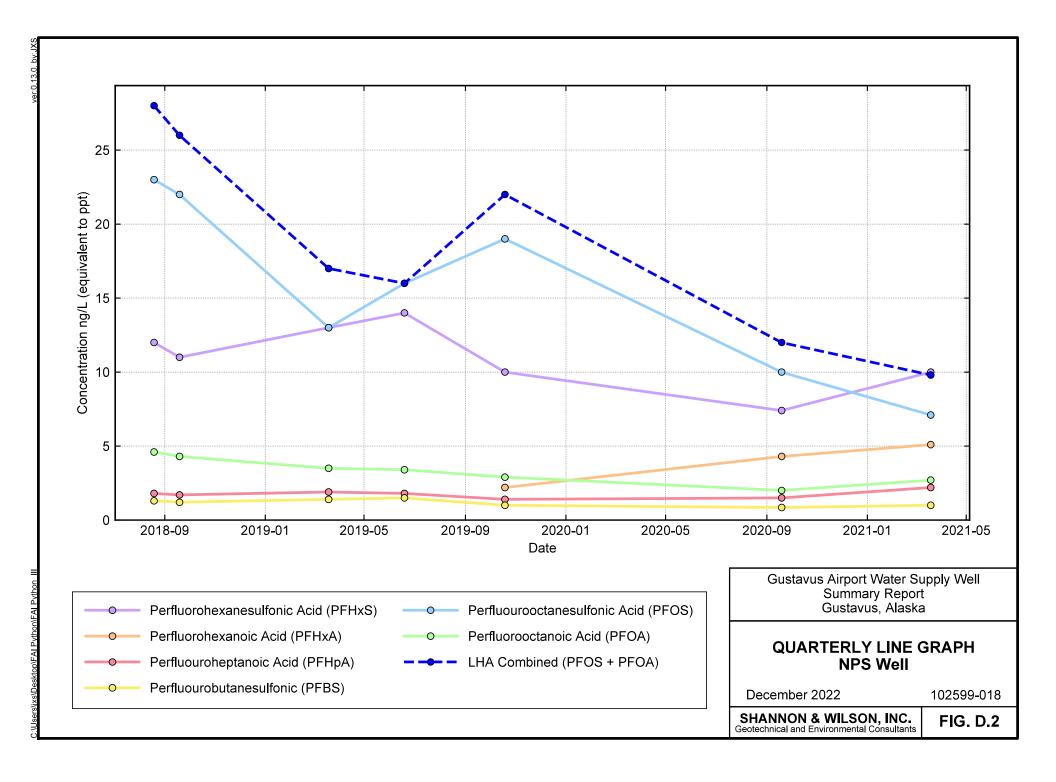
	320	-75577-1
La	borat	tory Report Date:
	July	7, 2021
CS	Site	Name:
	DR	M Gustavus PFAS
5.	San	nples Results
		a. Correct analyses performed/reported as requested on COC?
	Г	Yes⊠ No□ N/A□ Comments:
		h All applicable holding times met?
	_	b. All applicable holding times met? Yes⊠ No□ N/A□ Comments:
		c. All soils reported on a dry weight basis?
		Yes□ No□ N/A⊠ Comments:
		Soil samples were not included with this work order.
		d. Are the reported LOQs less than the Cleanup Level or the minimum required detection level for the project?
	Γ	Yes⊠ No□ N/A□ Comments:
		e. Data quality or usability affected?
		Data quality or usability are not affected.
6.	QC	Samples
		a. Method Blank
		i. One method blank reported per matrix, analysis and 20 samples?
		Yes⊠ No□ N/A□ Comments:
		ii. All method blank results less than limit of quantitation (LOQ) or project specified objectives?
	Г	Yes⊠ No□ N/A□ Comments:

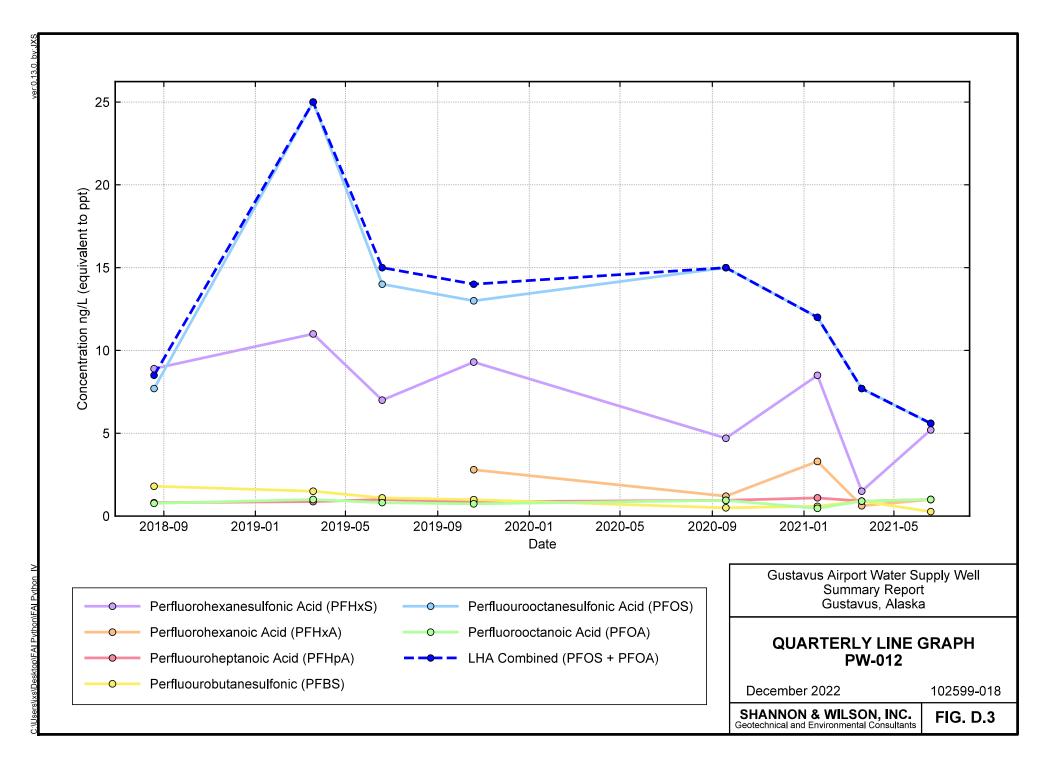
320-75577-1		
Laboratory Report Date:		
July 7, 2021		
CS Site Name:		
DRM Gustavus PFAS		
iii. If above LOQ or project specified objectives, what samples are affected? Comments:		
N/A; see above.		
iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		
$Yes \square No \square N/A \boxtimes Comments:$ See above.		
v. Data quality or usability affected? Comments:		
The results are unaffected; see below.		
b. Laboratory Control Sample/Duplicate (LCS/LCSD)		
 i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) 		
Yes⊠ No□ N/A□ Comments:		
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?		
$Yes \square No \square N/A \boxtimes Comments:$		
Metals/inorganics were not included in this work order.		
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)		
Yes No N/A Comments:		
Percent recovery was elevated for the following PFAS in the LCS sample: PFTeA, NEtFOSAA, and HFPO-DA. Percent recovery was elevated for 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid in the LCSD sample.		

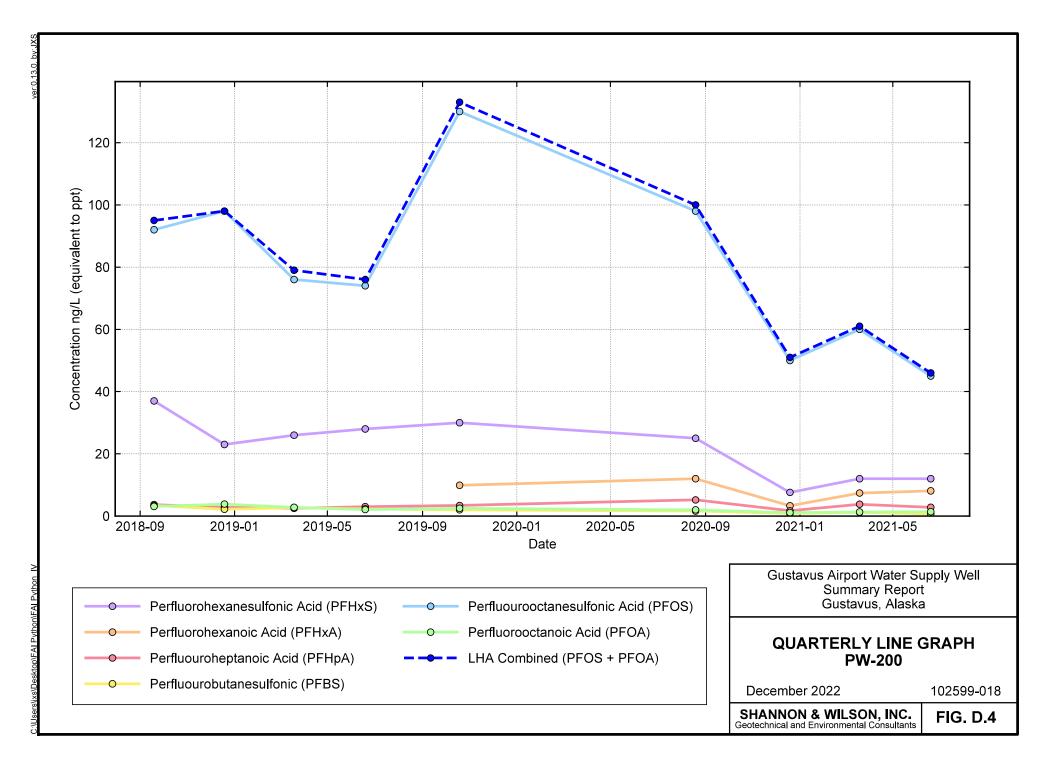
320-75577-1		
Laboratory Report Date:		
July 7, 2021		
CS Site Name:		
DRM Gustavus PFAS		
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from LCS/LCSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) Yes⊠ No□ N/A□ Comments: 		
$Yes \boxtimes No \square N/A \square$ Comments:		
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Analytes with high percent recovery were not detected in project samples; samples are not affected by		
the high percent recovery.		
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		
Yes□ No□ N/A⊠ Comments:		
No qualification of the data is required; samples not affected.		
vii. Data quality or usability affected? (Use comment box to explain.) Comments:		
Data quality or usability is not affected.		
 c. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Note: Leave blank if not required for project i. Organics – One MS/MSD reported per matrix, analysis and 20 samples? 		
Yes No N/A Comments:		
There was not enough sample volume to perform a MS/MSD. Accuracy and precision were evaluated using the LCS/LCSD sample pair.		
ii. Metals/Inorganics – one MS and one MSD reported per matrix, analysis and 20 samples?		
$Yes \square No \square N/A \boxtimes Comments:$		
Metals/inorganics were not included with this work order.		

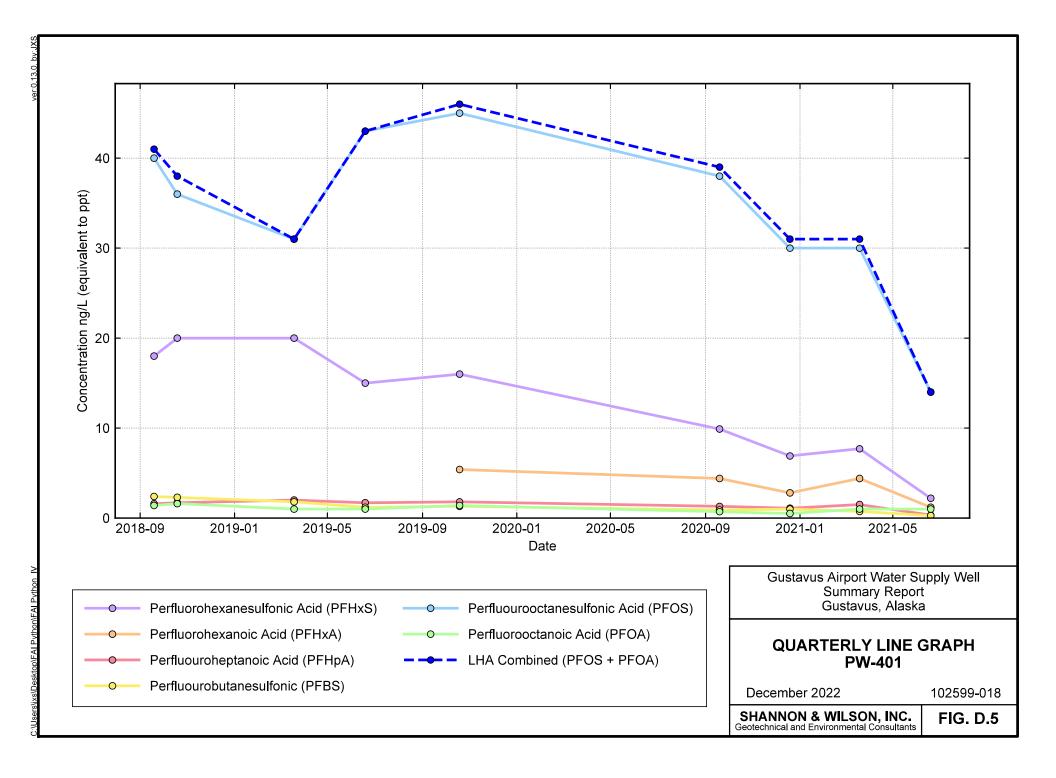
320-75577-1		
Laboratory Report Date:		
July 7, 2021		
CS Site Name:		
DRM Gustavus PFAS		
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory lim project specified objectives, if applicable?	nits and	
Yes \square No \square N/A \boxtimes Comments:		
See above.		
iv. Precision – All relative percent differences (RPD) reported and less than method or laborato limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.		
$Yes \square No \boxtimes N/A \boxtimes Comments:$		
See above.		
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:		
None; see above.		
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?		
Yes \square No \square N/A \boxtimes Comments:		
See above.		
vii. Data quality or usability affected? (Use comment box to explain.) Comments:		
Data quality or usability is not affected.		
d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Method	ds Only	
i. Are surrogate/IDA recoveries reported for organic analyses – field, QC and laborator samples?	у	
$Yes \boxtimes No \square N/A \square$ Comments:		
ii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limproject specified objectives, if applicable? (AK Petroleum methods 50-150 %R for fie samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples; all other analyses see the laboratory report programme of the samples and 60-120 %R for QC samples and 60-120 %	eld	
$Yes \square No \square N/A \boxtimes Comments:$		
See above.		

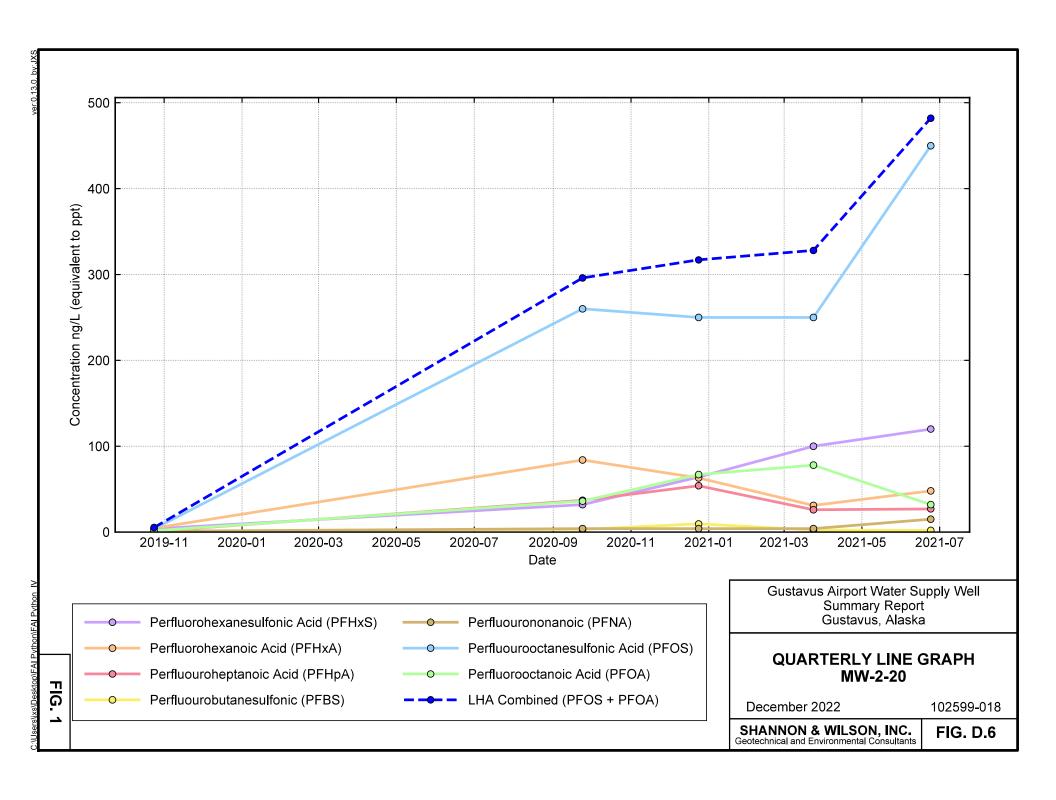

320-75577-1		
Laboratory Report Date:		
July 7, 2021		
CS Site Name:		
DRM Gustavus PFAS		
iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?		
Yes \square No \square N/A \boxtimes Comments:		
Flags not required.		
iv. Data quality or usability affected? Comments:		
Data quality or usability are not affected.		
e. Trip Blanks		
 i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.) 		
Yes \square No \square N/A \boxtimes Comments:		
Volatile compounds were not requested for this project. A trip blank is not required for the requested analyses.		
ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COO (If not, a comment explaining why must be entered below)		
$Yes \square No \square N/A \boxtimes Comments:$		
See above.		
iii. All results less than LOQ and project specified objectives?		
Yes \square No \square N/A \boxtimes Comments:		
See above.		
iv. If above LOQ or project specified objectives, what samples are affected? Comments:		
See above.		
v. Data quality or usability affected? Comments:		
Data quality or usability are not affected.		

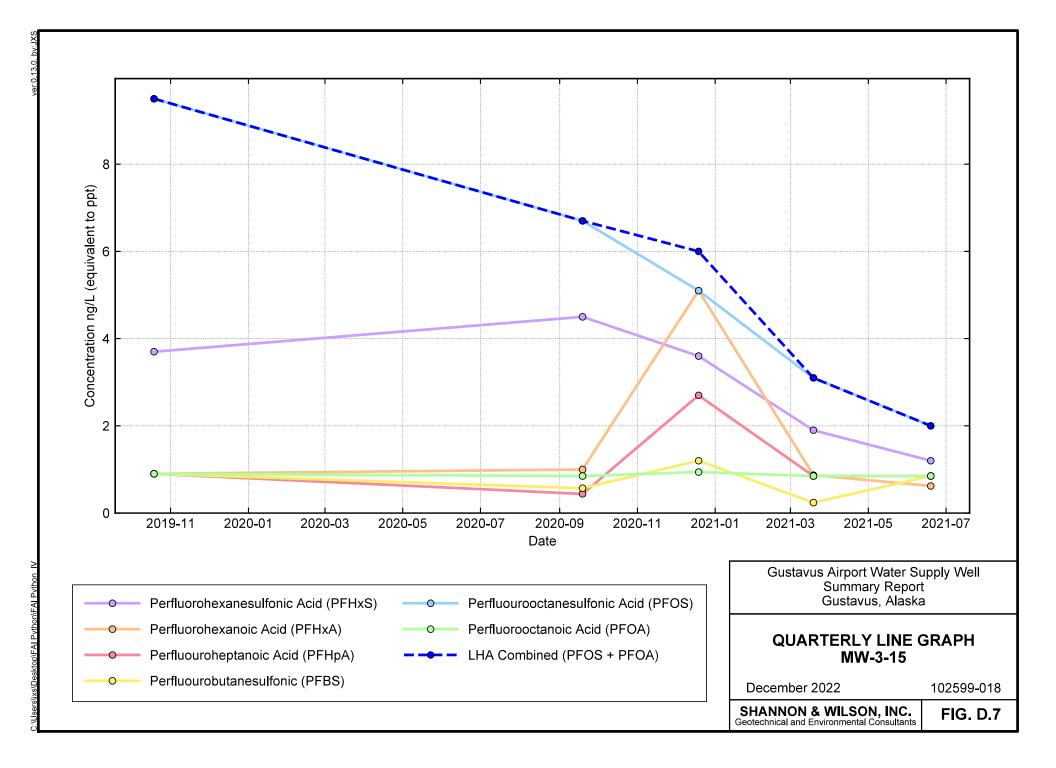

320-75577-1
Laboratory Report Date:
July 7, 2021
CS Site Name:
DRM Gustavus PFAS
f. Field Duplicate
i. One field duplicate submitted per matrix, analysis and 10 project samples?
Yes \square No \square N/A \boxtimes Comments:
Only three project samples were submitted with this work order.
ii. Submitted blind to lab?
Yes \square No \square N/A \boxtimes Comments:
See above.
iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water, 50% soil) RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$ Where R_1 = Sample Concentration
R_2 = Field Duplicate Concentration
Yes \square No \square N/A \boxtimes Comments:
See above.
iv. Data quality or usability affected? (Use the comment box to explain why or why not.) Comments:
Data quality or usability are not affected.
g. Decontamination or Equipment Blank (If not applicable, a comment stating why must be entered below)?
$Yes \square No \square N/A \boxtimes Comments:$
The sample was not collected with reusable equipment, therefore an equipment blank is not necessary.
i. All results less than LOQ and project specified objectives?
Yes No N/A Comments:
See above.

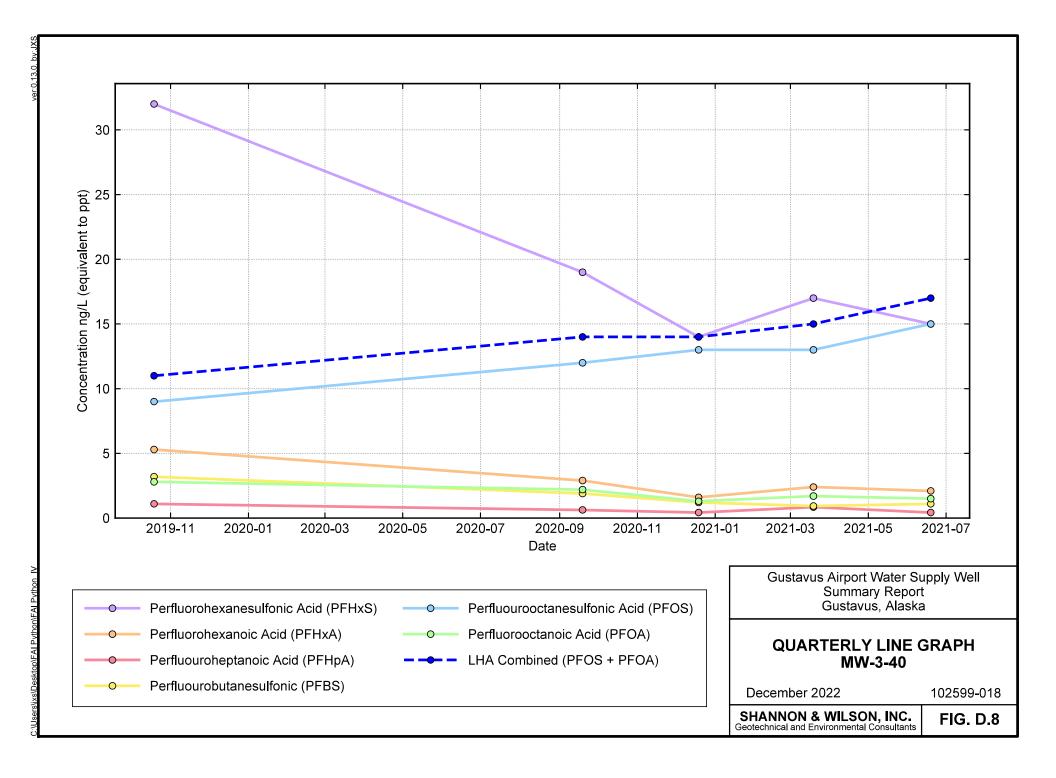

320-75577-1	
Laboratory Report Date:	
July 7, 2021	
CS Site Name:	
DRM Gustavus PFAS	
ii. If above LOQ or project specified objectives, what samples are affected? Comments:	
None; see above.	
iii. Data quality or usability affected? Comments:	
Data quality or usability are not affected.	
7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)	
a. Defined and appropriate?	
$Yes \square No \square N/A \boxtimes Comments:$	
N/A	

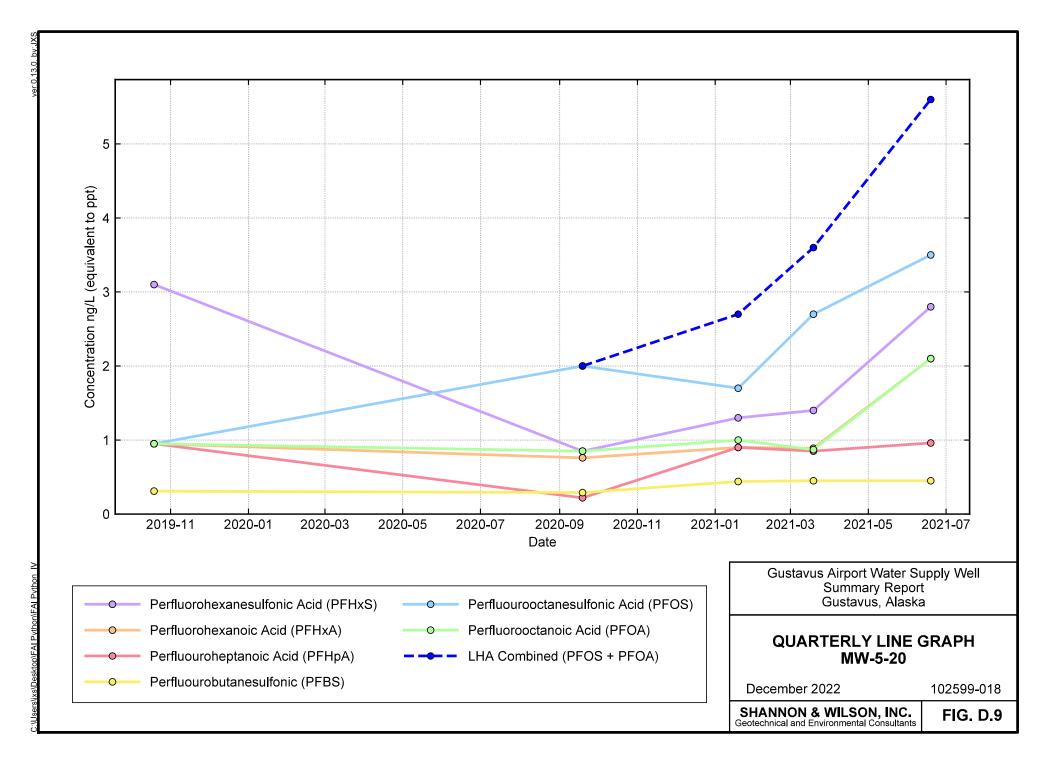

Appendix D

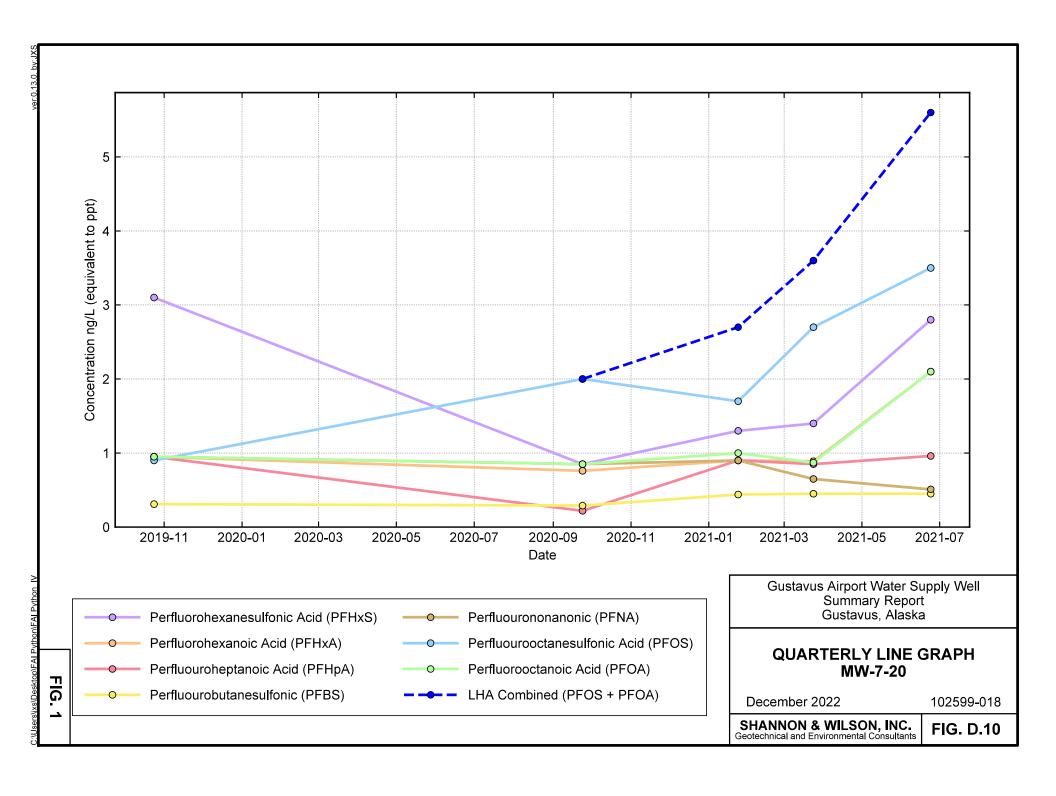

Historical Data Plots

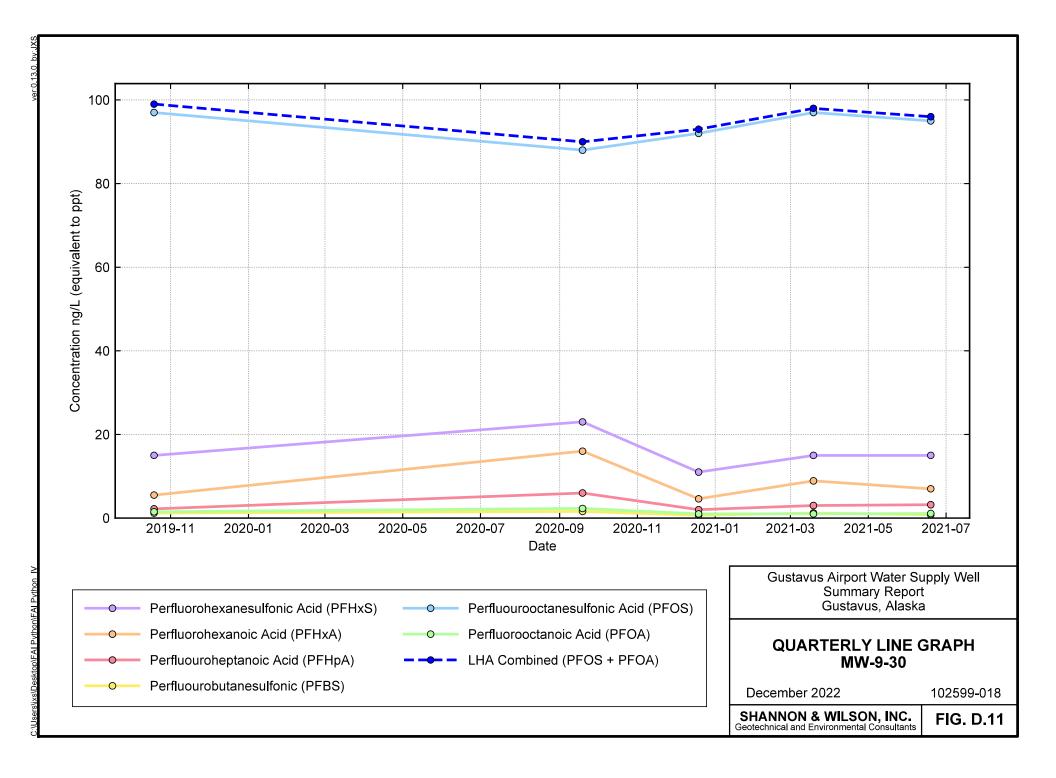


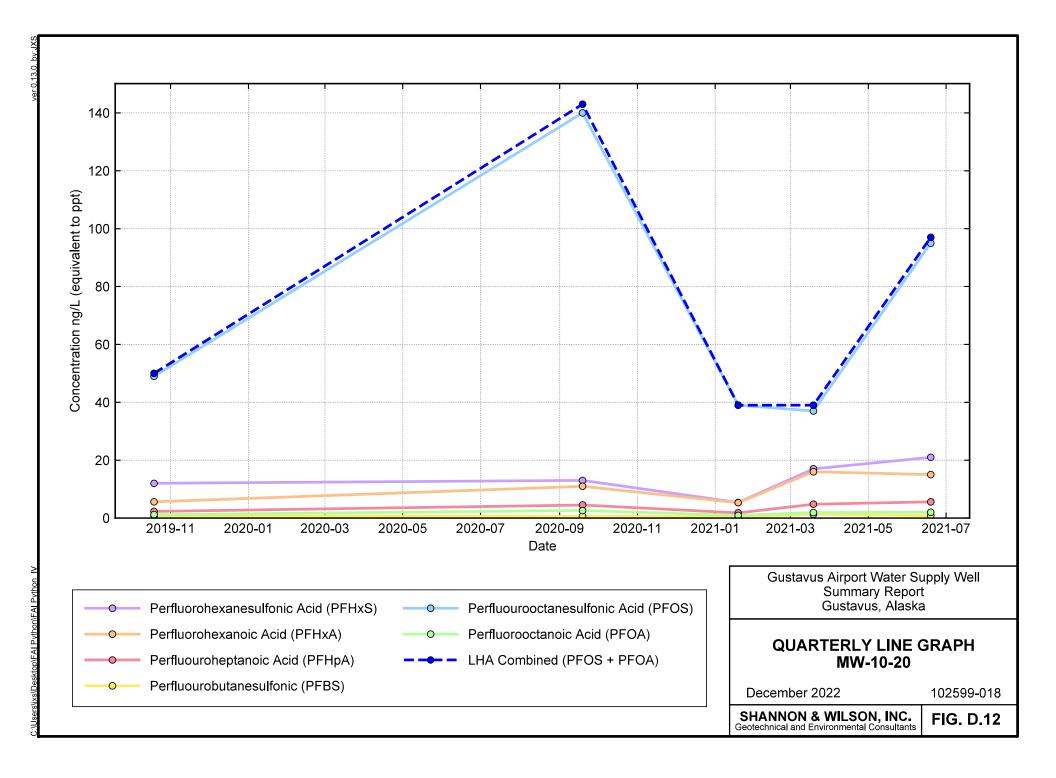


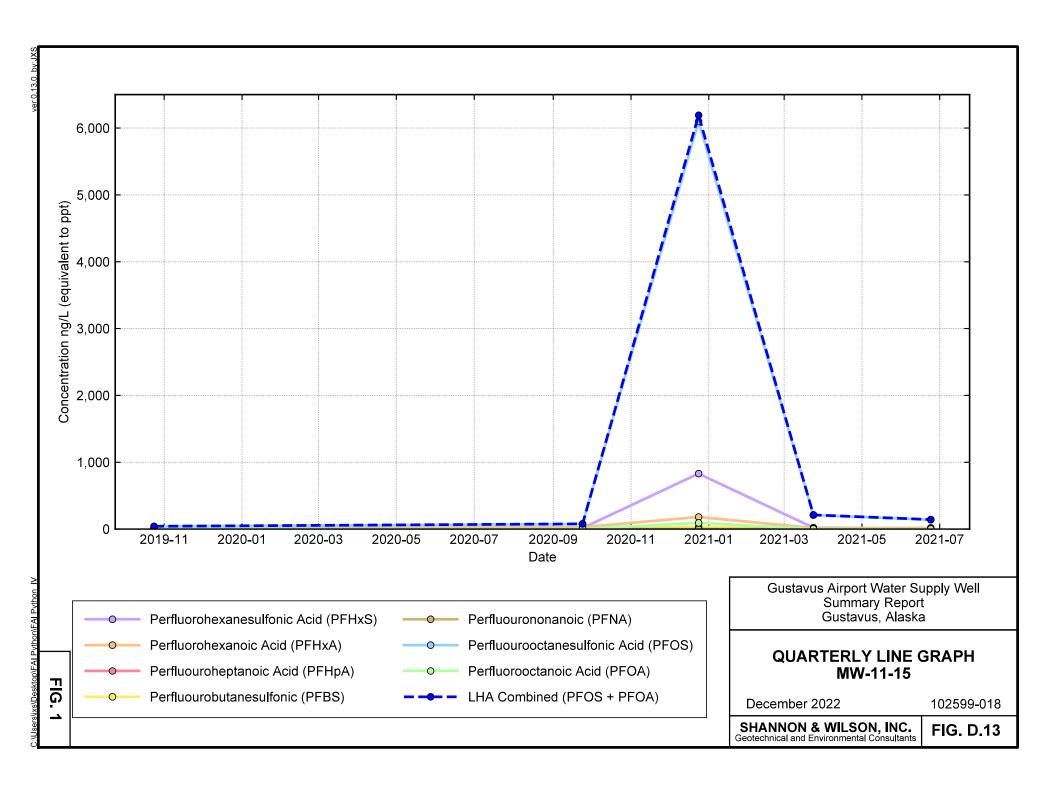


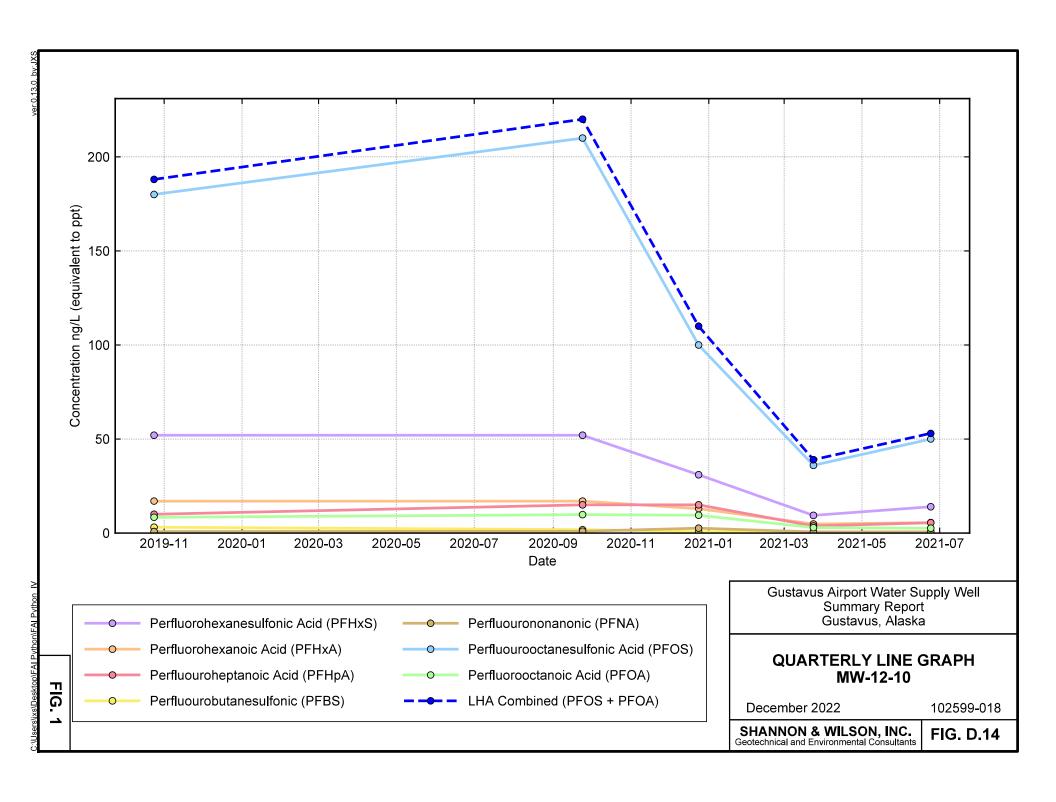












Important Information About Your Geotechnical/Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent

such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland